การติดตั้งปั๊มความร้อนที่ซับซ้อน การติดตั้งปั๊มความร้อนรุ่นใหม่และการใช้เป็นเทคโนโลยีพลังงานที่ประหยัดพลังงานและเป็นมิตรกับสิ่งแวดล้อมสำหรับการจ่ายน้ำร้อนที่มีประสิทธิภาพสูง

ปั๊มความร้อนเป็นอุปกรณ์ประเภทหนึ่งที่ได้รับความนิยมมากที่สุดในตลาดเทคโนโลยีสภาพอากาศของรัสเซียและ CIS เป็นที่ต้องการของผู้ซื้อจำนวนมากที่ต้องการสร้าง ระบบที่มีประสิทธิภาพทำความเย็นและทำความร้อนให้กับบ้านและที่ทำงาน แต่มีเพียงไม่กี่คนที่เข้าใจว่าเทคนิคนี้ทำงานอย่างไร และมักจะไม่รู้ด้วยซ้ำว่าควรใช้ในสถานการณ์ใดดีที่สุด ในระหว่างนี้ มีคำถามพื้นฐานหลายประการเกี่ยวกับการทำงานของการติดตั้งปั๊มความร้อน และแม้แต่ผู้เริ่มต้นก็เข้าใจได้ไม่ยาก

ปั๊มความร้อนคืออะไร?

อุปกรณ์ประเภทนี้รวมถึงอุปกรณ์ที่สามารถใช้ความร้อนที่ได้จาก สิ่งแวดล้อมโดยใช้คอมเพรสเซอร์เพื่อเพิ่มอุณหภูมิของสารหล่อเย็นให้อยู่ในระดับที่กำหนดไว้แล้วถ่ายเทความร้อนไปยังห้องใดห้องหนึ่ง ในเวลาเดียวกัน ปั๊มความร้อนสามารถดึงความร้อนจากสื่อใดๆ ก็ตาม แท้จริงแล้ว "ปั๊ม" ออกจากสิ่งแวดล้อม ดังนั้นเครื่องสูบน้ำจึงสามารถทำงานกับ:

โดยการลดอุณหภูมิของสารหล่อเย็น อุปกรณ์ควบคุมสภาพอากาศดังกล่าวสามารถทำให้อาคารทุกหลังร้อนได้อย่างมีประสิทธิภาพ

ข้อมูลจำเพาะของปั๊ม

โดยทั่วไปแล้ว หน่วยปั๊มความร้อน ซึ่งแตกต่างจากอุปกรณ์ควบคุมสภาพอากาศประเภทอื่นๆ ใช้ปริมาณไฟฟ้าขั้นต่ำในระหว่างการทำงาน. โดยเฉลี่ยแล้ว เธอต้องใช้พลังงานเพียง 1 กิโลวัตต์เท่านั้น และนี่จะเพียงพอสำหรับการผลิตความร้อน 3-6 กิโลวัตต์ กล่าวอีกนัยหนึ่งคือการใช้กำลังของ 2-3 หลอดไฟธรรมดาในฤดูหนาวคุณสามารถอุ่นห้องนั่งเล่นขนาดกลางได้อย่างมีประสิทธิภาพ. ในฤดูร้อนสามารถใช้พลังงานเดียวกันเพื่อทำให้ห้องเย็นลง ในกรณีนี้ ปั๊มความร้อนจะดูดซับความร้อนจากอากาศในห้องและปล่อยสู่บรรยากาศ ลงดิน หรือลงน้ำ สร้างความเย็นสบายให้กับห้องใดก็ได้ .

ปั๊มความร้อนคืออะไร?

มีอุปกรณ์มากมายในท้องตลาดที่ สามารถใช้ใน ด้านต่างๆ , รวมทั้ง:

  • พื้นที่ใช้สอย,
  • สถานประกอบการทางการเกษตร
  • สถานประกอบการอุตสาหกรรม
  • กรมการเคหะและสาธารณูปโภค.

แน่นอน การติดตั้งปั๊มความร้อนสำหรับห้องต่างๆ มีลักษณะที่แตกต่างกันและอาจมีขนาดแตกต่างกันออกไป ในเวลาเดียวกัน ปั๊มมีพลังงานความร้อนต่างกัน (ตั้งแต่หลายกิโลวัตต์จนถึงหลายร้อยเมกะวัตต์) รวมทั้ง สามารถทำงานที่แตกต่างกัน แหล่งความร้อน, โดยไม่คำนึงถึงสถานะของการรวมตัว (ของแข็ง ของเหลว หรือก๊าซ) จากลักษณะการทำงานของอุปกรณ์ดังกล่าว การติดตั้งปั๊มความร้อนแบ่งออกเป็นประเภทต่อไปนี้:

  • น้ำ-น้ำ,
  • อากาศน้ำ,
  • น้ำ-อากาศ,
  • อากาศสู่อากาศ,
  • น้ำบาดาล,
  • ดินอากาศ

นอกจากนี้ยังมีปั๊มความร้อนตามท้องตลาดอีกด้วย ออกแบบมาให้ทำงานกับความร้อนเกรดต่ำ. แหล่งที่มาของความร้อนดังกล่าวสามารถมีอุณหภูมิติดลบได้ และในกรณีนี้ ปั๊มความร้อนทำหน้าที่เป็นตัวรับความร้อนที่มีศักยภาพสูง ซึ่งได้รับความร้อนสูงมาก อุณหภูมิสูง(มากกว่า 1,000 องศา) โดยทั่วไป, ตามอุณหภูมิที่ใช้ในการติดตั้ง แบ่งออกเป็น:

  • อุณหภูมิต่ำ
  • อุณหภูมิปานกลาง
  • อุณหภูมิสูง.

พารามิเตอร์อื่นที่แยกความแตกต่างของการติดตั้งปั๊มความร้อนนั้นสัมพันธ์กับของพวกเขา อุปกรณ์ทางเทคนิคตามตัวบ่งชี้นี้ อุปกรณ์แบ่งออกเป็นประเภทต่าง ๆ เช่น:

  • การดูดซึม
  • การอัดไอ


ตามกฎแล้วปั๊มความร้อนทั้งหมดทำงานด้วย พลังงานไฟฟ้าอย่างไรก็ตาม ในบางกรณีสามารถเปลี่ยนเป็นพลังงานประเภทอื่นได้โดยใช้เชื้อเพลิงที่หลากหลาย
ตามข้อมูลเฉพาะของเชื้อเพลิงนี้และการทำงานของอุปกรณ์เอง การติดตั้งปั๊มความร้อนแบ่งออกเป็นประเภทต่อไปนี้:

  • เครื่องทำความร้อนที่ใช้ความร้อนจาก น้ำบาดาล,
  • ปั๊มจ่ายน้ำร้อน ทำงานโดยใช้ความร้อนจากแหล่งน้ำธรรมชาติ
  • เครื่องปรับอากาศน้ำทะเล
  • เครื่องปรับอากาศที่ใช้อากาศภายนอก,
  • ปั๊มสำหรับ เครื่องทำน้ำอุ่นในสระว่ายน้ำ, ทำงานกลางแจ้ง,
  • หน่วยปั๊มความร้อนสำหรับระบบจ่ายความร้อนที่ใช้ความร้อนที่เกิดจากอุปกรณ์ทางวิศวกรรมและเทคนิค
  • อุปกรณ์ที่ทำงานบนนม - ทำหน้าที่ให้นมเย็นและจ่ายน้ำร้อนตามมาและใช้ในฟาร์มโคนม
  • การติดตั้งเพื่อใช้ความร้อนที่ได้รับจากกระบวนการทางเทคโนโลยี - ทำหน้าที่ให้ความร้อนแก่อากาศที่จ่าย

นอกจากนี้ยังมีอุปกรณ์ประเภทอื่นๆในเวลาเดียวกัน ตามปกติแล้ว ปั๊มความร้อนทุกประเภทจะผลิตในปริมาณมาก อย่างไรก็ตาม สามารถผลิตหน่วยที่ไม่ซ้ำกันแต่ละหน่วยได้ตาม โครงการพิเศษ. คุณยังสามารถพบปั๊มความร้อนทดลอง ภาพวาดจำนวนมากที่ยังไม่ได้ใช้งาน และแบบจำลองนำร่องของอุปกรณ์ดังกล่าว ซึ่งสามารถใช้ในห้องพิเศษใดก็ได้

การติดตั้งปั๊มความร้อนทั้งหมดสามารถรวมกันเป็นระบบเดียวได้นี่เป็นสิ่งจำเป็นหากอุปกรณ์ดังกล่าวหลายหน่วยทำงานที่โรงงานแห่งเดียว ทำให้เกิดความร้อนและความเย็น การรวมเข้าด้วยกันจะเพิ่มประสิทธิภาพเท่านั้นและในโรงงานขนาดกลางหรือขนาดใหญ่ขอแนะนำให้วางแผนการสร้างอุปกรณ์ที่ซับซ้อนดังกล่าวทันที

ระบบปรับอากาศแบบวงแหวนคืออะไร?

ระบบดังกล่าวเสร็จสมบูรณ์โดยใช้ปั๊มความร้อนประเภทต่างๆ แม้ว่าโดยทั่วไปแล้วจะใช้การติดตั้งแบบอากาศสู่อากาศเพื่อวัตถุประสงค์เหล่านี้ ปั๊มความร้อนในกรณีนี้ทำหน้าที่เป็นเครื่องปรับอากาศ: ติดตั้งโดยตรงในห้องเย็นและเลือกกำลังของอุปกรณ์ดังกล่าวตามพารามิเตอร์จำนวนหนึ่ง ในหมู่พวกเขา:

  • ลักษณะของห้องนั้นเอง
  • วัตถุประสงค์ของสถานที่
  • จำนวนคนที่อยู่ในนั้น
  • อุปกรณ์ที่ติดตั้งหรือจะติดตั้งอยู่ในนั้น


เครื่องปรับอากาศสามารถกลับด้านได้เสมอ โดยจะทำความเย็นและสร้างความร้อนได้ในเวลาเดียวกัน พวกมันเชื่อมต่อกันด้วยวงจรน้ำทั่วไป - ท่อส่งน้ำที่หมุนเวียนเป็นทั้งแหล่งและตัวรับความร้อน เป็นผลให้อุณหภูมิภายในวงจรสามารถผันผวนได้ภายใน 18-32 องศาและผ่านความร้อนนั้นแลกเปลี่ยนระหว่างปั๊มความร้อนที่ให้ความร้อนกับอากาศและระหว่างอุปกรณ์ที่ทำให้เย็นลง ถ้าใน ห้องต่างๆต้องสร้างบรรยากาศ ลักษณะที่แตกต่างปั๊มความร้อนจะถ่ายเทความร้อนจากห้องที่มีส่วนเกินไปยังห้องที่มีความร้อนไม่เพียงพอ ทำให้สามารถสร้างการแลกเปลี่ยนความร้อนวงแหวนระหว่างโซนต่างๆ ได้ และระบบดังกล่าวมีประสิทธิภาพและประหยัดมาก

ในเวลาเดียวกัน ระบบวงแหวนไม่เพียงแต่รวมอุปกรณ์เครื่องปรับอากาศเท่านั้น แต่ยังรวมถึงการติดตั้งอื่นๆ ด้วย โดยเฉพาะอย่างยิ่ง, อุปกรณ์ดังกล่าวสามารถใช้ความร้อนเหลือทิ้งได้ นี่เป็นสิ่งจำเป็นเมื่อมีความต้องการความร้อนค่อนข้างมาก เช่น:

  • ณ สถานที่ที่มีน้ำเสียไหลแรง: การติดตั้งปั๊มความร้อนแบบน้ำต่อน้ำสามารถใช้ความร้อนที่ปล่อยออกมาได้อย่างง่ายดายและควบคุมโดยใช้วงจรวงแหวนเพื่อให้ความร้อนในอวกาศ
  • ที่สิ่งอำนวยความสะดวกด้วย การระบายอากาศที่ดูดอากาศออกจากตัวอาคาร(โดยมีเงื่อนไขว่าไม่มีสิ่งเจือปนในอากาศมากเกินไปจนทำให้ปั๊มความร้อนทำงานได้ยาก): ในกรณีนี้ จำเป็นต้องติดตั้งแบบอากาศสู่น้ำ ซึ่งจะทำให้ความร้อนกลับคืนมาจาก "ที่ไม่จำเป็น" อากาศและถ่ายโอนไปยังพื้นที่ทำความร้อนหรือน้ำร้อน ,
  • ในสถานที่ที่มี น้ำเสีย, และการระบายอากาศ- สำหรับพวกเขา ระบบวงแหวนสามารถใช้เพื่อขจัดความร้อนส่วนเกินออกจากวงจรน้ำ (โดยปกติจะทำในฤดูร้อนเท่านั้น) ซึ่งจะลดความจุของหอหล่อเย็น


ในทุกสถานการณ์ ระบบวงแหวนช่วยให้คุณสามารถใช้ความร้อนซ้ำ ๆ และส่งไปยังความต้องการของผู้บริโภคทุกคนในอาคารได้อย่างแน่นอนและนี่คือเอกลักษณ์เฉพาะของมันเนื่องจากเครื่องทำความเย็นและเครื่องปฏิกรณ์แบบเดิมไม่สามารถทำได้. นอกจากนี้ ระบบดังกล่าวยังใช้ความร้อนอย่างมีประสิทธิภาพมากขึ้น เนื่องจากการทำงานของระบบไม่ได้ขึ้นอยู่กับอุณหภูมิของอากาศที่ระบายอากาศเข้าและอุณหภูมิที่ตั้งไว้ของอากาศที่เข้าสู่ห้อง

ในฤดูร้อน ระบบวงแหวนซึ่งทำงานโดยใช้หน่วยปั๊มความร้อนจากน้ำสู่น้ำ สามารถขจัดความร้อนส่วนเกินออกจากวงจรน้ำได้อย่างมีประสิทธิภาพ โดยใช้ผ่านผู้บริโภค: ความร้อนส่วนเกินจะถูกส่งไปยังระบบจ่ายน้ำร้อน และมักจะเพียงพอที่จะตอบสนองทุกความต้องการของผู้อยู่อาศัยในห้องใดก็ได้ในน้ำร้อน ระบบดังกล่าวจะมีประสิทธิภาพโดยเฉพาะอย่างยิ่งในสิ่งอำนวยความสะดวกที่มีสระว่ายน้ำหลายแห่ง (บ้านพักตากอากาศ, โรงแรม, ศูนย์สุขภาพ) - ด้วยความช่วยเหลือจะทำให้น้ำร้อนในสระได้อย่างรวดเร็วและไม่มี ค่าใช้จ่ายเพิ่มเติม.

ระบบวงแหวนเข้ากันได้กับระบบอุปกรณ์อื่น ๆ หรือไม่?

แน่นอนใช่และเหนือสิ่งอื่นใดจะต้องประสานงานกับระบบระบายอากาศโดยเฉพาะอย่างยิ่งต้องพัฒนาโดยคำนึงถึงคุณลักษณะทั้งหมดของอุปกรณ์ปั๊มความร้อนที่จะปรับอากาศ โดยเฉพาะอย่างยิ่ง ระบบระบายอากาศจำเป็นต้องให้แน่ใจว่ามีการหมุนเวียนของอากาศในปริมาณที่จำเป็นสำหรับการทำงานที่มั่นคงของปั๊ม การนำความร้อนกลับคืนอย่างมีประสิทธิภาพ และการรักษาอุณหภูมิที่ต้องการในห้อง ควรปฏิบัติตามกฎนี้ในสิ่งอำนวยความสะดวกทั้งหมด ยกเว้นสถานที่บางแห่งที่ไม่พึงปรารถนา เช่น สระว่ายน้ำหรือห้องครัว

ในเวลาเดียวกัน ข้อดีของการจับคู่ระบบวงแหวนกับระบบระบายอากาศก็คือ ระบบหลังในกรณีนี้สามารถสร้างขึ้นตามรูปแบบที่ง่ายกว่า ซึ่งจะทำให้ผู้บริโภคเสียค่าใช้จ่ายน้อยลง ในกรณีนี้ ปั๊มความร้อนจะทำให้อากาศเย็นลงโดยตรงเมื่อจำเป็น วิธีนี้จะช่วยให้ผู้บริโภคไม่ต้องขนย้ายผ่านท่ออากาศที่มีฉนวนความร้อนแบบยาว และจะแยกแยะความแตกต่างระหว่างระบบดังกล่าวจากเครื่องปรับอากาศแบบรวมศูนย์ทั่วไปในปัจจุบันได้อย่างเหมาะสม

นอกจากนี้, ระบบวงแหวนสามารถประสานงานกับระบบทำความร้อนได้ และบางครั้งถึงกับเข้าควบคุมการทำงานของระบบโดยสิ้นเชิงในสถานการณ์เช่นนี้ ระบบทำความร้อนที่ใช้ปั๊มความร้อนจะมีประสิทธิภาพน้อยลงและเรียบง่ายขึ้นในแง่ของอุปกรณ์ ทำให้มีประสิทธิภาพโดยเฉพาะอย่างยิ่งในสภาพอากาศหนาวเย็นที่ความร้อนต้องการความร้อนมากขึ้นจากแหล่งที่มีศักยภาพสูง นอกจากนี้, ระบบวงแหวนสามารถเพิ่มประสิทธิภาพการทำงานของอุปกรณ์ทั้งหมดในห้องได้อย่างจริงจัง. ระบบปรับอากาศและระบบทำความร้อนแบบแยกส่วนอาจรบกวนกันอย่างรุนแรง โดยเฉพาะอย่างยิ่งเมื่อไม่จำเป็นต้องใช้ทั้งสองอย่าง ระบบวงแหวนตัดสถานการณ์ดังกล่าวออกไปโดยสิ้นเชิง เนื่องจากระบบจะทำงานอย่างมีประสิทธิภาพเสมอ โดยพิจารณาจากสภาพจริงของสภาพอากาศขนาดเล็กที่สร้างขึ้นในแต่ละห้อง ในเวลาเดียวกัน ในองค์กร อุปกรณ์ดังกล่าวสามารถทำให้เย็นและให้ความร้อนได้ ไม่เพียงแต่ในอากาศเท่านั้น แต่ยังรวมถึงน้ำด้วย และกระบวนการนี้จะไม่ต้องเสียค่าใช้จ่ายด้านพลังงานเพิ่มเติม - จะรวมอยู่ในความสมดุลของแหล่งจ่ายความร้อนโดยรวม

และแน่นอนว่า, ในสถานการณ์เหล่านี้ ระบบวงแหวนจะแสดงให้เห็นถึงความประหยัดที่ดีเยี่ยม ในระบบแบบดั้งเดิม ความร้อนจะถูกใช้เพียงบางส่วนและอย่างรวดเร็วไหลออกจากชั้นบรรยากาศหากการให้ความร้อนทำงานควบคู่กับการระบายอากาศ อย่างไรก็ตาม ระบบวงแหวนแก้ปัญหานี้ด้วยวิธีที่ซับซ้อน ทำให้การนำความร้อนกลับมาใช้ใหม่มีประสิทธิภาพมากขึ้นและลดการสูญเสียได้อย่างมาก

จะจัดการระบบปั๊มความร้อนได้อย่างไร?

ตามกฎแล้วอุปกรณ์นี้ไม่จำเป็นต้องติดตั้งเครื่องมือราคาแพง ระบบควบคุมอัตโนมัติและนี่คือ "บทความ" อื่นที่จะบันทึกไว้ ระบบอัตโนมัติที่สะดวกสบายที่นี่ง่ายมากและลดลงเพื่อรักษาอุณหภูมิที่ตั้งไว้ของน้ำในวงจรเท่านั้น ในการทำเช่นนี้ ระบบจะเปิดฮีตเตอร์เพิ่มเติมในเวลาที่น้ำไม่เย็นเกินที่ควร หรือเปิดใช้งานหอหล่อเย็นเพื่อไม่ให้ร้อนเกินความจำเป็น และโดยปกติแล้วก็เพียงพอที่จะรักษาสภาพอากาศในอุดมคติไว้ได้

ดำเนินการ ระบบควบคุมอัตโนมัติในสถานการณ์นี้เป็นไปได้ด้วยตัวควบคุมอุณหภูมิเพียงไม่กี่ตัวนอกจากนี้ยังไม่ต้องการวาล์วควบคุมที่แม่นยำอีกด้วย! อุณหภูมิของน้ำในวงจรของระบบวงแหวนสามารถเปลี่ยนแปลงได้หลากหลายโดยไม่ต้องใช้วิธีการเพิ่มเติมสำหรับสิ่งนี้

นอกจากนี้, ระบบแยกระบบอัตโนมัติยังควบคุมกระบวนการถ่ายเทความร้อนโดยปั๊มความร้อนไปยังผู้บริโภคมันถูกสร้างขึ้นในอุปกรณ์เองและหนึ่งในองค์ประกอบหลักของระบบถือได้ว่าเป็นเทอร์โมสตรัท (เซ็นเซอร์อุณหภูมิ) ซึ่งติดตั้งโดยตรงในห้อง เพียงอย่างเดียวก็เพียงพอแล้วที่จะจัดการการทำงานของการติดตั้งปั๊มความร้อนได้อย่างเต็มที่ ในเวลาเดียวกัน ตัวปั๊มเองสามารถให้คุณสมบัติที่จำเป็นทั้งหมดของอุณหภูมิอากาศในห้องโดยไม่ต้องติดตั้งแดมเปอร์ควบคุมในระบบระบายอากาศและวาล์วควบคุมในระบบทำความร้อน สิ่งนี้ช่วยให้คุณลดต้นทุนของระบบวงแหวนได้เพิ่มขึ้น และเพิ่มความน่าเชื่อถือของการสื่อสารทางวิศวกรรมทั้งหมดของอาคารโดยรวม

โดยทั่วไป อาจจำเป็นต้องใช้ระบบควบคุมอัตโนมัติที่ซับซ้อนในโรงงานขนาดใหญ่ที่มีการติดตั้งปั๊มความร้อนจำนวนมากเท่านั้น หลากหลายชนิดออกแบบมาสำหรับเครื่องปรับอากาศ กระบวนการทางเทคโนโลยี และการนำความร้อนกลับมาใช้ใหม่ และในสถานการณ์เช่นนี้ การติดตั้งระบบนี้เป็นเรื่องที่สมเหตุสมผล เพราะจะช่วยให้คุณปรับการทำงานของอุปกรณ์แต่ละชิ้นได้อย่างเหมาะสมที่สุด อย่างไรก็ตาม เมื่อติดตั้ง ควรระลึกไว้เสมอว่า การทำงานของระบบวงแหวนได้รับอิทธิพลจากปัจจัยหลายประการที่แม้แต่ระบบอัตโนมัติยังต้อง "คำนึงถึง" ในหมู่พวกเขา:

  • อุณหภูมิของน้ำในวงจร, - มันส่งผลต่อค่าสัมประสิทธิ์การแปลงความร้อน (อัตราส่วนของปริมาณความร้อนที่จ่ายให้กับผู้บริโภคต่อปริมาณพลังงานที่ปั๊มความร้อนใช้ไป)
  • อุณหภูมิอากาศภายนอก;
  • พารามิเตอร์การทำงานของหอทำความเย็น- มันสามารถใช้พลังงานในปริมาณที่แตกต่างกันสำหรับความร้อนในปริมาณเท่ากัน และขึ้นอยู่กับสภาวะภายนอก รวมถึงอุณหภูมิของอากาศ ลม และปัจจัยอื่นๆ
  • จำนวนปั๊มความร้อนที่ทำงานในระบบรวมถึงความจุรวม(อัตราส่วนกำลังของอุปกรณ์ที่นำความร้อนจากวงจรน้ำและกำลังของการติดตั้งที่จ่ายให้กับวงจร)

มีตัวอย่างที่ประสบความสำเร็จของการใช้ระบบวงแหวนหรือไม่?

มีตัวอย่างค่อนข้างน้อย แต่สองตัวอย่างต่อไปนี้ถือได้ว่าเป็น "ตำราเรียน"

ประการแรกคือการสร้างโรงเรียนมัธยมหมายเลข 2 ใน Ust-Labinsk ในอาคารนี้ มีการปฏิบัติตามข้อกำหนดด้านสุขอนามัยที่เข้มงวดที่สุดทั้งหมดเพื่อให้ได้รับความสะดวกสบายสูงสุดสำหรับเด็กที่จะเรียนในสถาบันนี้ ตามข้อกำหนดเหล่านี้ มีการติดตั้งระบบสภาพอากาศแบบพิเศษที่นั่น ซึ่งสามารถควบคุมอุณหภูมิ ความชื้น และการไหลเข้าตามฤดูกาลได้ อากาศบริสุทธิ์. ในเวลาเดียวกัน วิศวกรทำทุกวิถีทางเพื่อให้แน่ใจว่าแต่ละชั้นเรียนสามารถควบคุม microclimate ได้เป็นรายบุคคล และมีเพียงระบบวงแหวนเท่านั้นที่สามารถรับมือกับการควบคุมดังกล่าวได้ เธออนุญาต:

  • ลดค่าใช้จ่ายในการทำความร้อนทั้งอาคารอย่างมาก
  • แก้ปัญหา น้ำเย็นในโรงทำความร้อนที่ตั้งอยู่บริเวณโรงเรียน

ระบบนี้ประกอบขึ้นจากปั๊มความร้อน Climatemaster (สหรัฐอเมริกา) มากกว่า 50 เครื่องและหอทำความเย็นหนึ่งแห่ง. ได้รับความร้อนเพิ่มเติมจากโรงทำความร้อนและควบคุมโดยระบบอัตโนมัติซึ่งดูแลอย่างอิสระ สภาพที่สะดวกสบายสำหรับการสอนเด็กและในขณะเดียวกันก็ทำงานอย่างประหยัดที่สุด ต้องขอบคุณเธอที่การทำงานของระบบวงแหวนแม้ในฤดูหนาวที่รุนแรงที่สุด ทำให้สามารถลดค่าใช้จ่ายในการทำความร้อนรายเดือนลงเหลือ 9.8,000 รูเบิล: ก่อนที่ระบบจะอัพเกรด โรงเรียนใช้เงิน 18,000 440 รูเบิลทุกเดือน ความร้อน 2.5 พันตารางเมตร ม. และสิ่งนี้แม้ว่าหลังจากการปรับปรุงให้ทันสมัยแล้วพื้นที่ที่ร้อนจัดของโรงเรียนก็เพิ่มขึ้นอีกซึ่งมีจำนวน 3,000 ตารางเมตร ม. เมตร

โครงการที่สองดำเนินการในหมู่บ้านกระท่อมใกล้มอสโก ปัญหาในการสร้างการตั้งถิ่นฐานดังกล่าวมักเกิดจากการที่โครงสร้างพื้นฐานในดินแดนเหล่านี้ไม่อนุญาตให้มีการก่อสร้างบ้านใหม่เนื่องจากทั้งท่อน้ำและ ไฟฟ้าของเน็ต, ก็ไม่เช่นกัน สถานีไฟฟ้าย่อยไม่สามารถรับมือกับปริมาณงานที่เพิ่มขึ้นได้ ในเวลาเดียวกัน ไฟฟ้าดับ สายไฟเก่าแตก อุบัติเหตุต่างๆ เกิดขึ้นอย่างต่อเนื่องที่สถานีไฟฟ้าย่อยเก่า ดังนั้นในหมู่บ้านที่ตั้งอยู่ในดินแดนดังกล่าว จำเป็นต้องดูแลระบบจ่ายไฟอัตโนมัติในทันที

ดังนั้น วิศวกรจึงจำเป็นต้องสร้างโครงการที่จะยอมให้ กระท่อมสองชั้นมีหลายห้องที่มีไฟฟ้าและความร้อน พื้นที่มาตรฐานของบ้านดังกล่าวคือ 200 ตารางเมตร ม. เมตรและไฟฟ้าเท่านั้นและ น้ำบาดาลไม่มีการสื่อสารอื่นใด

ขั้นตอนแรกที่วิศวกรนำไปในทิศทางของประสิทธิภาพการใช้พลังงาน - ติดตั้งในกระท่อม แผงโซลาร์เซลล์และด้านหลังบ้านได้รับการติดตั้งโมดูลเซลล์แสงอาทิตย์ซึ่งขับเคลื่อนด้วยพลังงานแสงอาทิตย์และมีความจุ 3.5 กิโลวัตต์ พลังงานนี้เพียงพอที่จะป้อนแบตเตอรี่ซึ่งต่อมาขับเคลื่อนตัวบ้านและระบบทำความร้อน ดังนั้นไฟฟ้าสำหรับครอบครัวที่อาศัยอยู่ในกระท่อมนั้นจึงฟรีซึ่งหมายความว่าจาก งบประมาณครอบครัวสามารถหักค่าใช้จ่ายได้ เป็นผลให้ค่าใช้จ่ายในการติดตั้งแบตเตอรี่ควรชำระในเวลาน้อยกว่า 10 ปีและหลังจากนั้นจะไม่ต้องจัดสรรเงินทุน

เพื่อให้ความร้อนแก่กระท่อมได้ใช้การติดตั้งปั๊มความร้อนใต้พิภพโดยใช้ปั๊มน้ำสู่น้ำ มันไม่ได้มีไว้สำหรับการให้ความร้อนในอวกาศโดยใช้แบตเตอรี่หม้อน้ำเท่านั้น แต่ยังสำหรับการผลิตด้วย น้ำร้อน. วงจรที่จ่ายความร้อนคุณภาพต่ำไปยังปั๊ม - นั่นคือท่อโพลีเอทิลีนธรรมดายาว 800 ม. และเส้นผ่านศูนย์กลาง 32 มม. - วางบนไซต์ (ที่ความลึก 2 เมตร) การติดตั้งระบบดังกล่าว (ไฟฟ้า + เครื่องทำความร้อน) ใช้เงินไป 40,000 ดอลลาร์และในอนาคตเจ้าของจะไม่ต้องจ่ายเงินเพื่อจ่ายเงิน สาธารณูปโภคจัดหาจากส่วนกลาง เขาได้รับประโยชน์จากสิ่งนี้เท่านั้น

สามารถใช้ระบบวงแหวนได้ที่ไหน?

โดยทั่วไป ตัวอย่างทั้งหมดแสดงให้เห็นว่าเช่น การติดตั้งปั๊มความร้อนสามารถติดตั้งได้กับวัตถุต่างๆ ในหมู่คนหลักคือ:

  • อาคารบริหาร,
  • สถาบันทางการแพทย์และสุขภาพ
  • อาคารสาธารณะ,
  • สถาบันการศึกษา,
  • บ้านพักตากอากาศและโรงแรม,
  • สปอร์ตคอมเพล็กซ์,
  • สถานประกอบการอุตสาหกรรม
  • สถานบันเทิง

ในขณะเดียวกัน ในทุกรูปแบบ ระบบวงแหวนที่ยืดหยุ่นสามารถปรับได้อย่างง่ายดายตามความต้องการของห้องใดห้องหนึ่ง และติดตั้งในตัวเลือกที่หลากหลายที่สุด

ในการติดตั้งวิศวกรจะต้องคำนึงถึงความแตกต่างหลายประการ:

  • ความต้องการความเย็นและความร้อน ณ สถานที่แห่งหนึ่ง
  • จำนวนคนที่อยู่ภายในสถานที่
  • แหล่งความร้อนที่เป็นไปได้ในอาคาร
  • อ่างความร้อนที่เป็นไปได้
  • คุณสมบัติของการสูญเสียความร้อนและการเพิ่มความร้อน

หลังจากนั้นมากที่สุด แหล่งที่ดีที่สุดความร้อนจะถูกใช้ในระบบเองในขณะที่ต้องปรับความจุรวมของปั๊มความร้อนเพื่อไม่ให้มากเกินไป

โดยรวมแล้ว ตัวเลือกที่เหมาะสำหรับวัตถุใด ๆ ผู้เชี่ยวชาญพิจารณาการติดตั้งอุปกรณ์ปั๊มความร้อนที่ใช้สิ่งแวดล้อมทั้งเป็นแหล่งความร้อนและเป็นตัวรับ ในเวลาเดียวกัน ทั้งระบบควรมีความสมดุลในแง่ของความร้อนโดยไม่คำนึงถึงความจุของแหล่งความร้อนและตัวรับ - อาจแตกต่างกันเนื่องจากอัตราส่วนจะเปลี่ยนแปลงเมื่อสภาพการทำงานของระบบเปลี่ยนแปลง อย่างไรก็ตามจะต้องสอดคล้องกัน

หากพิจารณาพารามิเตอร์เหล่านี้อย่างถูกต้อง ระบบวงแหวนจะทำงานอย่างมีประสิทธิภาพทั้งสำหรับการทำความร้อนและความเย็น โดยใช้ความร้อน "ส่วนเกิน" ทั้งหมด และการใช้ระบบดังกล่าวแทนการใช้หลายระบบจะไม่เพียงแต่สร้างบรรยากาศในร่มในอุดมคติเท่านั้น แต่ยังจะมีประสิทธิภาพและผลกำไรสูงทั้งในแง่ของเงินทุนและค่าใช้จ่ายในการดำเนินงาน

แผนผังของการติดตั้งปั๊มความร้อน (a และภาพในแผนภาพ T - s ของวงจรย้อนกลับได้ (b.

การติดตั้งปั๊มความร้อนสามารถทำได้สำเร็จและมีประสิทธิภาพในการติดตั้งระบบทำความร้อนในฤดูหนาวและเครื่องปรับอากาศในฤดูร้อน ในการติดตั้งเพื่อผลิตความเย็นและความร้อนร่วมกัน ในโรงงานกลั่นน้ำทะเลและกลั่นระเหย ที่โรงไฟฟ้าพลังน้ำเพื่อใช้ความร้อนของอากาศและไฮโดรเจนทำความเย็น เครื่องกำเนิดไฟฟ้า; ที่โรงกลั่นน้ำมันและโรงงานปิโตรเคมีเมื่อใช้ความร้อนของผลิตภัณฑ์น้ำมันร้อนและน้ำร้อน (t 60 H - 120 C) เพื่อผลิตไอน้ำที่มีแรงดัน 10 กก. / ชม. และน้ำร้อนที่อุณหภูมิ 130 - 150 องศาเซลเซียส

หน่วยปั๊มความร้อนซึ่งใช้ให้ความร้อนแก่ห้องสปาในฤดูหนาว ใช้น้ำทะเลเป็นแหล่งความร้อน พลังงานความร้อนของการติดตั้งจะเปลี่ยนไปอย่างไรหากทำงานตามวงจร Carnot แบบย้อนกลับภายในที่อุณหภูมิต่างกันในเครื่องระเหยและคอนเดนเซอร์ ค่าสัมประสิทธิ์การทำความร้อนจะเปลี่ยนไปอย่างไรหากการย้อนกลับไม่ได้ภายนอกถูกขจัดออกไปในเครื่องแลกเปลี่ยนความร้อนของการติดตั้งที่ทำงานตามวัฏจักร Carnot แบบย้อนกลับ


เป็นการเหมาะสมที่สุดที่จะใช้การติดตั้งปั๊มความร้อนเพื่อตอบสนองภาระความร้อนคงที่ในที่ที่มีแหล่งความร้อนระดับต่ำคงที่และด้วยความร้อนที่เพิ่มขึ้นค่อนข้างน้อย กล่าวคือ ด้วยค่าขนาดเล็ก & TTS-Ta หรืออัตราส่วน TS / TB ที่ใกล้เคียงกัน เงื่อนไขดังกล่าวมักจะเกิดขึ้นเมื่อพอใจด้วยความช่วยเหลือของการติดตั้งปั๊มความร้อนโหลดความร้อนอุตสาหกรรมที่ค่อนข้างคงที่ที่มีศักยภาพต่ำหรือโหลดน้ำร้อนในที่ที่มีของเสียความร้อนอุตสาหกรรมเกรดต่ำที่มีอุณหภูมิ 20 - 40 ° C ขึ้นไป ภายใต้เงื่อนไขเหล่านี้ การติดตั้งปั๊มความร้อนตาม ประสิทธิภาพพลังงาน(การบริโภคน้ำมันเชื้อเพลิง) และในแง่ของต้นทุนที่ลดลง พวกเขาสามารถแข่งขันกับโรงงานหม้อไอน้ำที่ประหยัดได้มาก

โรงงานปั๊มความร้อน (Heat pump plant) ประกอบด้วยปั๊มความร้อน การติดตั้งสำหรับการเลือกความร้อนจากแหล่งกำเนิดและอุปกรณ์อื่นๆ

การติดตั้งปั๊มความร้อนโดยทั่วไปมีต้นทุนเริ่มต้นที่สูงกว่าการให้ความร้อนแบบบอยเลอร์


เป็นการเหมาะสมที่สุดที่จะใช้การติดตั้งปั๊มความร้อนเพื่อตอบสนองภาระความร้อนคงที่ในที่ที่มีแหล่งความร้อนระดับต่ำคงที่และด้วยความร้อนที่เพิ่มขึ้นค่อนข้างน้อย กล่าวคือ ด้วยค่าขนาดเล็ก & TTV-Ts หรือมีอัตราส่วน TB / TV ใกล้เคียงกัน เงื่อนไขดังกล่าวมักจะเกิดขึ้นเมื่อพอใจด้วยความช่วยเหลือของการติดตั้งปั๊มความร้อนโหลดความร้อนอุตสาหกรรมที่ค่อนข้างคงที่ที่มีศักยภาพต่ำหรือโหลดน้ำร้อนในที่ที่มีของเสียความร้อนอุตสาหกรรมเกรดต่ำที่มีอุณหภูมิ 20 - 40 ° C ขึ้นไป ภายใต้เงื่อนไขเหล่านี้ การติดตั้งปั๊มความร้อน ทั้งในแง่ของตัวบ่งชี้พลังงาน (การสิ้นเปลืองเชื้อเพลิง) และต้นทุนที่ลดลง ค่อนข้างสามารถแข่งขันกับการติดตั้งหม้อไอน้ำที่ประหยัดได้สูง

บางครั้งการติดตั้งปั๊มความร้อนแบบสองขั้นตอนจะใช้ในระบบจ่ายความร้อนที่ครอบคลุมภาระการทำความร้อน


เป็นครั้งแรกที่มีการใช้โรงงานปั๊มความร้อนแบบอัดไอแอมโมเนียเพื่อให้ความร้อนในพื้นที่ในปี พ.ศ. 2473 นับตั้งแต่นั้นเป็นต้นมา จำนวนมากปั๊มความร้อน มีเหตุผลที่จะเชื่อว่าในอนาคตการใช้ปั๊มความร้อนจะแพร่หลายมากขึ้น

คุณสมบัติทางกายภาพของสารละลายโซเดียมคลอไรด์ในน้ำ| คุณสมบัติทางกายภาพของสารละลายแคลเซียมคลอไรด์ในน้ำ| คุณสมบัติทางกายภาพของสารละลายโพรพิลีนไกลคอล

การให้ความร้อนแก่บ้านด้วยปั๊มความร้อนจะช่วยคุณประหยัดแรงงานทาส การเลือกระบบทำความร้อนนี้ จะเป็นการบอกลาทั้งระบบสาธารณูปโภคที่คาดเดาไม่ได้และพนักงานแก๊สที่โลภมาก นั่นคือระบอบอุณหภูมิในที่อยู่อาศัยจะถูกกำหนดโดยคุณ และไม่มีใครอื่น

เห็นด้วย: ความจริงข้อนี้เท่านั้นที่ทำให้การซื้อปั๊มความร้อนเพื่อให้ความร้อนในบ้านมีกำไรมาก ใช่มันไม่ถูก แต่เมื่อเวลาผ่านไป ค่าใช้จ่ายทั้งหมดจะถูกชำระ และค่าธรรมเนียมสำหรับ "ส่วนกลาง" หรือก๊าซสำหรับหม้อไอน้ำแบบอัตโนมัติจะเพิ่มขึ้นเท่านั้น แต่คุณสามารถสร้างปั๊มความร้อนด้วยมือของคุณเอง!

และในบทความนี้เราจะแนะนำคุณเกี่ยวกับปั๊มความร้อนประเภทหลัก เราหวังว่าข้อมูลนี้จะช่วยคุณเลือก (หรือสร้าง) โรงไฟฟ้าที่ดีที่สุดเพื่อให้ความร้อนแก่บ้านของคุณ

ประการแรก ปั๊มดังกล่าวประหยัดและมีประสิทธิภาพมาก คุณ "ลงทุน" 0.2-0.3 กิโลวัตต์ของไฟฟ้าที่ใช้จ่ายพลังงานให้กับคอมเพรสเซอร์และรับพลังงานความร้อน 1 กิโลวัตต์ กล่าวคือ โดยไม่ต้องคำนึงถึงพลังงานของอากาศ น้ำ หรือดิน ประสิทธิภาพของปั๊มความร้อนนั้นยอดเยี่ยมมาก 300-500 เปอร์เซ็นต์

ประการที่สอง ปั๊มดังกล่าวทำงานโดยแท้จริงแล้วเป็นแหล่งพลังงานที่อิสระและเป็นนิรันดร์ ไม่ว่าจะเป็นอากาศ น้ำ หรือดิน นอกจากนี้ "แหล่งที่มา" นี้มีอยู่ทั่วไปทุกหนทุกแห่ง นั่นคือการทำความร้อนบ้านในชนบทด้วยปั๊มความร้อนสามารถทำได้ทุกที่ แม้แต่ที่เส้นศูนย์สูตร แม้จะอยู่เหนือเส้นอาร์กติกเซอร์เคิล จริงอยู่เพื่อที่จะได้ใกล้ชิดกับ "แหล่งที่มา" คุณต้องใช้คอมเพรสเซอร์ที่ใช้พลังงานมาก แต่เนื่องจากประสิทธิภาพที่สูงเกินจริง ค่าใช้จ่ายด้านพลังงานทั้งหมดจึงลดลงถึงห้าเท่า!


ประการที่สาม ปั๊มความร้อนเป็นปัจเจกบุคคลเสมอ นั่นคือคุณไม่ต้องจ่ายค่าพลังงานส่วนเกิน อุปกรณ์ของคุณจะได้รับการกำหนดค่าตามความต้องการและเงื่อนไขการใช้งานที่เฉพาะเจาะจง

ดังนั้นความคิดเห็นของปั๊มความร้อนสำหรับการทำความร้อนที่บ้านจึงเป็นที่นิยมหรือกระตือรือร้นที่สุด

นอกจากนี้ปั๊มไม่เพียงให้ความร้อนเท่านั้น ในฤดูร้อนยังสามารถทำงานเป็นเครื่องปรับอากาศให้ความเย็นบ้านได้อย่างมีประสิทธิภาพเช่นเดียวกัน

เห็นด้วย: ข้อดีทั้งหมดที่กล่าวถึงข้างต้นของปั๊มความร้อนดูค่อนข้างยอดเยี่ยม โดยเฉพาะประสิทธิภาพในระดับ 300-500 เปอร์เซ็นต์ อย่างไรก็ตาม ข้อดีทั้งหมดของหน่วยระบายความร้อนไม่ใช่นิยาย แต่เป็นเรื่องจริงที่คุกคามบริษัทด้านพลังงาน

เคล็ดลับของประสิทธิภาพดังกล่าวอยู่ในหลักการดั้งเดิมของปั๊ม ซึ่งใน สรุปได้ดังนี้ ตัวกลางที่หมุนเวียนผ่านท่อนำความร้อนจากแหล่งที่มีศักยภาพต่ำ (อากาศ ดิน หิน, น้ำ) และทิ้ง ณ จุดที่ผู้บริโภคเลือก

นั่นคือ เรามีตู้เย็นแบบ "คว่ำ" อยู่ตรงหน้า ซึ่งใช้ความร้อนจากแหล่งที่อาจเป็นไปได้ด้วยความช่วยเหลือของเครื่องระเหยและให้พลังงานแก่ผู้บริโภคผ่านคอนเดนเซอร์

ยิ่งกว่านั้น ทั้งปั๊มความร้อนและตู้เย็นทำงานโดยใช้สารทำความเย็น ซึ่งเป็นสารที่มีจุดเดือดต่ำมาก ซึ่งถูกปั๊มผ่านท่อโดยใช้คอมเพรสเซอร์พิเศษ

โครงร่างรายละเอียดของงาน

เป็นผลให้เมื่อตรวจสอบอย่างใกล้ชิดโครงร่างการทำงานของหน่วยความร้อนดูเหมือน ด้วยวิธีดังต่อไปนี้:

  • ที่ระดับความลึก 5-6 เมตรในพื้นดินมีการติดตั้งท่อส่งน้ำแบบวงกลมพร้อมสารหล่อเย็นซึ่งมีการสร้างหม้อน้ำพิเศษ - เครื่องระเหย ยิ่งไปกว่านั้น ความลึกนี้ไม่ได้ถูกเลือกโดยบังเอิญ - เมื่อถึงจุดนี้ อุณหภูมิจะสูงกว่าศูนย์ตลอดเวลาของปี
  • เครื่องระเหยเชื่อมต่อกับท่อที่สองที่เต็มไปด้วยสารทำความเย็น ภายใต้แรงดันสูง สารทำความเย็นจะเดือดแม้ที่อุณหภูมิหนึ่งองศาเซลเซียส นอกจากนี้ กระบวนการระเหยดังที่ทราบจากหลักสูตรฟิสิกส์ของโรงเรียนนั้น ยังมาพร้อมกับการดูดกลืนพลังงานจากน้ำหล่อเย็นที่หมุนเวียนอยู่ในดิน
  • ไอของสารทำความเย็นถูกปั๊มออกจากท่อโดยคอมเพรสเซอร์ ซึ่งไม่เพียงแต่ส่งผ่านสื่อนี้ผ่านส่วนควบ แต่ยังสร้างแรงดันมากยิ่งขึ้น ซึ่งกระตุ้นให้เกิดความร้อนเพิ่มขึ้นของสารทำความเย็น
  • ถัดไป ไอของสารทำความเย็นที่ร้อนจัดจะถูกสูบ (โดยคอมเพรสเซอร์เดียวกัน) เข้าไปในคอนเดนเซอร์ โดยที่การเปลี่ยนแปลงของสถานะรวมของสารจะเกิดขึ้น (ไอระเหยกลายเป็นของเหลว) และพื้นฐานเดียวกันทั้งหมดของอุณหพลศาสตร์ยืนยันว่าเมื่อตัวกลางที่เป็นก๊าซควบแน่น พลังงานจะถูกปลดปล่อยออกมา
  • ความร้อนที่ปล่อยออกมาในคอนเดนเซอร์ถูกดูดกลืนโดยท่อที่สาม - ระบบทำความร้อนของที่อยู่อาศัย นั่นคือคอนเดนเซอร์ทำหน้าที่เป็นหม้อต้มก๊าซหรือไฟฟ้า อืม กลับมาที่ สถานะของเหลวสารทำความเย็นจะกลับสู่เครื่องระเหยโดยผ่านเค้นควบคุม

ปั๊มความร้อนสำหรับทำความร้อนในบ้าน: พันธุ์ทั่วไป

วิธีที่สะดวกที่สุดในการจำแนกปั๊มความร้อนเกี่ยวข้องกับการแยกหน่วยดังกล่าวตามประเภทของตัวกลางที่วางวงจรหลักโดยให้ความร้อนแก่เครื่องระเหย

และตามวิธีการจำแนกประเภทนี้ ปั๊มความร้อนจะแบ่งออกเป็นประเภทต่างๆ ดังต่อไปนี้:

  • หน่วยความร้อนใต้พิภพ (ดิน-น้ำ)
  • ปั๊มไฮโดรเทอร์มอล (น้ำสู่น้ำ)
  • การติดตั้งอากาศถ่ายเท (อากาศ-น้ำ)

นอกจากนี้ ปั๊มความร้อนทุกประเภทยังทำงาน หลักการทั่วไปทำงาน แต่ "ที่อยู่อาศัย" ของวงจรหลักทิ้งร่องรอยไว้ทั้งการทำงานและการจัดเรียงของหน่วย ดังนั้นในข้อความต่อไปเราจะพิจารณาความแตกต่างของการจัดเรียงปั๊มความร้อนแต่ละประเภท

การติดตั้งจากพื้นดินสู่น้ำ

ปั๊มความร้อนจากพื้นดินสู่น้ำ

วงจรหลักของปั๊มความร้อนใต้พิภพฝังอยู่ในพื้นดินสูงถึง 5-6 เมตร นอกจากนี้ การติดตั้งดังกล่าวยังได้รับการฝึกฝนเมื่อจัดระบบด้วยเครื่องแลกเปลี่ยนความร้อนแนวนอน และในกรณีของการติดตั้งวงจรปฐมภูมิในแนวตั้งนั้น บ่อพิเศษจะมีการฝึกความลึก 150 เมตรด้วย

ในเวลาเดียวกันปริมาณงานขั้นต่ำเป็นเรื่องปกติสำหรับการจัดวางแนวตั้งของวงจรหลัก เนื่องจากการวางในแนวนอนจึงจำเป็นต้องกระจายท่อแลกเปลี่ยนความร้อนด้วย พื้นที่ขนาดใหญ่ (50 ตารางเมตรสำหรับทุก ๆ 1,000 วัตต์ของพลังงานที่ส่งออกจากปั๊มความร้อน)

ในฐานะที่เป็นสารหล่อเย็น ปั๊มความร้อนใต้พิภพใช้สารละลายน้ำเกลือที่ไม่เป็นอันตรายอย่างสมบูรณ์ซึ่งไม่แข็งตัวแม้ในอุณหภูมิต่ำ

ปั๊มน้ำต่อน้ำ

วงจรหลักของปั๊มไฮโดรเทอร์มอลสามารถติดตั้งได้ในแหล่งน้ำธรรมชาติหรือแหล่งน้ำเทียม บ่อน้ำธรรมดาหรือท่อระบายน้ำ แม่น้ำ หรือคลองที่มนุษย์สร้างขึ้น

ปั๊มความร้อน "น้ำ-น้ำ"

นอกจากนี้เครื่องระเหยและท่อที่มีสารหล่อเย็นจะถูกแช่ในน้ำอย่างน้อย 1.5-2 เมตร ท้ายที่สุดแล้ว ชั้นพื้นผิวสามารถแข็งตัวได้ ซึ่งสร้างความเสียหายทั้งการทำงานและความสมบูรณ์ขององค์ประกอบปั๊มความร้อน

พูดง่ายๆ ก็คือ สำหรับปั๊มความร้อนใต้พิภพ คุณจะต้องเลือกอ่างเก็บน้ำที่ "ถูกต้อง" แต่การติดตั้งวงจรหลักนั้นค่อนข้างง่าย - ท่อโพลีเมอร์ที่มีน้ำเกลือเดียวกันนั้น "จม" ที่ระดับความลึกที่ต้องการโดยใช้ตุ้มน้ำหนักพิเศษ

และวิธีการวางวงจรหลักนี้จะเปลี่ยนการจัดเรียง สถานีสูบน้ำ"น้ำ-น้ำ" เป็นการดำเนินการที่ง่ายมากและใช้แรงงานมาก ดังนั้นหากมีอ่างเก็บน้ำที่เหมาะสมอยู่บริเวณใกล้เคียง ทางเลือกที่ดีที่สุดปั๊มความร้อนจะเป็นหน่วยไฮโดรเทอร์มอล

หน่วยอากาศน้ำ

อันที่จริงนี่คือเครื่องปรับอากาศตัวเดียวกัน แต่มีหลายขนาด วงจรหลักที่มีเครื่องระเหยถูกวางไว้ "ในอากาศ" ภายนอกอาคารในอาคารพิเศษ

นอกจากนี้ เพื่อให้มั่นใจถึงการทำงานของปั๊มในฤดูหนาว ตัวเรือนนี้มักจะถูกรวมเข้ากับท่อไอเสีย ระบบระบายอากาศที่อยู่อาศัย

ข้อดีหลักของระบบนี้คือความง่ายในการติดตั้ง แต่ประสิทธิภาพของปั๊มลมสู่น้ำนั้นน่าสงสัยมาก ในละติจูดของเรา พวกมันไม่สามารถแข่งขันกับการติดตั้งความร้อนใต้พิภพหรือความร้อนใต้พิภพได้

ปั๊มความร้อนทำด้วยตัวเอง: เป็นไปได้ไหม

แน่นอนใช่! นั่นเป็นเพียงประสิทธิภาพของระบบดังกล่าวที่ไม่อาจคาดเดาได้ในทางปฏิบัติ ท้ายที่สุดแล้วหน่วย "โรงงาน" ไม่ได้มีเพียงสามคอมเพรสเซอร์และท่อจำนวนเท่ากันที่สารหล่อเย็นและสารทำความเย็นไหลเวียน หัวใจของปั๊มความร้อนดังกล่าวคือชุดควบคุมซึ่งประสานการทำงานของวงจรที่หนึ่ง สอง และสามของระบบทั้งหมด และแทบจะเป็นไปไม่ได้เลยที่จะสร้างบล็อกควบคุม "ด้วยตัวเอง"

ส่วนทางเทคนิคของปั๊มนั้นใช้งานได้ง่ายมาก:

  • สามารถใช้เครื่องปรับอากาศแทนคอมเพรสเซอร์ได้
  • วงจรหลักประกอบจาก ท่อโพลีเอทิลีนและเติมน้ำเกลือเข้มข้น
  • เครื่องระเหยเป็นถังโลหะสแตนเลส (สามารถถอดออกจากถังเก่าได้) เครื่องซักผ้า) ซึ่งน้ำเกลือถูกลดระดับลงโดยให้ความร้อนแก่ขดลวดทองแดงของวงจรทุติยภูมิซึ่งติดตั้งอยู่ใน ส่วนภายในถังนี้.
  • คอนเดนเซอร์เป็นถังเดียวกันทุกประการ ทำจากพลาสติกเท่านั้น โดยติดตั้งคอยล์ทองแดงแบบเดียวกันภายใน นอกจากนี้ คอมเพรสเซอร์ยังปั๊มสารทำความเย็นระหว่างคอยล์ล่างและบน
  • วงจรที่สาม - ระบบทำความร้อน - เชื่อมต่อกับตัวเก็บประจุโพลีเมอร์

อย่างที่คุณเห็น ทุกอย่างง่ายมาก นั่นเป็นเพียงประสิทธิภาพของระบบดังกล่าวที่มากเกินไปและไม่เพียงพออย่างชัดเจน

หน่วยปั๊มความร้อนและการติดตั้งควรพิจารณาเป็นอุปกรณ์ที่ดำเนินการ ครบวงจรอุปกรณ์หมุนเวียนและควบคุมสารทำความเย็น รวมทั้งไดรฟ์ นอกจากนี้ หน่วยปั๊มความร้อนยังประกอบด้วยหน่วยขนาดกะทัดรัดพร้อมทำงาน และหน่วยปั๊มความร้อนประกอบด้วยระบบเชิงซ้อนที่ประกอบด้วยอุปกรณ์หรือหน่วยแยกกันหลายเครื่อง ขึ้นอยู่กับประเภทของโหลดจากแหล่งจ่ายและตัวรับ ปั๊มความร้อนสามารถจำแนกได้ตามตาราง 1.2.

เป็นที่ทราบกันดีอยู่แล้วว่าเนื่องจากวัฏจักรวงกลมทางอุณหพลศาสตร์เดียวกัน หน่วยทำความเย็นและปั๊มความร้อนและความคลาดเคลื่อนเล็กน้อยระหว่างช่วงอุณหภูมิของอุปกรณ์ ควรเลือกปั๊มความร้อนโดยตรงจากช่วงที่ใช้สำหรับ อุปกรณ์ทำความเย็นด้วยการปรับเปลี่ยนบางอย่างและในบางกรณีจำเป็นต้องมีการพัฒนาหน่วยพิเศษ

ตารางที่ 1.2.

ปั๊มความร้อนเทอร์โมอิเล็กทริกยังไม่ได้รับการใช้งานอย่างแพร่หลายเนื่องจากปัจจัยการแปลงต่ำ

หน่วยปั๊มความร้อนอัด

K TN พลังงานต่ำรวมถึงเครื่องทำน้ำอุ่นขนาดเล็กและเครื่องปรับอากาศแบบหน้าต่างที่มีปั๊มความร้อน โดยทั่วไป ปั๊มความร้อนที่ออกแบบมาสำหรับการผลิตความร้อนเป็นหลักด้วยกำลัง 2 ... 3 กิโลวัตต์ไม่สามารถแข่งขันกับเครื่องทำความร้อนไฟฟ้าแบบธรรมดา (ที่มีเครื่องทำความร้อนแบบไฟฟ้าสนับสนุน) ได้ เนื่องจากมีค่าใช้จ่ายเฉพาะที่สูง เฉพาะยูนิตที่ออกแบบมาสำหรับการทำความเย็นและการสร้างความร้อนเป็นหลักเท่านั้น ต้องขอบคุณสวิตช์ที่ใช้งานง่าย คุณค่าทางปฏิบัติ. โดยเฉพาะเครื่องปรับอากาศแบบหน้าต่างพร้อมสวิตช์ (รูปที่ 1.29)

หน่วยดังกล่าวมักประกอบด้วยเครื่องทำความเย็นกล่องปิดผนึก เครื่องระเหย และคอนเดนเซอร์อากาศแบบบังคับ ด้วยความช่วยเหลือของวาล์วสี่ทาง พวกเขาสามารถเปลี่ยนเป็นโหมดปั๊มความร้อน นั่นคือเพื่อให้ความร้อนในพื้นที่ พัดลมแต่ละตัวมีอุปกรณ์สำหรับสลับการทำงานของเครื่องระเหยไปเป็นคอนเดนเซอร์ และเป็นการเคลื่อนตัวของอากาศในร่มและกลางแจ้ง

ข้าว. 1.29. เอ - รูปแบบการสื่อสาร; - รูปแบบของการรวมครีมนวดผม; ใน -วงจรสวิตชิ่งปั๊มความร้อน / -ตัวเก็บประจุ; // - คันเร่ง; Wคอมเพรสเซอร์; IV-เครื่องระเหย

กำลังความร้อน 1.5 ... 4.5 กิโลวัตต์ ปัจจัยการแปลงที่อุณหภูมิห้อง 21°C และอุณหภูมิภายนอก 7.5°C แทบจะไม่เกิน 2

ส่วนหนึ่งของเครื่องปรับอากาศความจุสูงสำหรับอาคารอุตสาหกรรมทั่วไปนั้นผลิตด้วยสวิตช์เพื่อทำงานตามแบบแผนปั๊มความร้อน

ปั๊มความร้อนอัดยังสามารถขับเคลื่อนด้วยเครื่องยนต์ความร้อน ในกรณีนี้ หน่วยทั้งหมดประกอบด้วยปั๊มความร้อนอัดและเครื่องยนต์ความร้อน การแปลงพลังงานเคมีของเชื้อเพลิงเป็นความร้อนจะเกิดขึ้นโดยตรงภายในเครื่องยนต์ทำความร้อน (เช่น เครื่องยนต์สเตอร์ลิง) ในเครื่องยนต์ ตามวัฏจักรวงกลมทางอุณหพลศาสตร์ ความร้อนบางส่วนจะถูกแปลงเป็นพลังงานกล ซึ่งขับเคลื่อนปั๊มความร้อนอัดของตัวเอง ซึ่งจะทำให้ระดับอุณหภูมิที่เป็นประโยชน์ของสภาพแวดล้อมที่มีอุณหภูมิต่ำหรือความร้อนเหลือทิ้งเพิ่มขึ้น นอกจากนี้ยังสามารถใช้ความร้อนเหลือทิ้งจากเครื่องยนต์ได้อีกด้วย ตัวแลกเปลี่ยนความร้อนเสียขึ้นอยู่กับ สภาพอุณหภูมิเชื่อมต่อแบบขนานหรือแบบอนุกรมกับคอนเดนเซอร์ของปั๊มความร้อนอัดหรือความร้อนที่จ่ายให้กับผู้บริโภคพิเศษ

ตามหลักการแล้วเครื่องทำความร้อนสามารถใช้ได้ทุกประเภท แต่เครื่องยนต์ที่ใช้แก๊สและดีเซลจะสะดวกที่สุดเพราะทำงานบน ก๊าซธรรมชาติและน้ำมัน - ตัวพาพลังงานหลักคุณภาพสูงที่ใช้สำหรับให้ความร้อน ความร้อนที่เกิดจากระบบทำความร้อนที่ขับเคลื่อนด้วยเครื่องยนต์สามารถลดการใช้พลังงานขั้นต้นได้ประมาณครึ่งหนึ่งเมื่อเทียบกับการสร้างความร้อนจากการเผาเชื้อเพลิงแบบเดิม

สามารถแปลงปัจจัยการแปลง 1.8 ... 1.9 ได้

หน่วยปั๊มความร้อนแบบดูดซับ

ตามระดับของการรวม APT จะถูกแบ่งออกเป็นแบบรวม (ด้วยการผสมผสานที่สร้างสรรค์ขององค์ประกอบทั้งหมดเป็นหนึ่งบล็อกขึ้นไป) และแบบไม่รวมกลุ่ม (ด้วยองค์ประกอบ APT ที่ดำเนินการแยกกัน) รวมรวมถึงลิเธียมโบรไมด์และ APT

ขึ้นอยู่กับรูปแบบการรวม APT ในกระบวนการทางเทคโนโลยี อุตสาหกรรมต่างๆพวกเขาสามารถแบ่งออกเป็นแบบสแตนด์อโลนไม่ขึ้นกับสคีมา กระบวนการทางเทคโนโลยีและในตัว - ด้วยการผสมผสานส่วนหนึ่งของวงจร APT กับกระบวนการทางเทคโนโลยี

จำนวนปั๊มความร้อนแบบดูดกลืนที่ผลิตได้ยังไม่สมบูรณ์ แต่มีอัตราส่วนการเปลี่ยนแปลงที่สูงอยู่แล้ว ในเวลาเดียวกัน ปั๊มความร้อนแบบดูดกลืนจะสามารถตอบสนองสภาวะพิเศษของแหล่งความร้อนและพลังงานขับเคลื่อนได้อย่างเต็มที่มากกว่าแบบบีบอัด

ตัวอย่างเช่นในประเทศเยอรมนีมีการผลิตปั๊มความร้อนแบบดูดซับที่มีเอาต์พุตความร้อน 1 ... 3 MW อัตราส่วนการแปลงขึ้นอยู่กับ อุณหภูมิในการทำงานและอุณหภูมิระเหย การติดตั้งขนาดเล็กไม่สามารถบรรลุประสิทธิภาพสูง (จาก,< 1.5) ในประเทศต่างๆ กำลังดำเนินการปรับปรุงปั๊มความร้อนระบบดูดกลืนแสงขนาดเล็ก

คำถามที่ 26. มีประโยชน์แหล่งพลังงานที่มีศักยภาพต่ำ การติดตั้งปั๊มความร้อน

ใน เมื่อเร็ว ๆ นี้ปรากฏขึ้น โอกาสที่แท้จริงแก้ปัญหาการจ่ายพลังงานแบบบูรณาการในรูปแบบใหม่พื้นฐาน ผู้ประกอบการอุตสาหกรรมผ่านการใช้ปั๊มความร้อนที่ใช้การปล่อยมลพิษต่ำเพื่อสร้างความร้อนและความเย็น การผลิตตัวพาพลังงานเหล่านี้พร้อมกันโดยปั๊มความร้อนมักจะมีประสิทธิภาพมากกว่าการผลิตความร้อนและความเย็นแบบแยกจากกันในโรงงานแบบดั้งเดิม เนื่องจากในกรณีนี้การสูญเสียที่ไม่สามารถย้อนกลับของวงจรทำความเย็นจะใช้เพื่อสร้างความร้อนที่ให้กับผู้บริโภค

ในการติดตั้งปั๊มความร้อน อุณหภูมิของตัวระบายความร้อนจะเท่ากับหรือสูงกว่าอุณหภูมิแวดล้อมเล็กน้อย และอุณหภูมิของตัวรับความร้อนจะสูงกว่าอุณหภูมิแวดล้อมมาก กล่าวคือ T n >T เกี่ยวกับ ปั๊มความร้อนเป็นอุปกรณ์ที่ถ่ายเทพลังงานในรูปของความร้อนจากระดับอุณหภูมิที่ต่ำกว่าถึงระดับที่สูงขึ้นซึ่งจำเป็นสำหรับการจ่ายความร้อน วัตถุประสงค์หลักของการติดตั้งเหล่านี้คือการใช้ความร้อนจากแหล่งที่มีศักยภาพต่ำ เช่น สิ่งแวดล้อม

ปัจจุบันมีการพัฒนาและใช้งานปั๊มความร้อนสามกลุ่มหลัก: การอัด (ไอน้ำ); เจ็ท (ประเภทอีเจ็คเตอร์); การดูดซึม

ปั๊มความร้อนอัดใช้สำหรับการจ่ายความร้อนของแต่ละอาคารหรือกลุ่มของอาคาร เช่นเดียวกับการจ่ายความร้อนของโรงงานอุตสาหกรรมแต่ละแห่งหรือการติดตั้ง

Freons มักใช้เป็นตัวแทนการทำงานในการติดตั้งปั๊มความร้อน

รูปที่ 4 แสดงแผนผังของปั๊มความร้อนอัดไอในอุดมคติ ความร้อนที่อาจเกิดขึ้นต่ำที่อุณหภูมิ Tn จะถูกส่งไปยังเครื่องระเหย I ไอของสารทำงานมาจากเครื่องระเหย I ไปยังคอมเพรสเซอร์ II ในสถานะ 1 และถูกบีบอัดเป็นความดัน pk และอุณหภูมิอิ่มตัวที่สอดคล้องกัน Tk ในสถานะที่ 2 ไอระเหยที่ถูกบีบอัดของสารทำงานจะเข้าสู่คอนเดนเซอร์ III โดยจะถ่ายเทความร้อนไปยังตัวพาความร้อนของระบบจ่ายความร้อน ในคอนเดนเซอร์ ไอระเหยของสารทำงานจะถูกควบแน่น จากคอนเดนเซอร์ สารทำงานเข้าสู่รูปของเหลวเข้าไปในตัวแผ่ IV (อุปกรณ์ที่การขยายตัวของของไหลทำงานที่ผลิตขึ้นพร้อมกับการระบายความร้อนเกิดขึ้นด้วย งานที่มีประโยชน์) โดยที่สารทำงานขยายจากแรงดัน p เป็นแรงดัน p o พร้อมกับอุณหภูมิและการถ่ายเทความร้อนที่ลดลง จากเครื่องแผ่ขยาย สารทำงานเข้าสู่เครื่องระเหย I และวงจรปิด

โครงร่างของปั๊มความร้อนที่ทำงานในรอบปิดนั้นโดยพื้นฐานแล้วไม่แตกต่างจากโครงร่างของหน่วยทำความเย็นแบบอัดไอน้ำ อย่างไรก็ตาม การเชื่อมต่อของผู้บริโภคดำเนินการในรูปแบบต่างๆ ในวงจรทำความเย็น ผู้ใช้ความเย็นจะเชื่อมต่อกับเครื่องระเหย และในระบบปั๊มความร้อน ผู้ใช้ความร้อนจะเชื่อมต่อกับคอนเดนเซอร์

ปั๊มความร้อนอ้างถึงพืชแปลงความร้อนซึ่งรวมถึงเครื่องทำความเย็น ( 120 K), แช่แข็ง ( = 0 ... 120 K) และพืชรวม ( , ) การติดตั้งทั้งหมดเหล่านี้ทำงานตามวัฏจักรเทอร์โมไดนามิกย้อนกลับ ซึ่งมีค่าใช้จ่าย งานภายนอกมีการถ่ายโอนพลังงานความร้อนจากร่างกายที่มีอุณหภูมิต่ำ (อ่างความร้อน) ไปยังร่างกายที่มีอุณหภูมิสูง (อ่างความร้อน) แต่ถ้าการทำงานของเครื่องทำความเย็นและการติดตั้งด้วยความเย็นคือการทำให้ร่างกายเย็นลงและรักษาอุณหภูมิให้ต่ำใน ห้องเย็น, เช่น. การกำจัดความร้อน หน้าที่หลักของปั๊มความร้อนคือการจ่ายความร้อนไปยังแหล่งที่มีอุณหภูมิสูงโดยใช้พลังงานความร้อนที่อุณหภูมิต่ำ ในขณะเดียวกัน ก็เป็นข้อดีที่ปริมาณความร้อนที่อุณหภูมิสูงที่ได้รับอาจสูงกว่างานที่ใช้ไปหลายเท่า

หม้อแปลงความร้อนสามารถทำงานพร้อมกันเป็นหน่วยทำความเย็นและปั๊มความร้อน ในขณะที่ T n< Т о и Т н >ที่. กระบวนการดังกล่าวเรียกว่ารวมกัน ในกระบวนการรวมกันความร้อนและความเย็นจะถูกสร้างขึ้นพร้อมกัน - ตัวกลาง A ถูกทำให้เย็นลงและตัวกลาง B ถูกทำให้ร้อน ดังนั้นในหน่วยทำความเย็นจะมีการระบายความร้อนของร่างกายโดยประดิษฐ์ซึ่งมีอุณหภูมิต่ำกว่าอุณหภูมิแวดล้อม ในการติดตั้งปั๊มความร้อน ความร้อนของสิ่งแวดล้อมหรือสภาพแวดล้อมอื่นๆ ที่มีศักยภาพต่ำจะถูกใช้เพื่อวัตถุประสงค์ในการจ่ายความร้อน

รอบในอุดมคติ การติดตั้งคาร์โนต์การแปลงความร้อนแสดงในรูปที่ 5

ประสิทธิภาพของเครื่องทำความเย็น ( - ผลที่เป็นประโยชน์ ปริมาณความร้อนที่นำมาจากน้ำหล่อเย็นที่เย็นกว่า) ประเมินโดยสัมประสิทธิ์ของประสิทธิภาพ สำหรับปั๊มความร้อน แนวคิดของอัตราส่วนการเปลี่ยนแปลงจะใช้ ( - ผลที่เป็นประโยชน์ ปริมาณความร้อนที่จ่ายให้กับสารหล่อเย็นที่ให้ความร้อน) หรือค่าสัมประสิทธิ์การทำความร้อน กล่าวคือ ปริมาณความร้อนที่ผลิตได้ต่อหน่วยของงานที่ใช้ไป

, ,

, .

สำหรับปั๊มความร้อนจริง = 2 - 5.

การติดตั้งจริงมีการสูญเสียที่เกิดจากการกลับไม่ได้ของกระบวนการบีบอัด (ภายใน) และการแลกเปลี่ยนความร้อน (ภายนอก) การย้อนกลับไม่ได้ภายในเกิดจากความหนืดของสารทำความเย็นและการปล่อยความร้อนจากแรงเสียดทานภายในระหว่างการบีบอัดในคอมเพรสเซอร์ (เพิ่มขึ้นเอนโทรปี) งานจริงของการบีบอัดโดยที่ - งานที่สมบูรณ์แบบในกระบวนการย้อนกลับ - ประสิทธิภาพภายในสัมพัทธ์ของคอมเพรสเซอร์ - ประสิทธิภาพทางไฟฟ้าของเครื่องกลของไดรฟ์

การย้อนกลับไม่ได้ภายนอกนั้นอธิบายโดยความต้องการที่จะมีความแตกต่างของอุณหภูมิสำหรับการถ่ายเทความร้อนซึ่งถูกกำหนด (กำหนด) โดยพื้นที่ของพื้นผิวการแลกเปลี่ยนความร้อนที่ฟลักซ์ความร้อนที่กำหนด

นั่นเป็นเหตุผลที่

โดยที่ , - อุณหภูมิตามลำดับในเครื่องระเหยและคอนเดนเซอร์ของการติดตั้ง

ปั๊มความร้อนแบบเจ็ทของประเภทอีเจ็คเตอร์มีการใช้กันอย่างแพร่หลายในปัจจุบัน ไอน้ำแรงดันสูงจะเข้าสู่อุปกรณ์เจ็ท และเนื่องจากการใช้พลังงานของขั้นตอนการทำงาน การไหลที่ฉีดจะถูกบีบอัด ส่วนผสมของลำธารสองสายออกมาจากอุปกรณ์ ดังนั้น เมื่อไอที่ฉีดเข้าไปถูกบีบอัด อุณหภูมิของไอน้ำก็จะสูงขึ้นพร้อมๆ กัน ไอน้ำอัดจะถูกดึงออกจากโรงงาน

ไอน้ำแรงดันสูงพร้อมพารามิเตอร์ p p และ T p เข้าสู่เครื่องพ่นไอน้ำ (รูปที่ 6) เนื่องจากการใช้พลังงานของขั้นตอนการทำงาน การไหลที่ฉีดจะถูกบีบอัดด้วยพารามิเตอร์ r nและ ทีน. ส่วนผสมของลำธารที่มีพารามิเตอร์ออกมาจากอุปกรณ์ r sและ ที เอสดังนั้น เมื่อไอที่ฉีดเข้าไปถูกบีบอัด อุณหภูมิของไอระเหย (และด้วยเหตุนี้ เอนทาลปี) ก็เพิ่มขึ้นเช่นกัน ไอน้ำอัดจะถูกดึงออกจากโรงงาน อัตราส่วนความดัน ร s / ร นในอุปกรณ์ดังกล่าว เรียกว่าเจ็ทคอมเพรสเซอร์ มีขนาดค่อนข้างเล็กและอยู่ภายใน1.2 ≤ r s / r n≤ 4.



ปัจจุบันปั๊มความร้อนแบบเจ็ทใช้กันอย่างแพร่หลายมากที่สุด เนื่องจากง่ายต่อการบำรุงรักษา ความกะทัดรัด และไม่มีส่วนประกอบราคาแพง

ปั๊มความร้อนแบบดูดซับทำงานบนหลักการดูดซับไอน้ำด้วยสารละลายด่าง (NaOH, KOH) กระบวนการดูดซับไอน้ำเกิดขึ้นแบบคายความร้อน กล่าวคือ ด้วยการปล่อยความร้อน ความร้อนนี้ใช้ในการทำให้สารละลายมีอุณหภูมิสูงกว่าอุณหภูมิของไอที่ดูดซับอย่างมีนัยสำคัญ หลังจากออกจากตัวดูดซับ สารละลายอัลคาไลที่ให้ความร้อนจะถูกส่งไปยังเครื่องระเหยพื้นผิว ซึ่งไอน้ำสำรองจะถูกสร้างขึ้นที่ความดันที่สูงกว่าไอน้ำหลักที่เข้าสู่ตัวดูดซับ ดังนั้นในปั๊มความร้อนแบบดูดกลืน กระบวนการรับไอน้ำแรงดันสูงจะดำเนินการโดยใช้ความร้อนที่จ่ายจากภายนอก

แผนผังของปั๊มความร้อนแบบดูดกลืนแสดงในรูปที่ 7

ในฐานะที่เป็นสารทำงานในปั๊มความร้อนแบบดูดซับจะใช้สารละลายของสารสองชนิด (ส่วนผสมแบบไบนารี) ซึ่งแตกต่างกันในจุดเดือดที่ความดันเท่ากัน สารหนึ่งดูดซับและละลายสารที่สองซึ่งเป็นสารทำงาน วัฏจักรการทำงานของปั๊มความร้อนแบบดูดซับมีดังนี้ ในเครื่องระเหย 3 ผ่านผนังของตัวแลกเปลี่ยนความร้อน ความร้อนที่มีศักยภาพต่ำจะถูกส่งไปยังสารละลายไบนารีที่อุณหภูมิ T® ความร้อนที่ให้มาช่วยให้เกิดการระเหยของสารทำงานจากส่วนผสมไบนารีที่ความดัน p o ไอที่เกิดจากสารทำงานจากเครื่องระเหยผ่านท่อเข้าสู่ตัวดูดซับ 2 ซึ่งจะถูกดูดซับโดยตัวทำละลาย (ตัวดูดซับ) และความร้อนของการดูดซับ Q a จะถูกปล่อยออกมา สารละลายของเหลวเข้มข้นที่เกิดขึ้นในตัวดูดซับถูกปั๊มโดยปั๊ม 1 ไปยังเครื่องกำเนิดไฟฟ้า 6. ความร้อน Q g ถูกจ่ายให้กับเครื่องกำเนิดไฟฟ้า ซึ่งใช้ในการระเหยสารทำงานที่ ความดันสูง p ถึงและดังนั้นอุณหภูมิสูง T ถึง เมื่อระเหยเหนือพื้นผิวของสารละลายจะเกิดไอระเหยของสารทำงานและสารละลายจะอ่อนแอ สารละลายอ่อนจะถูกส่งผ่านไปป์ไลน์ไปยังโช้ค 2 โดยลดแรงดันในวาล์วเทอร์โมสแตติกเสริม 7 ให้เท่ากับแรงดันในเครื่องระเหย p ประมาณ ไอสารทำงานที่เกิดขึ้นในเครื่องกำเนิดจะเข้าสู่คอนเดนเซอร์ 5 โดยผ่านผนังแยก พวกมันจะปล่อยความร้อนของการควบแน่น Q k ที่อุณหภูมิสูง T k สารทำงานที่ควบแน่นในคอนเดนเซอร์จะลดความดันในวาล์วควบคุมอุณหภูมิ จาก p ถึง po โดยที่มันเข้าสู่เครื่องระเหย จากนั้นกระบวนการจะทำซ้ำ

การทำงานของปั๊มความร้อนแบบดูดกลืนในอุดมคตินั้นมีลักษณะเป็นสมการสมดุลความร้อนดังต่อไปนี้:

ที่ไหน คิว น- ปริมาณความร้อนที่มีศักยภาพต่ำสรุปในเครื่องระเหย

คิว ก -ปริมาณความร้อนที่มีศักยภาพสูงที่จ่ายให้กับเครื่องกำเนิด

ถามเรา -ความร้อนเทียบเท่ากับการทำงานของปั๊ม

Q ถึง- ปริมาณความร้อนสูงที่อาจเกิดขึ้นในคอนเดนเซอร์

ถาม -ปริมาณความร้อนที่อาจเกิดขึ้นต่ำในตัวดูดซับ

สารทำงานมักจะเป็นน้ำและสารดูดซับคือลิเธียมโบรไมด์

สำหรับโรงกลั่นเคมี ปิโตรเคมี และน้ำมันที่มีน้ำปริมาณมากสำหรับหน่วยเทคโนโลยีทำความเย็นซึ่งมีอุณหภูมิอยู่ในช่วง 20 ถึง 50 ° C จำเป็นต้องใช้ปั๊มความร้อนลิเธียมโบรไมด์แบบดูดซับซึ่งจะทำงานในความเย็น โหมดฤดูร้อน น้ำรีไซเคิลและในฤดูหนาวให้ใช้ความร้อนเหลือทิ้งจากน้ำหมุนเวียนเพื่อสร้างน้ำร้อนสำหรับโรงผลิตความร้อน ตารางที่ 6 แสดงพารามิเตอร์ของการดูดซับปั๊มความร้อนลิเธียมโบรไมด์ (ABTN)

ปั๊มความร้อนการดูดซึมมี ประสิทธิภาพสูงเนื่องจากไม่มีชิ้นส่วนที่เคลื่อนไหวจึงสามารถผลิตอุปกรณ์ได้ง่าย อย่างไรก็ตาม ปั๊มดูดซับต้องใช้โลหะจำเพาะสูง ซึ่งทำให้มีขนาดใหญ่ ความเป็นไปได้ของการกัดกร่อนของโลหะต้องมีการผลิตอุปกรณ์จากเหล็กอัลลอยด์ ดังนั้นปั๊มความร้อนแบบดูดซับจึงไม่ได้ใช้กันอย่างแพร่หลายในอุตสาหกรรม

ตารางที่ 6

พารามิเตอร์ ABTN

สารทำงานและสารหล่อเย็น (สารหล่อเย็น)

ในหม้อแปลงความร้อน

สำหรับการนำกระบวนการไปใช้ในหม้อแปลงความร้อนนั้นจะใช้สารทำงาน (ตัวแทน) ที่มีคุณสมบัติทางอุณหพลศาสตร์และเคมีกายภาพที่จำเป็น พวกมันสามารถเป็นเนื้อเดียวกันหรือเป็นส่วนผสมของสารหลายชนิด โดยปกติสองอย่าง ในหม้อแปลงความร้อนส่วนใหญ่ สารทำงานจะผ่านการแปลงเฟส ปัจจุบันมีการใช้สารทำงานต่อไปนี้ในหม้อแปลงความร้อน:

ก) สารทำความเย็น - สารที่มีจุดเดือดต่ำที่ความดันบรรยากาศตั้งแต่ +80 ถึง -130 ° C สารทำความเย็นที่มีจุดเดือดอยู่ที่ +80 ถึง -30 °C มักใช้ในการติดตั้งปั๊มความร้อน และมีจุดเดือดต่ำกว่า 0 ถึง -130 °C - ในการติดตั้งที่เย็นปานกลาง

ข) ก๊าซและก๊าซผสม (เช่น อากาศ) ที่มีจุดเดือดต่ำ

ค) สารทำงานและสารดูดซับ พืชดูดซึม;

ง) น้ำที่ใช้สำหรับคุณสมบัติทางอุณหพลศาสตร์ในโรงงานทำความเย็น โดยที่อุณหภูมิของแหล่งกำเนิดต่ำกว่า ความร้อน tn> 0 ° C ตัวอย่างเช่น สำหรับเครื่องปรับอากาศ

เพื่อความประหยัดและ ปลอดภัยในการทำงานหม้อแปลงความร้อน สารทำความเย็น ต้องเป็นไปตามข้อกำหนดต่อไปนี้:

ก) ต่ำ แรงดันเกินที่อุณหภูมิจุดเดือดและการควบแน่น ความร้อนที่ส่งออกสูง 1 กิโลกรัมของสาร ไอน้ำปริมาณจำเพาะต่ำ (สำหรับคอมเพรสเซอร์แบบลูกสูบ) ความจุความร้อนต่ำของของเหลวและค่าการนำความร้อนสูงและค่าสัมประสิทธิ์การถ่ายเทความร้อน

b) มีความหนืดต่ำ อาจเป็นจุดแข็งที่ต่ำกว่า ไม่ละลายในน้ำมัน (สำหรับคอมเพรสเซอร์แบบลูกสูบ)

ค) ทนต่อสารเคมี ไม่ติดไฟ ไม่ระเบิด ไม่กัดกร่อนโลหะ

ง) ไม่เป็นอันตรายต่อร่างกายมนุษย์

จ) ไม่ขาดแคลนและราคาไม่แพง

ตัวแทนการทำงานของหน่วยทำความเย็นแก๊สต้องมีค่าต่ำ อุณหภูมิปกติการเดือด ความหนืดต่ำ การนำความร้อนสูงและความจุความร้อน Ср ซึ่งขึ้นอยู่กับอุณหภูมิและความดันเพียงเล็กน้อย

สารออกฤทธิ์ของพืชดูดซับ นอกเหนือจากการปฏิบัติตามข้อกำหนดข้างต้นแล้ว จะต้องถูกดูดซับและขจัดออกร่วมกับสารดูดซับที่เหมาะสม

ประสิทธิภาพทางเศรษฐกิจของปั๊มความร้อนขึ้นอยู่กับ:

อุณหภูมิของแหล่งพลังงานความร้อนที่มีศักยภาพต่ำจะยิ่งสูงขึ้น อุณหภูมิก็จะสูงขึ้น

ค่าไฟฟ้าในภูมิภาค

ต้นทุนพลังงานความร้อนที่ผลิตโดยใช้ ประเภทต่างๆเชื้อเพลิง.

การใช้ปั๊มความร้อนแทนแหล่งพลังงานความร้อนแบบดั้งเดิมนั้นมีประโยชน์เชิงเศรษฐกิจเนื่องจาก:

ไม่จำเป็นต้องซื้อ ขนส่ง จัดเก็บน้ำมันเชื้อเพลิงและสิ้นเปลือง เงินเกี่ยวข้องกับมัน;

การปล่อยพื้นที่ขนาดใหญ่ที่จำเป็นสำหรับการวางโรงต้มน้ำ ถนนทางเข้า และคลังเชื้อเพลิง

ศักยภาพการประหยัดพลังงานที่ยิ่งใหญ่ที่สุดมีอยู่ในพื้นที่ของการจ่ายความร้อน: 40-50% ของการใช้ความร้อนทั้งหมดของประเทศ อุปกรณ์ของ CHPP ที่มีอยู่มีการสึกหรอทางร่างกายและทางศีลธรรม โดยทำงานโดยใช้เชื้อเพลิงมากเกินไป เครือข่ายความร้อนเป็นที่มา การสูญเสียครั้งใหญ่พลังงาน แหล่งความร้อนขนาดเล็กมีลักษณะประสิทธิภาพพลังงานต่ำ มลภาวะต่อสิ่งแวดล้อมในระดับสูง ต้นทุนต่อหน่วยที่เพิ่มขึ้น และค่าแรงสำหรับการบำรุงรักษา

TNU เปิดโอกาสให้:

1) ลดความยาวของเครือข่ายความร้อน (นำความจุความร้อนเข้าใกล้สถานที่บริโภค);

2) รับพลังงานความร้อนเทียบเท่า 3 - 8 กิโลวัตต์ในระบบทำความร้อน (ขึ้นอยู่กับอุณหภูมิของแหล่งพลังงานศักย์ต่ำขณะใช้ไฟฟ้า 1 กิโลวัตต์)

จนถึงปัจจุบันขนาดของการแนะนำปั๊มความร้อนในโลกมีดังนี้:

ในสวีเดน 50% ของการทำความร้อนทั้งหมดมาจากปั๊มความร้อน เห็นด้วยอย่างสิ้นเชิง ปีที่แล้วสถานีปั๊มความร้อนมากกว่า 100 แห่ง (จาก 5 ถึง 80 MW) ได้เริ่มดำเนินการแล้ว

ในประเทศเยอรมนี เงินอุดหนุนจากรัฐสำหรับการติดตั้งปั๊มความร้อนเป็นจำนวนเงิน 400 เครื่องหมายต่อกิโลวัตต์ ความจุที่ติดตั้ง;

ในญี่ปุ่น มีการผลิตปั๊มความร้อนประมาณ 3 ล้านเครื่องต่อปี

ในสหรัฐอเมริกา 30% ของอาคารที่พักอาศัยติดตั้งปั๊มความร้อน มีการผลิตปั๊มความร้อนประมาณ 1 ล้านตัวต่อปี

ในสตอกโฮล์ม 12% ของการทำความร้อนทั้งหมดของเมืองนั้นมาจากปั๊มความร้อนที่มีความจุรวม 320 MW โดยใช้ทะเลบอลติกเป็นแหล่งความร้อนที่มีอุณหภูมิ +8 ° C

ในโลกตามการคาดการณ์ของคณะกรรมการพลังงานโลก ภายในปี 2020 ส่วนแบ่งของปั๊มความร้อนในการจัดหาความร้อน (ภาคเทศบาลและการผลิต) จะอยู่ที่ 75%

เหตุผลในการยอมรับมวลของปั๊มความร้อนมีดังนี้:

การทำกำไร. ในการถ่ายโอนพลังงานความร้อน 1 กิโลวัตต์ไปยังระบบทำความร้อน ปั๊มความร้อนต้องการไฟฟ้าเพียง 0.2 - 0.35 กิโลวัตต์

ความบริสุทธิ์ทางนิเวศวิทยา ปั๊มความร้อนไม่เผาไหม้เชื้อเพลิงและไม่ปล่อยมลพิษสู่ชั้นบรรยากาศ

การบำรุงรักษาขั้นต่ำ . ปั๊มความร้อนมีอายุการใช้งานยาวนานถึง ยกเครื่อง(ร้อนได้ถึง 10 - 15 ฤดู) และทำงานโดยอัตโนมัติอย่างเต็มที่ การบำรุงรักษาการติดตั้งเป็นไปตามฤดูกาล การตรวจสอบทางเทคนิคและการตรวจสอบโหมดการทำงานเป็นระยะ ในการใช้งานสถานีปั๊มความร้อนที่มีความจุสูงถึง 10 MW ไม่จำเป็นต้องมีผู้ปฏิบัติงานมากกว่าหนึ่งคนต่อกะ

ปรับให้เข้ากับระบบทำความร้อนที่มีอยู่ได้ง่าย

ในระยะสั้นคืนทุน . เนื่องจากต้นทุนการผลิตความร้อนต่ำ ปั๊มความร้อนจะจ่ายออกโดยเฉลี่ย 1.5 - 2 ปี (ช่วงความร้อน 2 - 3 ฤดูกาล)

ขณะนี้มีสองทิศทางของการพัฒนา TNU:

สถานีปั๊มความร้อนขนาดใหญ่ (HPS) สำหรับ เครื่องทำความร้อนอำเภอรวมถึงการอัดไอ HPI และพีค หม้อต้มน้ำร้อนใช้ที่อุณหภูมิอากาศต่ำ กำลังไฟฟ้า (ใช้แล้ว) ของ HPI คือ 20 - 30 MW พลังงานความร้อนคือ 110 - 125 MW เมื่อเทียบกับหม้อไอน้ำทั่วไป ประหยัดเชื้อเพลิงได้ถึง 20 - 30% มลภาวะทางอากาศลดลง (ไม่มีหม้อไอน้ำ!);

กระจายอำนาจ การจ่ายความร้อนส่วนบุคคล(ปั๊มความร้อนอัดไอพลังงานต่ำและปั๊มความร้อนเซมิคอนดักเตอร์เทอร์โมอิเล็กทริก) การประหยัดน้ำมันเชื้อเพลิงเมื่อเทียบกับโรงต้มน้ำขนาดเล็กคือ 10 - 20% สามารถทำความเย็นได้ ตามมาด้วยสูง ต้นทุนต่อหน่วยเชื้อเพลิง การลงทุน และค่าแรง

มีอะไรให้อ่านอีกบ้าง