สารานุกรมขนาดใหญ่ของน้ำมันและก๊าซ ปั๊มความร้อนคืออะไร

คำถามที่ 26. มีประโยชน์แหล่งพลังงานที่มีศักยภาพต่ำ การติดตั้งปั๊มความร้อน

เมื่อเร็ว ๆ นี้ ดูเหมือนโอกาสที่แท้จริงในการแก้ปัญหาการจ่ายพลังงานแบบบูรณาการของผู้ประกอบการอุตสาหกรรมด้วยวิธีใหม่โดยพื้นฐานโดยใช้ปั๊มความร้อนที่ใช้การปล่อยก๊าซที่มีศักยภาพต่ำเพื่อสร้างทั้งความร้อนและความเย็น การผลิตตัวพาพลังงานเหล่านี้พร้อมกันโดยปั๊มความร้อนมักจะมีประสิทธิภาพมากกว่าการผลิตความร้อนและความเย็นแบบแยกจากกันในโรงงานแบบดั้งเดิม เนื่องจากในกรณีนี้การสูญเสียที่ไม่สามารถย้อนกลับของวงจรทำความเย็นจะถูกนำมาใช้เพื่อสร้างความร้อนที่ให้กับผู้บริโภค

ในการติดตั้งปั๊มความร้อน อุณหภูมิของอุปกรณ์ถ่ายเทความร้อนเท่ากับหรือสูงกว่าอุณหภูมิเล็กน้อย สิ่งแวดล้อมและอุณหภูมิของตัวรับความร้อนสูงกว่าอุณหภูมิแวดล้อมมาก กล่าวคือ T n >T เกี่ยวกับ ปั๊มความร้อนเป็นอุปกรณ์ที่ถ่ายเทพลังงานในรูปของความร้อนจากระดับอุณหภูมิที่ต่ำกว่าถึงระดับที่สูงขึ้นซึ่งจำเป็นสำหรับการจ่ายความร้อน วัตถุประสงค์หลักของการติดตั้งเหล่านี้คือการใช้ความร้อนจากแหล่งที่มีศักยภาพต่ำ เช่น สิ่งแวดล้อม

ปัจจุบันมีการพัฒนาและใช้งานปั๊มความร้อนสามกลุ่มหลัก: การอัด (ไอน้ำ); เจ็ท (ประเภทอีเจ็คเตอร์); การดูดซึม

ปั๊มความร้อนอัดใช้สำหรับการจ่ายความร้อนของแต่ละอาคารหรือกลุ่มของอาคาร เช่นเดียวกับการจ่ายความร้อนของโรงงานอุตสาหกรรมแต่ละแห่งหรือการติดตั้ง

Freons มักใช้เป็นตัวแทนการทำงานในการติดตั้งปั๊มความร้อน

รูปที่ 4 แสดงแผนผังของปั๊มความร้อนอัดไอในอุดมคติ ความร้อนที่อาจเกิดขึ้นต่ำที่อุณหภูมิ Tn จะถูกส่งไปยังเครื่องระเหย I ไอของสารทำงานมาจากเครื่องระเหย I ไปยังคอมเพรสเซอร์ II ในสถานะ 1 และถูกบีบอัดเป็นความดัน pk และอุณหภูมิอิ่มตัวที่สอดคล้องกัน Tk ในสถานะที่ 2 ไอระเหยที่ถูกบีบอัดของสารทำงานจะเข้าสู่คอนเดนเซอร์ III โดยจะถ่ายเทความร้อนไปยังตัวพาความร้อนของระบบจ่ายความร้อน ในคอนเดนเซอร์ ไอระเหยของสารทำงานจะถูกควบแน่น จากคอนเดนเซอร์ สารทำงานเข้าสู่รูปของเหลวเข้าไปในตัวแผ่ IV (อุปกรณ์ที่การขยายตัวของของไหลทำงานที่ผลิตขึ้นพร้อมกับการทำความเย็น เกิดขึ้นพร้อมกับประสิทธิภาพของงานที่มีประโยชน์) โดยที่สารทำงานขยายจากแรงดัน p เป็น ความดัน po พร้อมกับอุณหภูมิลดลงและการถ่ายเทความร้อน จากเครื่องแผ่ขยาย สารทำงานเข้าสู่เครื่องระเหย I และวงจรปิด

โครงร่างของปั๊มความร้อนที่ทำงานในรอบปิดนั้นโดยพื้นฐานแล้วไม่แตกต่างจากโครงร่างของหน่วยทำความเย็นแบบอัดไอน้ำ อย่างไรก็ตาม การเชื่อมต่อของผู้บริโภคดำเนินการในรูปแบบต่างๆ ในวงจรทำความเย็น ผู้ใช้ความเย็นจะเชื่อมต่อกับเครื่องระเหย และในระบบปั๊มความร้อน ผู้ใช้ความร้อนจะเชื่อมต่อกับคอนเดนเซอร์

ปั๊มความร้อนเป็นของโรงงานแปรรูปความร้อน ซึ่งรวมถึงเครื่องทำความเย็น ( 120 K), อุณหภูมิห้องเย็น ( = 0 ... 120 K) และพืชรวม ( , ) การติดตั้งทั้งหมดเหล่านี้ทำงานตามวัฏจักรอุณหพลศาสตร์แบบย้อนกลับ ซึ่งด้วยค่าใช้จ่ายของงานภายนอก พลังงานความร้อนจะถูกถ่ายโอนจากวัตถุที่มีอุณหภูมิต่ำ (ฮีตซิงก์) ไปยังตัวเครื่องที่มีอุณหภูมิสูง (ตัวรับความร้อน) แต่ถ้าการทำงานของเครื่องทำความเย็นและการติดตั้งด้วยความเย็นคือการทำให้ร่างกายเย็นลงและรักษาอุณหภูมิให้ต่ำในห้องทำความเย็น กล่าวคือ การกำจัดความร้อน หน้าที่หลักของปั๊มความร้อนคือการจ่ายความร้อนไปยังแหล่งที่มีอุณหภูมิสูงโดยใช้พลังงานความร้อนที่อุณหภูมิต่ำ ในขณะเดียวกัน ก็เป็นข้อดีที่ปริมาณความร้อนที่อุณหภูมิสูงที่ได้รับอาจสูงกว่างานที่ใช้ไปหลายเท่า

หม้อแปลงความร้อนสามารถทำงานพร้อมกันเป็นหน่วยทำความเย็นและปั๊มความร้อน ในขณะที่ T n< Т о и Т н >ที่. กระบวนการดังกล่าวเรียกว่ารวมกัน ในกระบวนการรวมกันความร้อนและความเย็นจะถูกสร้างขึ้นพร้อมกัน - ตัวกลาง A ถูกทำให้เย็นลงและตัวกลาง B ถูกทำให้ร้อน ดังนั้นในหน่วยทำความเย็นจะทำการทำให้ร่างกายเย็นลงโดยประดิษฐ์ซึ่งมีอุณหภูมิต่ำกว่าอุณหภูมิแวดล้อม ในการติดตั้งปั๊มความร้อน ความร้อนของสิ่งแวดล้อมหรือสภาพแวดล้อมอื่นๆ ที่มีศักยภาพต่ำจะถูกใช้เพื่อวัตถุประสงค์ในการจ่ายความร้อน

รอบคาร์โนต์ในอุดมคติสำหรับหน่วยการแปลงความร้อนแสดงในรูปที่ 5

ประสิทธิภาพของเครื่องทำความเย็น ( - ผลที่เป็นประโยชน์ ปริมาณความร้อนที่นำมาจากน้ำหล่อเย็นที่เย็นกว่า) ประเมินโดยสัมประสิทธิ์ของประสิทธิภาพ สำหรับปั๊มความร้อน แนวคิดของอัตราส่วนการเปลี่ยนแปลงจะใช้ ( - ผลที่เป็นประโยชน์ ปริมาณความร้อนที่จ่ายให้กับสารหล่อเย็นที่ให้ความร้อน) หรือค่าสัมประสิทธิ์การทำความร้อน กล่าวคือ ปริมาณความร้อนที่ผลิตได้ต่อหน่วยของงานที่ใช้ไป

, ,

, .

สำหรับปั๊มความร้อนจริง = 2 - 5.

การติดตั้งจริงมีการสูญเสียที่เกิดจากการกลับไม่ได้ของกระบวนการบีบอัด (ภายใน) และการแลกเปลี่ยนความร้อน (ภายนอก) การย้อนกลับไม่ได้ภายในเกิดจากความหนืดของสารทำความเย็นและการปล่อยความร้อนจากแรงเสียดทานภายในระหว่างการบีบอัดในคอมเพรสเซอร์ (เพิ่มขึ้นเอนโทรปี) งานจริงของการบีบอัด ซึ่งเป็นงานในอุดมคติในกระบวนการย้อนกลับ - ประสิทธิภาพภายในสัมพัทธ์ของคอมเพรสเซอร์ - ประสิทธิภาพทางไฟฟ้าของเครื่องกลของไดรฟ์

การย้อนกลับไม่ได้ภายนอกนั้นอธิบายโดยความต้องการที่จะมีความแตกต่างของอุณหภูมิสำหรับการถ่ายเทความร้อนซึ่งถูกกำหนด (กำหนด) โดยพื้นที่ของพื้นผิวการแลกเปลี่ยนความร้อนที่ฟลักซ์ความร้อนที่กำหนด

นั่นเป็นเหตุผลที่

โดยที่ , - อุณหภูมิตามลำดับในเครื่องระเหยและคอนเดนเซอร์ของการติดตั้ง

ปั๊มความร้อนแบบเจ็ทของประเภทอีเจ็คเตอร์มีการใช้กันอย่างแพร่หลายในปัจจุบัน ไอน้ำแรงดันสูงจะเข้าสู่อุปกรณ์เจ็ท และเนื่องจากการใช้พลังงานของขั้นตอนการทำงาน การไหลที่ฉีดจะถูกบีบอัด ส่วนผสมของลำธารสองสายออกมาจากอุปกรณ์ ดังนั้น เมื่อไอที่ฉีดเข้าไปถูกบีบอัด อุณหภูมิของไอน้ำก็จะสูงขึ้นพร้อมๆ กัน ไอน้ำอัดจะถูกดึงออกจากโรงงาน

ไอน้ำแรงดันสูงพร้อมพารามิเตอร์ p p และ T p เข้าสู่เครื่องพ่นไอน้ำ (รูปที่ 6) เนื่องจากการใช้พลังงานของขั้นตอนการทำงาน การไหลที่ฉีดจะถูกบีบอัดด้วยพารามิเตอร์ r nและ ทีน. ส่วนผสมของลำธารที่มีพารามิเตอร์ออกมาจากอุปกรณ์ r sและ ที เอสดังนั้น เมื่อไอที่ฉีดเข้าไปถูกบีบอัด อุณหภูมิของไอระเหย (และด้วยเหตุนี้ เอนทาลปี) ก็เพิ่มขึ้นเช่นกัน ไอน้ำอัดจะถูกดึงออกจากโรงงาน อัตราส่วนความดัน ร s / ร นในอุปกรณ์ดังกล่าว เรียกว่าเจ็ทคอมเพรสเซอร์ มีขนาดค่อนข้างเล็กและอยู่ภายใน1.2 ≤ r s / r n≤ 4.



ปัจจุบันปั๊มความร้อนแบบเจ็ทใช้กันอย่างแพร่หลายมากที่สุด เนื่องจากง่ายต่อการบำรุงรักษา ความกะทัดรัด และไม่มีส่วนประกอบราคาแพง

ปั๊มความร้อนแบบดูดซับทำงานบนหลักการดูดซับไอน้ำด้วยสารละลายด่าง (NaOH, KOH) กระบวนการดูดซับไอน้ำเกิดขึ้นแบบคายความร้อน กล่าวคือ ด้วยการปล่อยความร้อน ความร้อนนี้ใช้ในการทำให้สารละลายมีอุณหภูมิสูงกว่าอุณหภูมิของไอที่ดูดซับอย่างมีนัยสำคัญ หลังจากออกจากตัวดูดซับ สารละลายอัลคาไลที่ให้ความร้อนจะถูกส่งไปยังเครื่องระเหยพื้นผิว ซึ่งไอน้ำสำรองจะถูกสร้างขึ้นที่ความดันที่สูงกว่าไอน้ำหลักที่เข้าสู่ตัวดูดซับ ดังนั้นในปั๊มความร้อนแบบดูดกลืน กระบวนการรับไอน้ำแรงดันสูงจะดำเนินการโดยใช้ความร้อนที่จ่ายจากภายนอก

แผนผังของปั๊มความร้อนแบบดูดกลืนแสดงในรูปที่ 7

ในฐานะที่เป็นสารทำงานในปั๊มความร้อนแบบดูดกลืน จะใช้สารละลายของสารสองชนิด (ส่วนผสมไบนารี) ซึ่งจุดเดือดต่างกันที่ความดันเท่ากัน สารหนึ่งดูดซับและละลายสารที่สองซึ่งเป็นสารทำงาน วัฏจักรการทำงานของปั๊มความร้อนแบบดูดซับมีดังนี้ ในเครื่องระเหย 3 ผ่านผนังของตัวแลกเปลี่ยนความร้อน ความร้อนที่มีศักยภาพต่ำจะถูกส่งไปยังสารละลายไบนารีที่อุณหภูมิ T® ความร้อนที่ให้มาช่วยให้เกิดการระเหยของสารทำงานจากส่วนผสมไบนารีที่ความดัน p o ไอที่เกิดจากสารทำงานจากเครื่องระเหยผ่านท่อเข้าสู่ตัวดูดซับ 2 ซึ่งจะถูกดูดซับโดยตัวทำละลาย (ตัวดูดซับ) และความร้อนของการดูดซับ Q a จะถูกปล่อยออกมา สารละลายของเหลวเข้มข้นที่เกิดขึ้นในตัวดูดซับถูกปั๊มโดยปั๊ม 1 ไปยังเครื่องกำเนิดไฟฟ้า 6 ความร้อน Q g ที่ใช้ไปกับการระเหยของสารทำงานที่แรงดันสูง p k และด้วยเหตุนี้ อุณหภูมิสูง T k จึงถูกส่งไปยังเครื่องกำเนิด กลายเป็น อ่อนแอ. สารละลายอ่อนจะถูกส่งผ่านไปป์ไลน์ไปยังโช้ค 2 โดยลดแรงดันในวาล์วเทอร์โมสแตติกเสริม 7 ให้เท่ากับแรงดันในเครื่องระเหย p ประมาณ ไอสารทำงานที่เกิดขึ้นในเครื่องกำเนิดจะเข้าสู่คอนเดนเซอร์ 5 โดยผ่านผนังแยก พวกมันจะปล่อยความร้อนของการควบแน่น Q k ที่อุณหภูมิสูง T k สารทำงานที่ควบแน่นในคอนเดนเซอร์จะลดความดันในวาล์วควบคุมอุณหภูมิ จาก p ถึง po โดยที่มันเข้าสู่เครื่องระเหย จากนั้นกระบวนการจะทำซ้ำ

การทำงานของปั๊มความร้อนแบบดูดกลืนในอุดมคตินั้นมีลักษณะเฉพาะด้วยสมการสมดุลความร้อนดังต่อไปนี้:

ที่ไหน คิว น- ปริมาณความร้อนที่มีศักยภาพต่ำสรุปในเครื่องระเหย

คิว ก -ปริมาณความร้อนที่มีศักยภาพสูงที่จ่ายให้กับเครื่องกำเนิด

ถามเรา -ความร้อนเทียบเท่ากับการทำงานของปั๊ม

Q ถึง- ปริมาณความร้อนสูงที่อาจเกิดขึ้นในคอนเดนเซอร์

ถาม -ปริมาณความร้อนที่อาจเกิดขึ้นต่ำในตัวดูดซับ

สารทำงานมักจะเป็นน้ำและสารดูดซับคือลิเธียมโบรไมด์

สำหรับโรงกลั่นเคมี ปิโตรเคมี และน้ำมันที่มีน้ำปริมาณมากสำหรับหน่วยเทคโนโลยีทำความเย็นซึ่งมีอุณหภูมิอยู่ในช่วง 20 ถึง 50 ° C จำเป็นต้องใช้ปั๊มความร้อนลิเธียมโบรไมด์แบบดูดซับซึ่งจะทำงานในความเย็น โหมดฤดูร้อน น้ำรีไซเคิล, และใน ฤดูหนาวความร้อนเหลือทิ้งจากน้ำหมุนเวียนใช้ในการผลิตน้ำร้อนสำหรับการประชุมเชิงปฏิบัติการทำความร้อน ตารางที่ 6 แสดงพารามิเตอร์ของการดูดซับปั๊มความร้อนลิเธียมโบรไมด์ (ABTN)

ปั๊มความร้อนแบบดูดซับมีประสิทธิภาพสูง ไม่มีชิ้นส่วนที่เคลื่อนไหว และสามารถผลิตได้ง่าย อย่างไรก็ตาม ปั๊มดูดซับต้องใช้โลหะจำเพาะสูง ซึ่งทำให้มีขนาดใหญ่ ความเป็นไปได้ของการกัดกร่อนของโลหะต้องมีการผลิตอุปกรณ์จากเหล็กอัลลอยด์ ดังนั้นปั๊มความร้อนแบบดูดซับจึงไม่ได้ใช้กันอย่างแพร่หลายในอุตสาหกรรม

ตารางที่ 6

พารามิเตอร์ ABTN

สารทำงานและสารหล่อเย็น (สารหล่อเย็น)

ในหม้อแปลงความร้อน

สำหรับการนำกระบวนการไปใช้ในหม้อแปลงความร้อนนั้นจะใช้สารทำงาน (ตัวแทน) ที่มีคุณสมบัติทางอุณหพลศาสตร์และเคมีกายภาพที่จำเป็น พวกมันสามารถเป็นเนื้อเดียวกันหรือเป็นส่วนผสมของสารหลายชนิด โดยปกติสองอย่าง ในหม้อแปลงความร้อนส่วนใหญ่ สารทำงานจะผ่านการแปลงเฟส ปัจจุบันมีการใช้สารทำงานต่อไปนี้ในหม้อแปลงความร้อน:

ก) สารทำความเย็น - สารที่มีจุดเดือดต่ำที่ความดันบรรยากาศตั้งแต่ +80 ถึง -130 ° C สารทำความเย็นที่มีจุดเดือดตั้งแต่ +80 ถึง -30 °C มักใช้ในการติดตั้งปั๊มความร้อน และมีจุดเดือดต่ำกว่า 0 ถึง -130 °C - ในการติดตั้งที่เย็นปานกลาง

ข) ก๊าซและก๊าซผสม (เช่น อากาศ) ที่มีจุดเดือดต่ำ

ค) สารทำงานและสารดูดซับ พืชดูดซึม;

ง) น้ำที่ใช้สำหรับคุณสมบัติทางอุณหพลศาสตร์ในโรงงานทำความเย็น โดยที่อุณหภูมิของแหล่งกำเนิดต่ำกว่า ความร้อน tn> 0 ° C ตัวอย่างเช่น สำหรับเครื่องปรับอากาศ

เพื่อการทำงานที่ประหยัดและปลอดภัยของหม้อแปลงความร้อน สารทำความเย็นต้องเป็นไปตามข้อกำหนดต่อไปนี้:

ก) ต่ำ แรงดันเกินที่อุณหภูมิจุดเดือดและการควบแน่น ความร้อนที่ส่งออกสูง 1 กิโลกรัมของสาร ไอน้ำปริมาณจำเพาะต่ำ (สำหรับคอมเพรสเซอร์แบบลูกสูบ) ความจุความร้อนต่ำของของเหลวและค่าการนำความร้อนสูงและค่าสัมประสิทธิ์การถ่ายเทความร้อน

b) มีความหนืดต่ำ อาจเป็นจุดแข็งตัวที่ต่ำกว่า ไม่ละลายในน้ำมัน (สำหรับคอมเพรสเซอร์แบบลูกสูบ)

ค) ทนต่อสารเคมี ไม่ติดไฟ ไม่ระเบิด ไม่กัดกร่อนโลหะ

ง) ไม่เป็นอันตรายต่อร่างกายมนุษย์

จ) ไม่ขาดแคลนและราคาไม่แพง

ตัวแทนการทำงานของหน่วยทำความเย็นแก๊สต้องมีค่าต่ำ อุณหภูมิปกติการเดือด ความหนืดต่ำ การนำความร้อนสูงและความจุความร้อน Ср ซึ่งขึ้นอยู่กับอุณหภูมิและความดันเพียงเล็กน้อย

สารออกฤทธิ์ของพืชดูดซับ นอกเหนือจากการปฏิบัติตามข้อกำหนดข้างต้นแล้ว จะต้องถูกดูดซับและขจัดออกร่วมกับสารดูดซับที่เหมาะสม

ประสิทธิภาพทางเศรษฐกิจของปั๊มความร้อนขึ้นอยู่กับ:

อุณหภูมิของแหล่งพลังงานความร้อนที่มีศักยภาพต่ำจะยิ่งสูงขึ้น อุณหภูมิก็จะสูงขึ้น

ค่าไฟฟ้าในภูมิภาค

ต้นทุนพลังงานความร้อนที่ผลิตโดยใช้เชื้อเพลิงประเภทต่างๆ

การใช้ปั๊มความร้อนแทนแหล่งพลังงานความร้อนแบบดั้งเดิมนั้นมีประโยชน์เชิงเศรษฐกิจเนื่องจาก:

ไม่จำเป็นต้องซื้อ ขนส่ง เก็บน้ำมันเชื้อเพลิง และใช้จ่ายเงินที่เกี่ยวข้อง

การปล่อยพื้นที่ขนาดใหญ่ที่จำเป็นสำหรับการวางโรงต้มน้ำ ถนนทางเข้า และคลังเชื้อเพลิง

ศักยภาพการประหยัดพลังงานที่ยิ่งใหญ่ที่สุดมีอยู่ในแหล่งจ่ายความร้อน: 40-50% ของการใช้ความร้อนทั้งหมดของประเทศ อุปกรณ์ของ CHPP ที่มีอยู่มีการสึกหรอทางร่างกายและทางศีลธรรม ใช้งานโดยสิ้นเปลืองเชื้อเพลิงมากเกินไป เครือข่ายความร้อนเป็นที่มา การสูญเสียครั้งใหญ่พลังงาน แหล่งความร้อนขนาดเล็กมีลักษณะประสิทธิภาพพลังงานต่ำ มลภาวะต่อสิ่งแวดล้อมในระดับสูง ต้นทุนต่อหน่วยที่เพิ่มขึ้น และค่าแรงสำหรับการบำรุงรักษา

TNU เปิดโอกาสให้:

1) ลดความยาวของเครือข่ายความร้อน (นำความจุความร้อนเข้าใกล้สถานที่บริโภค);

2) รับพลังงานความร้อนเทียบเท่า 3 - 8 กิโลวัตต์ในระบบทำความร้อน (ขึ้นอยู่กับอุณหภูมิของแหล่งพลังงานศักย์ต่ำขณะใช้ไฟฟ้า 1 กิโลวัตต์)

จนถึงปัจจุบันขนาดของการแนะนำปั๊มความร้อนในโลกมีดังนี้:

ในสวีเดน 50% ของการทำความร้อนทั้งหมดมาจากปั๊มความร้อน ในช่วงไม่กี่ปีที่ผ่านมา สถานีปั๊มความร้อนมากกว่า 100 แห่ง (จาก 5 ถึง 80 เมกะวัตต์) ได้รับมอบหมาย

ในประเทศเยอรมนี เงินอุดหนุนจากรัฐสำหรับการติดตั้งปั๊มความร้อนเป็นจำนวนเงิน 400 เครื่องหมายต่อกิโลวัตต์ ความจุที่ติดตั้ง;

ในญี่ปุ่น มีการผลิตปั๊มความร้อนประมาณ 3 ล้านเครื่องต่อปี

ในสหรัฐอเมริกา 30% ของอาคารที่พักอาศัยมีปั๊มความร้อน มีการผลิตปั๊มความร้อนประมาณ 1 ล้านตัวต่อปี

ในสตอกโฮล์ม 12% ของการทำความร้อนทั้งหมดของเมืองนั้นมาจากปั๊มความร้อนที่มีความจุรวม 320 MW โดยใช้ทะเลบอลติกเป็นแหล่งความร้อนที่มีอุณหภูมิ +8 ° C

ในโลกตามการคาดการณ์ของคณะกรรมการพลังงานโลก ภายในปี 2020 ส่วนแบ่งของปั๊มความร้อนในการจัดหาความร้อน (ภาคเทศบาลและการผลิต) จะอยู่ที่ 75%

เหตุผลในการยอมรับมวลของปั๊มความร้อนมีดังนี้:

การทำกำไร. ในการถ่ายโอนพลังงานความร้อน 1 กิโลวัตต์ไปยังระบบทำความร้อน ปั๊มความร้อนต้องการไฟฟ้าเพียง 0.2 - 0.35 กิโลวัตต์

ความบริสุทธิ์ทางนิเวศวิทยา ปั๊มความร้อนไม่เผาไหม้เชื้อเพลิงและไม่ปล่อยมลพิษสู่ชั้นบรรยากาศ

การบำรุงรักษาขั้นต่ำ . ปั๊มความร้อนมีอายุการใช้งานยาวนานก่อนการยกเครื่อง (สูงสุด 10 - 15 ฤดูที่ให้ความร้อน) และทำงานโดยอัตโนมัติอย่างเต็มที่ การบำรุงรักษาการติดตั้งเป็นไปตามฤดูกาล การตรวจสอบทางเทคนิคและการตรวจสอบโหมดการทำงานเป็นระยะ ในการใช้งานสถานีปั๊มความร้อนที่มีความจุสูงถึง 10 MW ไม่จำเป็นต้องมีผู้ปฏิบัติงานมากกว่าหนึ่งคนต่อกะ

ปรับให้เข้ากับระบบทำความร้อนที่มีอยู่ได้ง่าย

ระยะเวลาคืนทุนสั้น . เนื่องจากต้นทุนการผลิตความร้อนต่ำ ปั๊มความร้อนจะจ่ายออกไปโดยเฉลี่ย 1.5 - 2 ปี (ช่วงความร้อน 2 - 3 ฤดูกาล)

ขณะนี้มีสองทิศทางของการพัฒนา TNU:

สถานีปั๊มความร้อนขนาดใหญ่ (HPS) สำหรับการทำความร้อนแบบรวมศูนย์ รวมถึงเครื่องอัดไอน้ำ HPI และหม้อต้มน้ำร้อนพีคที่ใช้ใน อุณหภูมิต่ำอากาศ. กำลังไฟฟ้า (ใช้แล้ว) ของ HPI คือ 20 - 30 MW พลังงานความร้อนอยู่ที่ 110 - 125 MW เมื่อเทียบกับหม้อไอน้ำทั่วไป ประหยัดเชื้อเพลิงได้ถึง 20 - 30% มลภาวะทางอากาศลดลง (ไม่มีหม้อไอน้ำ!);

กระจายอำนาจ การจ่ายความร้อนส่วนบุคคล(ปั๊มความร้อนอัดไอพลังงานต่ำและปั๊มความร้อนเซมิคอนดักเตอร์เทอร์โมอิเล็กทริก) การประหยัดน้ำมันเชื้อเพลิงเมื่อเทียบกับโรงต้มน้ำขนาดเล็กคือ 10 - 20% สามารถทำความเย็นได้ ประกอบกับการใช้เชื้อเพลิงเฉพาะเจาะจงสูง การลงทุน และต้นทุนแรงงาน

วิทยาศาสตรดุษฎีบัณฑิต วศ.บ. Belyaev หัวหน้านักออกแบบของ OMKB Horizon
ดี.ที.เอส. เช่น. โกซอย รองหัวหน้าผู้ออกแบบหน่วยกังหันก๊าซอุตสาหกรรม
หัวหน้าผู้ออกแบบโครงการ,
ปริญญาเอก ยูเอ็น Sokolov หัวหน้าภาคส่วนปั๊มความร้อน OMKB Horizon
FSUE MMPP ซาลุต, มอสโก

การใช้หน่วยปั๊มความร้อน (HPU) สำหรับพลังงาน อุตสาหกรรม และที่อยู่อาศัย และบริการชุมชนเป็นหนึ่งในพื้นที่ที่มีแนวโน้มมากที่สุดของเทคโนโลยีประหยัดพลังงานและเป็นมิตรกับสิ่งแวดล้อม

การวิเคราะห์อย่างจริงจังของรัฐและโอกาสในการพัฒนางานในพื้นที่นี้เกิดขึ้นในการประชุมหัวข้อย่อย "ความร้อนและความร้อนของเขต" ของ NTS ของ RAO "UES of Russia" เมื่อวันที่ 15 กันยายน 2547

ความจำเป็นในการสร้างและใช้งาน HPP รุ่นใหม่มีความเกี่ยวข้องกับ:

♦ งานในมือจำนวนมากของสหพันธรัฐรัสเซียและกลุ่มประเทศ CIS ในด้านการใช้งาน HPI ในทางปฏิบัติ ความต้องการที่เพิ่มมากขึ้นของเมืองใหญ่ การตั้งถิ่นฐานที่ห่างไกล อุตสาหกรรมและที่อยู่อาศัย และบริการชุมชนในการพัฒนาและการใช้ความร้อนราคาถูกและเป็นมิตรกับสิ่งแวดล้อม พลังงาน (TE);

♦ การปรากฏตัวของแหล่งกำเนิดความร้อนที่มีศักยภาพต่ำ ( น้ำบาดาล, แม่น้ำและทะเลสาบ, การปล่อยความร้อนจากสถานประกอบการ, อาคารและโครงสร้าง);

♦ ข้อจำกัดการใช้ก๊าซธรรมชาติ (GHG) ที่เพิ่มขึ้นอย่างต่อเนื่องสำหรับการติดตั้งที่สร้างความร้อน

♦ โอกาสในการใช้เทคโนโลยีการแปลงขั้นสูงที่สะสมอยู่ในอาคารเครื่องยนต์อากาศยาน

ในเงื่อนไขของความสัมพันธ์ทางการตลาด ตัวชี้วัดทางเทคนิคและเศรษฐกิจที่สำคัญที่สุดของประสิทธิภาพของโรงไฟฟ้าคือต้นทุนและความสามารถในการทำกำไรของพลังงานที่ผลิตได้ (โดยคำนึงถึงข้อกำหนดด้านสิ่งแวดล้อม) และด้วยเหตุนี้ การลดระยะเวลาคืนทุนของ โรงไฟฟ้า.

เกณฑ์หลักในการปฏิบัติตามข้อกำหนดเหล่านี้ ได้แก่

♦ บรรลุปัจจัยการใช้เชื้อเพลิงสูงสุดที่เป็นไปได้ (FUFR) ในโรงไฟฟ้า (อัตราส่วนของพลังงานที่มีประโยชน์ต่อพลังงานเชื้อเพลิง);

♦ การลดต้นทุนทุนและเงื่อนไขการก่อสร้างโรงไฟฟ้าสูงสุดที่เป็นไปได้

เกณฑ์ข้างต้นถูกนำมาพิจารณาเมื่อใช้งาน HPP รุ่นใหม่

ครั้งแรกสำหรับ การปฏิบัติจริงสำหรับ HPP ขนาดใหญ่ ขอเสนอให้ใช้ไอน้ำ (R718) เป็นสารทำงาน แนวคิดในการใช้ไอน้ำสำหรับ HPP ไม่ใช่เรื่องใหม่ (นอกจากนี้ W. Thomson ยังเคยใช้เมื่อแสดงให้เห็นถึงประสิทธิภาพของเครื่องจักรจริงเครื่องแรกในปี 1852 - ed.) อย่างไรก็ตาม เนื่องจากไอน้ำมีปริมาตรจำเพาะมากที่อุณหภูมิต่ำ (เมื่อเทียบกับสารทำความเย็นแบบเดิม) จึงยังไม่มีการสร้างคอมเพรสเซอร์จริงสำหรับไอน้ำเพื่อใช้ใน HPP สำหรับการอัดไอ

ข้อได้เปรียบหลักของการใช้ไอน้ำเป็นสารทำงานสำหรับ HPP เมื่อเปรียบเทียบกับสารทำความเย็นแบบเดิม (ฟรีออน บิวเทน โพรเพน แอมโมเนีย ฯลฯ) ได้แก่

1. ความสะอาดของระบบนิเวศ ความปลอดภัย และความสะดวกในการบำรุงรักษาเทคโนโลยี ความพร้อมใช้งาน และต้นทุนต่ำของของเหลวทำงาน

2. คุณสมบัติทางอุณหพลศาสตร์สูงเนื่องจากองค์ประกอบ HPP ที่แพงที่สุด (คอนเดนเซอร์และเครื่องระเหย) มีขนาดกะทัดรัดและราคาถูก

3. อุณหภูมิน้ำหล่อเย็นที่สูงขึ้นอย่างมีนัยสำคัญต่อผู้บริโภค (สูงถึง 100 °C ขึ้นไป) เทียบกับ 70-80 °C สำหรับฟรีออน

4. ความเป็นไปได้ของการใช้รูปแบบน้ำตกเพื่อเพิ่มอุณหภูมิจากแหล่งที่มีศักยภาพต่ำไปยังผู้ใช้ความร้อน (ตามวงจร Lorentz) ด้วยการเพิ่มปัจจัยการแปลงใน HPI (kHPU) เมื่อเทียบกับแบบดั้งเดิม 1.5-2 ครั้ง;

5. ความเป็นไปได้ในการผลิตน้ำบริสุทธิ์ทางเคมี (กลั่น) ใน HPP;

6. ความเป็นไปได้ของการใช้คอมเพรสเซอร์และคอนเดนเซอร์ HPP สำหรับ:

♦ การดูดไอน้ำจากทางออกของเทอร์ไบน์เทอร์ไบน์ด้วยการถ่ายเทความร้อนเหลือทิ้งไปยังผู้ใช้ความร้อน ซึ่งยังนำไปสู่การเพิ่มขึ้นของสุญญากาศที่ทางออกของเทอร์ไบน์ การเพิ่มขึ้นของพลังงานที่สร้างขึ้น และการบริโภคที่ลดลง น้ำหมุนเวียน, ค่าใช้จ่ายในการสูบน้ำและการปล่อยความร้อนสู่ชั้นบรรยากาศ;

♦ การดูดไอน้ำ (ของเสีย) เกรดต่ำจากการติดตั้งเทคโนโลยีพลังงาน

กระทะสำหรับการผลิตสารเคมี การทำให้แห้ง ฯลฯ ด้วยการถ่ายเทความร้อนเหลือทิ้งไปยังผู้ใช้ความร้อน

♦ การสร้างอีเจ็คเตอร์ที่มีประสิทธิภาพสูงสำหรับคอนเดนเซอร์กังหันไอน้ำ การดูดของผสมหลายองค์ประกอบ ฯลฯ

แผนผังของการทำงานของ HPI กับไอน้ำและคุณสมบัติการออกแบบ

ในรูป 1 แสดงแผนผังการทำงานของ HPI เมื่อใช้ไอน้ำ (R718) เป็นสารทำงาน

คุณสมบัติของรูปแบบที่เสนอคือความเป็นไปได้ในการจัดการเลือกความร้อนจากแหล่งอุณหภูมิต่ำในเครื่องระเหยเนื่องจากการระเหยโดยตรงของส่วนหนึ่งของน้ำที่จ่ายไป (ไม่มีพื้นผิวแลกเปลี่ยนความร้อน) รวมถึงความเป็นไปได้ ของการถ่ายเทความร้อนไปยังเครือข่ายความร้อนในคอนเดนเซอร์ HPI ทั้งแบบมีและไม่มีพื้นผิวแลกเปลี่ยนความร้อน (ชนิดผสม ) ทางเลือกของประเภทของการก่อสร้างถูกกำหนดโดยการเชื่อมโยงของ HPI กับแหล่งเฉพาะของแหล่งที่มีศักยภาพต่ำและความต้องการของผู้ใช้ความร้อนสำหรับการใช้สารหล่อเย็นที่ให้มา

สำหรับการใช้งานจริงของ HPI ขนาดใหญ่บนไอน้ำ ขอแนะนำให้ใช้คอมเพรสเซอร์แนวแกนของเครื่องบินที่มีจำหน่ายทั่วไป AL-21 ซึ่งมีคุณสมบัติที่สำคัญดังต่อไปนี้เมื่อใช้งานกับไอน้ำ:

♦ ผลผลิตเชิงปริมาตรขนาดใหญ่ (สูงถึง 210,000 m3/h) ด้วยความเร็วโรเตอร์ของคอมเพรสเซอร์ประมาณ 8,000 รอบต่อนาที

♦มี 10 ขั้นตอนที่ปรับได้เพื่อให้แน่ใจว่า งานที่มีประสิทธิภาพคอมเพรสเซอร์ในโหมดต่างๆ

♦ ความสามารถในการฉีดน้ำเข้าไปในคอมเพรสเซอร์เพื่อเพิ่มประสิทธิภาพ รวมถึงการลดการใช้พลังงาน

นอกจากนี้ เพื่อเพิ่มความน่าเชื่อถือของการทำงานและลดต้นทุนการดำเนินงาน จึงตัดสินใจเปลี่ยนตลับลูกปืนเม็ดกลมเป็นตลับลูกปืนธรรมดาโดยใช้แทนตลับลูกปืนแบบเดิม ระบบน้ำมันระบบหล่อลื่นและระบายความร้อนด้วยน้ำ

เพื่อศึกษาลักษณะเฉพาะของแก๊สไดนามิกของคอมเพรสเซอร์เมื่อทำงานกับไอน้ำในช่วงกว้างของพารามิเตอร์ที่กำหนด พัฒนาองค์ประกอบโครงสร้าง และเพื่อแสดงความน่าเชื่อถือของคอมเพรสเซอร์ภายใต้สภาวะการทดสอบภาคสนาม ม้านั่งทดสอบขนาดใหญ่ (แบบปิด เส้นผ่านศูนย์กลางของท่อส่ง 800 มม. ยาวประมาณ 50 ม.)

จากผลการทดสอบได้ผลลัพธ์ที่สำคัญดังต่อไปนี้:

♦ ความเป็นไปได้ของการทำงานที่มีประสิทธิภาพและเสถียรของคอมเพรสเซอร์บนไอน้ำที่ n=8000-8800 รอบต่อนาที โดยมีปริมาณการไหลของไอน้ำสูงถึง 210,000 m3/h ได้รับการยืนยัน

♦ ความเป็นไปได้ของการบรรลุสุญญากาศลึกที่ทางเข้าของคอมเพรสเซอร์ (0.008 ata) ได้แสดงให้เห็น;

♦ อัตราการบีบอัดที่ได้จากการทดลองในคอมเพรสเซอร์ πκ=5 เกิน 1.5 เท่าของค่าที่ต้องการสำหรับ HPI ที่มีอัตราส่วนการแปลง 7-8

♦ ออกกำลัง การออกแบบที่แข็งแกร่งแบริ่งธรรมดาของคอมเพรสเซอร์บนน้ำ

ขึ้นอยู่กับสภาพการทำงานของ HPI มีการจัดวาง 2 ประเภท: แนวตั้ง (HPU ในหน่วยเดียว) และแนวนอน

สำหรับการปรับเปลี่ยนเลย์เอาต์แนวตั้งที่เสนอของ HPI หลายครั้ง สามารถเปลี่ยนคอนเดนเซอร์แบบท่อเป็นคอนเดนเซอร์ประเภทสเปรย์ได้ ในกรณีนี้ คอนเดนเสทของของไหลทำงานของ HPI จะผสมกับน้ำหล่อเย็น (น้ำ) ให้กับผู้บริโภค ในขณะเดียวกันต้นทุนของ HPP จะลดลงประมาณ 20%

ต่อไปนี้สามารถใช้เป็นไดรฟ์คอมเพรสเซอร์ HPP:

♦ ไดรฟ์เทอร์โบในตัวที่มีกำลังสูงถึง 2 MW (สำหรับ HPP ที่มีความจุสูงถึง 15 MW);

♦ ไดรฟ์เทอร์โบความเร็วสูงระยะไกล (สำหรับ HPP ที่มีความจุสูงถึง 30 MW);

♦ เครื่องยนต์กังหันก๊าซที่ใช้เซลล์เชื้อเพลิงจากเอาต์พุต

♦ไดรฟ์ไฟฟ้า.

ในตาราง. 1 แสดงคุณสมบัติของ HPP บนไอน้ำ (R718) และฟรีออน 142

เมื่อใช้เป็นแหล่งความร้อนระดับต่ำที่มีอุณหภูมิ 5-25 °C ด้วยเหตุผลทางเทคนิคและทางเศรษฐศาสตร์ Freon 142 ได้รับเลือกให้เป็นของเหลวในการทำงานของ HPP

การวิเคราะห์เปรียบเทียบแสดงให้เห็นว่าสำหรับ HPI ที่ใช้ไอน้ำ ต้นทุนทุนจะอยู่ระหว่างน้ำหล่อเย็นและสารทำงาน (ฟรีออน)

ช่วงอุณหภูมิของแหล่งกำเนิดที่มีศักยภาพต่ำ:

♦ 25-40 OS - ต่ำกว่า HPI ในประเทศแบบดั้งเดิม 1.3-2 เท่าบนฟรีออนและต่ำกว่า HPP ต่างประเทศ 2-3 เท่า

♦ 40-55 OS - ต่ำกว่า HPI ในประเทศแบบเดิม 2-2.5 เท่าบน freon และต่ำกว่า HPP ต่างประเทศ 2.5-4 เท่า

ตารางที่ 1. ลักษณะของ HPI ต่อไอน้ำและฟรีออน

*- เมื่อทำงานกับฟรีออน เครื่องระเหยและคอนเดนเซอร์ของ HPP ทำด้วยพื้นผิวแลกเปลี่ยนความร้อน

**-T - ไดรฟ์เทอร์โบ; G- กังหันก๊าซ (ลูกสูบแก๊ส); E - ไดรฟ์ไฟฟ้า

ในการทำงานภายใต้เงื่อนไขการทำงานจริงของ HPP ที่ CHPP ความเป็นไปได้ของการถ่ายเทความร้อนทิ้งจาก .อย่างมีประสิทธิภาพ กังหันไอน้ำด้วยปัจจัยการแปลง HPI เท่ากับ 5-6 ในการนำเสนอและแสดงในรูปที่ 2 ค่าสัมประสิทธิ์การแปลง HPI จะสูงขึ้นอย่างมีนัยสำคัญเนื่องจากการยกเว้นของเครื่องระเหย HPI และด้วยเหตุนี้จึงไม่มีความแตกต่างของอุณหภูมิระหว่างแหล่งกำเนิดอุณหภูมิต่ำและไอน้ำทำงานที่ทางเข้าของคอมเพรสเซอร์

ในปัจจุบัน การสร้างโรงไฟฟ้าพลังความร้อนที่มีประสิทธิภาพสูงและเป็นมิตรกับสิ่งแวดล้อมโดยใช้ HPP ถือเป็นงานเร่งด่วนอย่างยิ่ง

ผลลัพธ์ของการแนะนำ HPS ได้อธิบายไว้ใน หลากหลายชนิดสำหรับความต้องการของระบบจ่ายความร้อน สถานประกอบการอุตสาหกรรม และที่อยู่อาศัยและบริการชุมชน

จากการทดสอบจริงของ HPI ที่ CHPP-28 ของ OAO Mosenergo 2 รูปแบบเฉพาะสำหรับการถ่ายเทความร้อนเหลือทิ้งไปยังหอทำความเย็นด้วยความช่วยเหลือของ HPI ไปยังเครือข่ายการทำความร้อน น้ำเครือข่าย).

วิธีสร้างปั๊มความร้อนอัดประสิทธิภาพสูงบนไอน้ำเมื่อใช้เป็นแหล่งความร้อนคุณภาพต่ำในช่วงอุณหภูมิตั้งแต่ 30 ถึง 65 °C ด้วยเครื่องขับกังหันก๊าซของคอมเพรสเซอร์และการใช้ความร้อนของก๊าซไอเสียจาก วิเคราะห์กังหันก๊าซ ผลการศึกษาความเป็นไปได้แสดงให้เห็นว่าค่าใช้จ่ายของความร้อนที่เกิดจาก HPP สามารถลดลงได้หลายเท่า (และ KIT สูงกว่าหลายเท่า) เมื่อเทียบกับการสร้างความร้อนแบบเดิมที่ CHP

ในการวิเคราะห์ประสิทธิผลของการใช้ปั๊มความร้อนในระบบจ่ายน้ำร้อนแบบรวมศูนย์ (DHW) แสดงให้เห็นว่าประสิทธิภาพนี้ขึ้นอยู่กับอัตราภาษีปัจจุบันสำหรับผู้ให้บริการพลังงานและอุณหภูมิของความร้อนเกรดต่ำที่ใช้อย่างมาก ดังนั้นปัญหาการใช้ HPI จะต้องได้รับการพิจารณาอย่างรอบคอบโดยคำนึงถึงเงื่อนไขเฉพาะทั้งหมด

HPP เป็นแหล่งน้ำร้อนทางเลือกสำหรับผู้ใช้เครื่องทำความร้อนแบบเขตในช่วงระยะเวลาการให้ความร้อน

ในบทความนี้ จากประสบการณ์ที่สั่งสมมา ความเป็นไปได้และตัวชี้วัดทางเทคนิคและเศรษฐกิจในเชิงลึกมากขึ้น เมื่อเทียบกับการใช้ปั๊มความร้อนสำหรับการจ่ายน้ำร้อน โดยเฉพาะอย่างยิ่ง การกำจัดความร้อนเกือบ 100% จาก CHPP แบบดั้งเดิมสำหรับวัตถุประสงค์เหล่านี้ ในช่วงระยะเวลาการให้ความร้อนจะถูกวิเคราะห์

ตัวอย่างเช่น ความเป็นไปได้ของการนำแนวทางดังกล่าวไปใช้ในภูมิภาคมอสโกที่ใหญ่ที่สุดของสหพันธรัฐรัสเซียนั้นพิจารณาเมื่อใช้แหล่งความร้อนเหลือทิ้งสองแหล่ง:

♦ ความร้อนจากแหล่งน้ำธรรมชาติ: แม่น้ำมอสโก ทะเลสาบ อ่างเก็บน้ำและอื่น ๆ ที่มีอุณหภูมิเฉลี่ยประมาณ 10 °C;

♦ สูญเสียความร้อนจากน้ำเสียและแหล่งอื่นๆ

♦ สูญเสียความร้อนไปยังหอหล่อเย็น (จากทางออกของกังหันไอน้ำ CHP ในช่วงระยะเวลาการให้ความร้อนในโหมดระบายอากาศที่มีอุณหภูมิไอน้ำที่ทางออก 30-35 °C) มูลค่ารวมของความร้อนนี้อยู่ที่ประมาณ 2.5 พันเมกะวัตต์

ปัจจุบันใช้พลังงานความร้อนประมาณ 5,000 เมกะวัตต์สำหรับความต้องการของระบบจ่ายน้ำร้อนของภูมิภาคมอสโก (ประมาณ 0.5 กิโลวัตต์ต่อคน) ปริมาณความร้อนหลักสำหรับการจ่ายน้ำร้อนมาจาก CHPP ผ่านระบบทำความร้อนแบบอำเภอและดำเนินการที่สถานีทำความร้อนกลางของเครือข่ายระบบทำความร้อนในเมืองมอสโก การให้ความร้อนของน้ำสำหรับการจ่ายน้ำร้อน (ตั้งแต่ ~ 10 ° C ถึง 60 ° C) จะดำเนินการตามกฎใน 2 ตัวแลกเปลี่ยนความร้อน 7 และ 8 ที่เชื่อมต่อแบบอนุกรม (รูปที่ 3) อันดับแรกจากความร้อนของน้ำในเครือข่ายใน ความร้อนกลับหลักแล้วจากความร้อนของน้ำเครือข่ายในหลักความร้อนโดยตรง ในเวลาเดียวกัน ใช้ SG ประมาณ 650-680 tce/ชม. สำหรับความต้องการน้ำร้อน

การดำเนินการตามโครงการสำหรับการขยาย (ซับซ้อน) การใช้แหล่งความร้อนเหลือทิ้งข้างต้นสำหรับการจ่ายน้ำร้อนโดยใช้ระบบ HPP สองตัว (บนฟรีออนและไอน้ำ, รูปที่ 4) ช่วยให้สามารถชดเชยได้เกือบ 100% ประมาณ 5 พัน MW ของความร้อนในช่วงระยะเวลาการให้ความร้อน (ตามลำดับ เพื่อประหยัด GHG จำนวนมาก ให้ลดการปล่อยความร้อนและมลพิษสู่ชั้นบรรยากาศ)

โดยปกติเมื่อมี CHPP ที่ทำงานอยู่ในช่วงเวลาที่ไม่ให้ความร้อน ไม่แนะนำให้ถ่ายเทความร้อนด้วยความช่วยเหลือของ HPIs เนื่องจาก CHPPs เนื่องจากไม่มีภาระความร้อนจึงถูกบังคับให้เปลี่ยนไปใช้โหมดควบแน่นของ การทำงานโดยปล่อยความร้อนจำนวนมากจากเชื้อเพลิงที่เผาไหม้ (มากถึง 50%) เข้าสู่หอทำความเย็น

หน่วยปั๊มความร้อน HPU-1 พร้อมสารทำงานฟรีออน (R142) สามารถให้ความร้อนกับน้ำได้ตั้งแต่ ~10 °C ที่ทางเข้าไปยังเครื่องระเหย 10 ถึง ~ 35 °C ที่ทางออก โดยใช้น้ำที่มีอุณหภูมิประมาณ 10 °C เป็น แหล่งธรรมชาติอุณหภูมิต่ำที่มี kHP ประมาณ 5.5 เมื่อใช้เป็นแหล่งน้ำเสียที่มีอุณหภูมิต่ำจากสถานประกอบการอุตสาหกรรมหรือที่อยู่อาศัยและบริการชุมชน อุณหภูมิของน้ำอาจเกิน 10 °C ได้อย่างมีนัยสำคัญ ในกรณีนี้ kHNU จะสูงขึ้นไปอีก

ดังนั้น HPI-1 สามารถให้ความร้อนด้วยน้ำ 50% สำหรับการจ่ายน้ำร้อนด้วยมูลค่าความร้อนที่ถ่ายเททั้งหมดสูงถึง 2.5 พัน MW และอีกมากมายด้วยประสิทธิภาพที่ยอดเยี่ยม ขนาดของการนำ HPI ไปใช้นั้นค่อนข้างใหญ่ ด้วยผลผลิตความร้อนเฉลี่ยต่อหน่วยของ HPI-1 ที่ประมาณ 10 เมกะวัตต์ จึงจำเป็นต้องมี HPI ดังกล่าวประมาณ 250 หน่วยสำหรับภูมิภาคมอสโกเพียงแห่งเดียว

เมื่อ kHP=5.5 จำเป็นต้องใช้พลังงานไฟฟ้าหรือพลังงานกลประมาณ 450 MW ในการขับเคลื่อนของคอมเพรสเซอร์ HPP (เมื่อขับเคลื่อน เช่น จาก GTP) ควรติดตั้งชุดปั๊มความร้อน HPU-1 ใกล้กับผู้ใช้ความร้อน (ที่สถานีทำความร้อนกลางของเครือข่ายระบบทำความร้อนในเมือง)

หน่วยปั๊มความร้อน HPP-2 ได้รับการติดตั้งที่ CHPP (รูปที่ 4) และใช้ในช่วงระยะเวลาการให้ความร้อนเป็นแหล่งไอน้ำอุณหภูมิต่ำจากทางออกของกังหันความร้อน (ช่องระบายอากาศของส่วนแรงดันต่ำ (LPP) ). ในเวลาเดียวกัน ดังที่กล่าวไว้ข้างต้น ไอน้ำที่มีอุณหภูมิ 30–35 °C เข้าสู่คอมเพรสเซอร์โดยตรง 13 (รูปที่ 2 ไม่มีเครื่องระเหย HPI) และหลังจากอัดแล้ว จะถูกป้อนเข้าไปในคอนเดนเซอร์ 14 ของ HPI- 2 หน่วยปั๊มความร้อนเพื่อให้ความร้อนน้ำจากสายเครือข่ายกลับ

โครงสร้างสามารถนำไอน้ำมาใช้ได้เช่นผ่านวาล์วนิรภัย (ปล่อย) ของ LPP ของกังหันไอน้ำ 1 คอมเพรสเซอร์ 13 สร้างแรงดันที่ต่ำกว่าอย่างมีนัยสำคัญที่ทางออกของ LPP ของกังหัน 1 (มากกว่าในกรณีที่ไม่มี HPI- 2) ลดอุณหภูมิการควบแน่น (ความอิ่มตัว) ของไอน้ำตามลำดับและ "ปิด" คอนเดนเซอร์กังหัน 3

ในรูป รูปที่ 4 แผนผังแสดงกรณีที่ความร้อนเหลือทิ้งถูกถ่ายเทโดยคอนเดนเซอร์ 14 ไปยังตัวทำความร้อนย้อนกลับไปยัง PSV 4 ในกรณีนี้ แม้ว่าความร้อนทิ้งทั้งหมดจะถูกถ่ายเทจากเอาต์พุตของ LPR ของเทอร์ไบน์ไปยังตัวทำความร้อนกลับ อุณหภูมิด้านหน้า PSV จะเพิ่มขึ้นเพียง ~5 °C ขณะที่เพิ่มแรงดันไอน้ำร้อนจากการสกัดกังหันที่ PSV 4 เล็กน้อย

จะมีประสิทธิภาพมากกว่าในการถ่ายเทความร้อนเหลือทิ้งบางส่วนเป็นอันดับแรกเพื่อให้ความร้อนแก่น้ำในเครือข่ายการแต่งหน้า (แทนที่จะให้ความร้อนแบบดั้งเดิมด้วยไอน้ำแบบคัดเลือกจากกังหัน) จากนั้นจึงถ่ายเทความร้อนเหลือทิ้งไปยังท่อความร้อนที่ส่งกลับ (สิ่งนี้ ตัวเลือกไม่แสดงในรูปที่ 4)

ผลลัพธ์ที่สำคัญของแนวทางที่เสนอคือความเป็นไปได้ที่จะแทนที่ได้มากถึง 2.5 พัน MWe (ถ่ายโอนโดยหม้อต้มน้ำร้อนสูงสุด) ด้วยความช่วยเหลือของ HPP-2 ที่ติดตั้งเพิ่มเติมที่ CHPP ในช่วงระยะเวลาการให้ความร้อนที่เกี่ยวข้องกับภูมิภาคมอสโก ด้วยหน่วยพลังงานของ HPI-2 ที่ทำงานบนไอน้ำเท่ากับ ~6-7 เมกะวัตต์ 350-400 หน่วยดังกล่าวจะต้องถ่ายโอนความร้อนในปริมาณดังกล่าว

เมื่อพิจารณาจากความแตกต่างของอุณหภูมิในระดับต่ำมากใน HPI (~15 °C ระหว่างแหล่งอุณหภูมิต่ำกับอุณหภูมิของน้ำในเครือข่ายที่ส่งคืน) ปัจจัยการแปลงของ HPI-2 จะสูงกว่า (kHPI ~ 6.8) มากกว่าสำหรับ HPI -1. ในเวลาเดียวกัน ในการถ่ายโอน ~2.5 พัน MWe ไปยังเครือข่ายทำความร้อน จำเป็นต้องใช้พลังงานไฟฟ้า (หรือเครื่องกล) ทั้งหมดประมาณ 370 MW

ดังนั้นโดยรวมด้วยความช่วยเหลือของ HPI-1 และ HPI-2 ในช่วงฤดูร้อนความร้อนสูงถึง 5,000 MW สามารถถ่ายโอนไปยังความต้องการของแหล่งน้ำร้อนของภูมิภาคมอสโก ในตาราง. 2 ให้การประเมินทางเทคนิคและเศรษฐกิจของข้อเสนอดังกล่าว

ในฐานะไดรฟ์สำหรับ HPI-1 และ HPI-2 สามารถใช้ไดรฟ์เทอร์ไบน์ก๊าซที่มี N=1 -5 MW และประสิทธิภาพ 40-42% (เนื่องจากการนำความร้อนกลับคืนของก๊าซไอเสีย) ในกรณีที่มีปัญหาเกี่ยวกับการติดตั้งเครือข่ายระบบทำความร้อนในเมือง GTP ที่สถานีทำความร้อนส่วนกลาง (อุปกรณ์จ่าย SG เพิ่มเติม ฯลฯ) สามารถใช้ไดรฟ์ไฟฟ้าเป็นไดรฟ์สำหรับ HPI-1 ได้

มีการประเมินทางเทคนิคและเศรษฐกิจสำหรับอัตราภาษีเชื้อเพลิงและความร้อนเมื่อต้นปี 2548 ผลลัพธ์ที่สำคัญของการวิเคราะห์คือต้นทุนความร้อนที่เกิดจาก HPP ที่ต่ำกว่าอย่างมีนัยสำคัญ (สำหรับ HPI-1 - 193 rubles/Gcal และ HPI-2 - 168 rubles /Gcal ) เมื่อเปรียบเทียบกับวิธีการดั้งเดิมของการสร้างที่ CHPP ของ OAO Mosenergo

เป็นที่ทราบกันดีอยู่แล้วว่าในปัจจุบันต้นทุนของเซลล์เชื้อเพลิงคำนวณตามสิ่งที่เรียกว่า " วิธีทางกายภาพการแยกเชื้อเพลิงสำหรับการผลิตไฟฟ้าและความร้อน” อย่างมีนัยสำคัญเกิน 400 รูเบิล/Gcal (อัตราค่าความร้อน) ด้วยวิธีการนี้ การผลิตความร้อนแม้แต่ในโรงไฟฟ้าพลังความร้อนที่ทันสมัยที่สุดก็ไม่มีประโยชน์ และความสามารถในการทำกำไรนี้ชดเชยด้วยอัตราค่าไฟฟ้าที่เพิ่มขึ้น

ในความเห็นของเรา วิธีการแยกต้นทุนเชื้อเพลิงนี้ไม่ถูกต้อง แต่ยังคงใช้อยู่ เช่น ใน OAO Mosenergo

ในความเห็นของเราให้ไว้ในตาราง 2 ระยะเวลาคืนทุนของ HPP (จาก 4.1 ถึง 4.7 ปี) มีขนาดไม่ใหญ่ เมื่อคำนวณ ดำเนินการ HPP 5,000 ชั่วโมงต่อปี ในความเป็นจริงใน ช่วงฤดูร้อนในบางครั้ง หน่วยเหล่านี้สามารถทำงานได้ ตามตัวอย่างของประเทศตะวันตกขั้นสูง ในโหมดทำความเย็นแบบรวมศูนย์ ในขณะที่ปรับปรุงประสิทธิภาพทางเทคนิคและเศรษฐกิจประจำปีโดยเฉลี่ยอย่างมีนัยสำคัญ

จากตาราง. จากตารางที่ 2 จะเห็นได้ว่า CIT สำหรับ HPP เหล่านี้แตกต่างกันไปในช่วงตั้งแต่ ~2.6 ถึง ~3.1 ซึ่งมากกว่าค่า CIT สำหรับ CHP ทั่วไปถึง 3 เท่า โดยคำนึงถึงการลดสัดส่วนของความร้อนและการปล่อยก๊าซที่เป็นอันตรายสู่ชั้นบรรยากาศ ค่าใช้จ่ายในการสูบน้ำและการสูญเสียน้ำหมุนเวียนในระบบ: คอนเดนเซอร์กังหัน - หอทำความเย็น การเพิ่มสุญญากาศที่ทางออกของกังหัน LPP (เมื่อ HPI-2 กำลังดำเนินการอยู่) และด้วยเหตุนี้ พลังที่สร้างขึ้น ข้อได้เปรียบทางเทคนิคและเศรษฐกิจ ข้อเสนอนี้จะมีความสำคัญยิ่งขึ้นไปอีก

ตารางที่ 2 การศึกษาความเป็นไปได้ของการใช้ HPP กับไอน้ำและฟรีออน

ชื่อ มิติ ประเภท HP
TNU-1 บนฟรีออน TNU-2 บนไอน้ำ
1 อุณหภูมิแหล่งอุณหภูมิต่ำ °C 10 35
2 อุณหภูมิต่อผู้บริโภค °C 35 45-55
3 คิว-กนู (เดี่ยว) MW 10 6-7
4 Q HPU สำหรับการจ่ายน้ำร้อน, การนำความร้อนกลับมาใช้ใหม่ของ Q จากเอาต์พุตของ GGU* Q ทั้งหมดไปยังผู้บริโภค MW 2500 -450 -2950 2500 -370 -2870
5 kTNU - 5,5 6,8
6 กำลัง GTE ทั้งหมดสำหรับไดรฟ์คอมเพรสเซอร์ MW -455 -368
7 ปริมาณการใช้ GHG ทั้งหมดที่เครื่องยนต์กังหันก๊าซของคอมเพรสเซอร์ τ c.e./h 140 113
8 เชื้อเพลิง Q บน GTE MW 1138 920
9 วาฬ - 2,59 3,12
10 ต้นทุนเฉพาะของการสร้าง HPI ด้วยไดรฟ์ GTE US$/kW พัน US$/Gcal 220 256 200 232
11 ต้นทุนทุนทั้งหมด ล้านเหรียญสหรัฐ -649 -574
12 จำนวนชั่วโมงการใช้งานต่อปี ชม 5000
13 ค่าใช้จ่ายต่อปี รวมถึง: - เชื้อเพลิง (1230 RUB/tce); - ค่าเสื่อมราคา (6.7% ต่อปี) - อื่นๆ (บริการ บิลค่าจ้าง ฯลฯ) mln ถู 2450 862 1218 370 2070 695 1075 300
14 ค่าใช้จ่ายของปริมาณพลังงานความร้อนที่สร้างขึ้นทั้งหมดต่อปี (400 rubles/Gcal หรือ 344 rubles/MWh) mln ถู 5070 4936
15 ค่าน้ำมัน RUB/Gcal 193 168
16 กำไรต่อปี mln ถู ล้านเหรียญสหรัฐ 2620 -94 2866 -102
17 ระยะเวลาคืนทุน (พร้อมคืนค่าเสื่อมราคา) ในปี -4,7 -4,1

* - ความร้อนเพิ่มเติมในกระบวนการใช้ความร้อนของก๊าซไอเสียจากหน่วยขับเคลื่อนกังหันก๊าซสามารถใช้เพื่อแทนที่ความร้อนบางส่วนจากโรงงาน CHP ไปยังแหล่งจ่ายความร้อนแบบอำเภอ

โดยคำนึงถึงการเพิ่มขึ้นของราคาพลังงานอย่างหลีกเลี่ยงไม่ได้จากการเข้าร่วม WTO ของรัสเซีย ข้อจำกัดในการใช้ GHG สำหรับพลังงาน และความจำเป็นในการแนะนำเทคโนโลยีประหยัดพลังงานที่มีประสิทธิภาพสูงและเป็นมิตรกับสิ่งแวดล้อมอย่างกว้างขวาง ประโยชน์ทางเทคนิคและเศรษฐกิจของการแนะนำ HPP จะเติบโตอย่างต่อเนื่อง

วรรณกรรม

1. ปั๊มความร้อนรุ่นใหม่สำหรับวัตถุประสงค์ในการจ่ายความร้อนและประสิทธิภาพการใช้งานในระบบเศรษฐกิจตลาด // วัสดุของการประชุมส่วนย่อยของการทำความร้อนและความร้อนในเขตของ NTS ของ RAO UES ของรัสเซีย, มอสโก, 15 กันยายน 2004

2. Andryushenko A.I. พื้นฐานของอุณหพลศาสตร์ของวัฏจักรของโรงไฟฟ้าพลังความร้อน - ม.: สูงกว่า. โรงเรียน 2528

3. Belyaev V.E. , Kosoy A.S. , Sokolov Yu.N. วิธีการรับพลังงานความร้อน สิทธิบัตรของสหพันธรัฐรัสเซียหมายเลข 2224118 ลงวันที่ 5 กรกฎาคม 2545 FSUE MMPP Salyut

4. Sereda S.O. , Gel'medov F.Sh. , Sachkova N.G. ค่าประมาณการเปลี่ยนแปลงในลักษณะของหลายขั้นตอน

คอมเพรสเซอร์ภายใต้อิทธิพลของการระเหยของน้ำในส่วนที่ไหล MMPP "Salyut"-CIAM // วิศวกรรมพลังงานความร้อน 2547 หมายเลข 11

5. Eliseev Yu.S. , Belyaev V.V. , Kosoy A.S. , Sokolov Yu.N. ปัญหาในการสร้างโรงงานอัดไอที่มีประสิทธิภาพสูงของคนรุ่นใหม่ พิมพ์ล่วงหน้า FSUE “MMPP “Salyut” พฤษภาคม 2548

6. Devyanin D.N. , Pishchikov S.I. , Sokolov Yu.N. การพัฒนาและทดสอบที่ CHPP-28 ของ OAO Mosenergo ของห้องปฏิบัติการย่อมาจากการอนุมัติแผนงานสำหรับการใช้ปั๊มความร้อนในภาคพลังงาน // Heat Supply News 2000 ลำดับที่ 1 ส. 33-36

7. Protsenko V. P. ในแนวคิดใหม่ของการจ่ายความร้อนให้กับ RAO UES ของรัสเซีย // Energo-press หมายเลข 11-12, 1999

8. V. P. Frolov, S. N. Shcherbakov, M. V. Frolov และ A. Ya. การวิเคราะห์ประสิทธิภาพการใช้ปั๊มความร้อนในระบบจ่ายน้ำร้อนแบบรวมศูนย์ // การประหยัดพลังงาน 2547 หมายเลข 2

ความแตกต่างที่สำคัญระหว่างปั๊มความร้อนและแหล่งความร้อนอื่นๆ ทั้งหมดคือความสามารถพิเศษในการใช้พลังงานสิ่งแวดล้อมที่อุณหภูมิต่ำหมุนเวียนเพื่อให้ความร้อนและการทำน้ำร้อน ประมาณ 80% ของกำลังขับ ปั๊มความร้อน "สูบฉีด" ออกจากสิ่งแวดล้อมจริง ๆ โดยใช้พลังงานกระจัดกระจายของดวงอาทิตย์

ปั๊มความร้อนทำงานอย่างไร

ตู้เย็นที่ทุกคนรู้จัก ถ่ายเทความร้อนจากห้องภายในไปยังหม้อน้ำ และเราใช้ความเย็นภายในตู้เย็น ปั๊มความร้อนเป็นตู้เย็น "ย้อนกลับ" มันนำความร้อนที่กระจายจากสิ่งแวดล้อมมาสู่บ้านเรา

สารหล่อเย็น (ซึ่งก็คือน้ำหรือน้ำเกลือ) ซึ่งถ่ายจากสิ่งแวดล้อมไม่กี่องศา ผ่านตัวแลกเปลี่ยนความร้อนของปั๊มความร้อนที่เรียกว่าเครื่องระเหย และปล่อยความร้อนที่เก็บจากสิ่งแวดล้อมไปยังวงจรภายในของปั๊มความร้อน วงจรภายในของปั๊มความร้อนเต็มไปด้วยสารทำความเย็นซึ่งมีจุดเดือดต่ำมากผ่านเครื่องระเหยเปลี่ยนจากสถานะของเหลวเป็นสถานะก๊าซ สิ่งนี้เกิดขึ้นที่ความดันต่ำและอุณหภูมิ 5 ° C จากเครื่องระเหยสารทำความเย็นที่เป็นก๊าซจะเข้าสู่คอมเพรสเซอร์ซึ่งจะถูกบีบอัดให้มีความดันสูงและอุณหภูมิสูง ถัดไป ก๊าซร้อนจะเข้าสู่เครื่องแลกเปลี่ยนความร้อนตัวที่สอง - คอนเดนเซอร์ซึ่งแลกเปลี่ยนความร้อนระหว่างก๊าซร้อนกับสารหล่อเย็นจากท่อส่งกลับของระบบทำความร้อนในโรงเลี้ยง สารทำความเย็นปล่อยความร้อนไปยังระบบทำความร้อน เย็นตัวลงและเปลี่ยนเป็นสถานะของเหลวอีกครั้ง และสารหล่อเย็นที่ให้ความร้อนของระบบทำความร้อนจะเข้าสู่อุปกรณ์ทำความร้อน

ข้อดีของปั๊มความร้อน

  • - เศรษฐกิจ. การใช้พลังงานต่ำทำได้โดย ประสิทธิภาพสูง(จาก 300% ถึง 800%) และช่วยให้คุณได้รับพลังงานความร้อน 3-8 กิโลวัตต์ต่อพลังงานที่ใช้ไปจริง 1 กิโลวัตต์ หรือพลังงานทำความเย็นเอาต์พุตสูงสุด 2.5 กิโลวัตต์
  • - เป็นมิตรต่อสิ่งแวดล้อม วิธีการทำความร้อนและเครื่องปรับอากาศที่เป็นมิตรกับสิ่งแวดล้อมสำหรับทั้งสิ่งแวดล้อมและผู้คนในห้อง การใช้ปั๊มความร้อนเป็นการประหยัดทรัพยากรพลังงานที่ไม่หมุนเวียนและการรักษาสิ่งแวดล้อม รวมถึงการลดการปล่อย CO2 สู่บรรยากาศ ปั๊มความร้อนของโรงงานทำวัฏจักรอุณหพลศาสตร์แบบย้อนกลับบนสารทำงานที่มีจุดเดือดต่ำ ดึงพลังงานทดแทนที่มีศักยภาพต่ำ พลังงานความร้อนจากสิ่งแวดล้อม เพิ่มศักยภาพสู่ระดับที่ต้องการสำหรับการจ่ายความร้อน โดยใช้พลังงานปฐมภูมิน้อยกว่าการเผาไหม้เชื้อเพลิงโดยตรง 1.2-2.3 เท่า
  • - ความปลอดภัย. ไม่มีเปลวไฟ ไม่มีเขม่า ไม่มีไอเสีย ไม่มีกลิ่นน้ำมันดีเซล ไม่มีแก๊สรั่ว ไม่มีน้ำมันเชื้อเพลิงหกเลอะเทอะ ไม่มีสถานที่จัดเก็บเชื้อเพลิงที่เป็นอันตรายจากอัคคีภัย
  • - ความน่าเชื่อถือ ชิ้นส่วนที่เคลื่อนไหวขั้นต่ำ ทรัพยากรที่สูงของงาน ความเป็นอิสระจากการจัดหาวัสดุเตาเผาและคุณภาพ การป้องกันไฟดับ แทบไม่ต้องบำรุงรักษา อายุการใช้งานของปั๊มความร้อนคือ 15-25 ปี
  • - ปลอบโยน. ปั๊มความร้อนทำงานอย่างเงียบ ๆ (ไม่ดังไปกว่าตู้เย็น) และระบบอัตโนมัติตามสภาพอากาศและระบบควบคุมสภาพอากาศแบบหลายโซนช่วยสร้างความสะดวกสบายและความผาสุกในสถานที่
  • - มีความยืดหยุ่น ปั๊มความร้อนเข้ากันได้กับทุก ระบบหมุนเวียนเครื่องทำความร้อนและการออกแบบที่ทันสมัยช่วยให้คุณติดตั้งในห้องใดก็ได้
  • - ความคล่องตัวตามประเภทของพลังงานที่ใช้ (ไฟฟ้าหรือความร้อน)
  • - ช่วงกำลังกว้าง (จากเศษส่วนถึงหมื่นกิโลวัตต์)

การใช้งานปั๊มความร้อน

ขอบเขตของปั๊มความร้อนนั้นไร้ขอบเขตอย่างแท้จริง ข้อดีทั้งหมดข้างต้นของอุปกรณ์นี้ทำให้ง่ายต่อการแก้ปัญหาการจ่ายความร้อนไปยังอาคารในเมืองและวัตถุที่อยู่ห่างไกลจากการสื่อสาร ไม่ว่าจะเป็นฟาร์ม ชุมชนกระท่อม หรือปั๊มน้ำมันบนทางหลวง โดยทั่วไป ปั๊มความร้อนเป็นแบบสากลและใช้งานได้ทั้งในงานโยธาและอุตสาหกรรม และในการก่อสร้างส่วนตัว

ปัจจุบัน ฮีทปั๊มมีการใช้กันอย่างแพร่หลายทั่วโลก จำนวนปั๊มความร้อนที่ทำงานในสหรัฐอเมริกา ญี่ปุ่น และยุโรปอยู่ในหลายสิบล้าน

การผลิตฮีทปั๊มในแต่ละประเทศมุ่งเน้นที่การตอบสนองความต้องการของตลาดภายในประเทศเป็นหลัก ในสหรัฐอเมริกาและญี่ปุ่น หน่วยปั๊มความร้อนจากอากาศสู่อากาศ (HPU) สำหรับทำความร้อนและเครื่องปรับอากาศในฤดูร้อนได้รับการใช้งานมากที่สุด ในยุโรป - HPI ของคลาส "น้ำสู่น้ำ" และ "น้ำสู่อากาศ" ในสหรัฐอเมริกา มีบริษัทมากกว่าหกสิบแห่งที่ทำการวิจัยและผลิตปั๊มความร้อน ในญี่ปุ่น การผลิต HPP ต่อปีเกิน 500,000 หน่วย ในเยอรมนี มีการติดตั้งมากกว่า 5,000 ครั้งต่อปี ในประเทศแถบสแกนดิเนเวีย ส่วนใหญ่จะใช้ HPP ขนาดใหญ่ ในสวีเดน ภายในปี 2000 สถานีปั๊มความร้อน (HPS) มากกว่า 110,000 แห่งได้เปิดดำเนินการ โดย 100 แห่งมีกำลังการผลิตประมาณ 100 MW และมากกว่านั้น HPS ที่ทรงพลังที่สุด (320 MW) ดำเนินการในสตอกโฮล์ม

ความนิยมของปั๊มความร้อนใน ยุโรปตะวันตก, สหรัฐอเมริกาและประเทศต่างๆ เอเชียตะวันออกเฉียงใต้ส่วนใหญ่เกิดจากสภาพภูมิอากาศที่ไม่รุนแรงในภูมิภาคเหล่านี้ (โดยมีอุณหภูมิเฉลี่ยเป็นบวกในฤดูหนาว) ราคาสูงสำหรับเชื้อเพลิงและความพร้อมของเป้าหมาย โครงการของรัฐบาลสนับสนุนพื้นที่นี้ของตลาดภูมิอากาศ

สถานการณ์ของปั๊มความร้อนในประเทศของเรามีความแตกต่างกันโดยพื้นฐาน และมีเหตุผลสำหรับเรื่องนั้น ประการแรก คุณสมบัติ ภูมิอากาศของรัสเซียด้วยอุณหภูมิต่ำในฤดูหนาวทำให้ความต้องการพิเศษเกี่ยวกับพารามิเตอร์ของปั๊มความร้อนและเงื่อนไขการติดตั้ง โดยเฉพาะอย่างยิ่ง ด้วยการเพิ่มกำลังของปั๊มความร้อน ปัญหาของการกำจัดความร้อนจึงเกิดขึ้น เนื่องจากการถ่ายเทความร้อนของตัวกลาง (ตัวน้ำ ดิน อากาศ) มีจำกัดและค่อนข้างเล็ก

นอกจากนี้ ราคาก๊าซในรัสเซียต่ำเกินจริง ดังนั้นจึงไม่จำเป็นต้องพูดถึงประโยชน์เชิงเศรษฐกิจที่จับต้องได้จากการใช้อุปกรณ์ประเภทนี้ โดยเฉพาะอย่างยิ่งในกรณีที่ไม่มีวัฒนธรรมการบริโภคและการประหยัดพลังงานไฟฟ้า เราไม่ได้รับการสนับสนุนจากรัฐสำหรับโครงการทดแทนพลังงาน มี และไม่มีผู้ผลิตฮีทปั๊มในประเทศ

ในเวลาเดียวกันความต้องการของรัสเซียสำหรับอุปกรณ์ดังกล่าวมีขนาดใหญ่และ "สาย" ของปั๊มความร้อนทั้งหมดที่มีความจุ 5, 10, 25, 100 และ 1,000 กิโลวัตต์ดูเหมือนจะเป็นที่ต้องการ ดังนั้นในรัสเซียตอนกลางเพื่อให้ความร้อนแก่บ้านที่มีพื้นที่ 100 ตร.ม. จำเป็นต้องมีพลังงานความร้อน 5-10 กิโลวัตต์และปั๊มที่มีกำลังความร้อน 100 กิโลวัตต์ก็เพียงพอที่จะให้ความร้อนตามปกติ โรงเรียน โรงพยาบาล และ อาคารบริหาร. ปั๊มความร้อนที่มีความจุ 1,000 กิโลวัตต์สะดวกสำหรับงานกู้คืนของเสียจากความร้อนโดยใช้น้ำพุร้อน ผู้เชี่ยวชาญระบุว่าค่าใช้จ่ายในการติดตั้งปั๊มความร้อนในรัสเซียอยู่ที่ประมาณ 300 ดอลลาร์สหรัฐต่อพลังงานความร้อน 1 กิโลวัตต์ โดยมีระยะเวลาคืนทุนของอุปกรณ์ตั้งแต่สองถึงสี่ปี ซึ่งส่วนใหญ่ขึ้นอยู่กับราคาเชื้อเพลิงและสภาพภูมิอากาศของ ภูมิภาคเฉพาะ

การทดสอบเดินเครื่องปั๊มความร้อนประมาณ 100,000 ตัวที่มีเอาต์พุตความร้อนรวม 2 GW จะทำให้สามารถจ่ายความร้อนให้กับผู้คน 10 ล้านคนโดยมีอายุการใช้งานเฉลี่ยของปั๊มความร้อน 15 ปี ปริมาณการขายอุปกรณ์ดังกล่าวอาจมากกว่าครึ่งพันล้านดอลลาร์ต่อปี

ปั๊มความร้อนเป็นระบบทำความร้อนทั้งหมดที่สามารถให้ความร้อนแก่บ้านส่วนตัวได้ไม่เลวร้ายไปกว่าการทำความร้อนแบบเดิมที่เราคุ้นเคย เป็นที่ชัดเจนว่าในการทำให้ปั๊มทำงาน คุณต้องติดตั้งให้ถูกต้องก่อน

ปั๊มความร้อนทั้งหมดขึ้นอยู่กับแหล่งความร้อนตามธรรมชาติ แบ่งออกเป็นสามประเภทหลัก: น้ำบาดาล น้ำ-น้ำ อากาศ-น้ำ

การติดตั้งแต่ละประเภทมีความแตกต่างและคุณสมบัติของตัวเอง - เพียงพอ โครงสร้างที่ซับซ้อนและการติดตั้งเป็นกระบวนการที่ลำบากซึ่งต้องได้รับการติดต่อด้วยความรับผิดชอบอย่างสูง ในบทความเราจะพิจารณาสิ่งที่คุณต้องใส่ใจเมื่อติดตั้งปั๊มความร้อนประเภทต่างๆ

กฎการติดตั้งปั๊มความร้อนจากพื้นดินสู่น้ำ

แผนผังการทำงานของปั๊มของระบบ "ดิน - น้ำ" (คลิกเพื่อดูภาพขยาย)

พื้นดินเป็นแหล่งความร้อน เมื่อลงไปที่พื้น 5 เมตร คุณจะเห็นว่าอุณหภูมิที่นั่นเกือบเท่ากันตลอดทั้งปี (ในภูมิภาคส่วนใหญ่ของรัสเซียคือ 8-10 °C)

ด้วยเหตุนี้การทำความร้อนจะมีประสิทธิภาพสูง ระบบทำงานดังนี้: เครื่องแลกเปลี่ยนความร้อนภาคพื้นดินที่ตั้งอยู่บนพื้นดินรวบรวมพลังงานซึ่งสะสมอยู่ในน้ำหล่อเย็นหลังจากนั้นจะเคลื่อนไปที่ปั๊มความร้อนและส่งคืน

แผนผังของปั๊มของระบบ "น้ำ - น้ำ" (คลิกเพื่อดูภาพขยาย)

พลังงานส่วนหนึ่งที่ปล่อยออกมาจากดวงอาทิตย์ยังคงอยู่ใต้น้ำ โดยเฉพาะในเสาน้ำ วางท่อพิเศษที่มีน้ำหนักลงที่ด้านล่างของอ่างเก็บน้ำหรือในดินด้านล่าง

อุณหภูมิสูงของสารหล่อเย็นในฤดูหนาวให้ประสิทธิภาพและการถ่ายเทความร้อนที่มากขึ้นแต่อนิจจามันไม่เหมาะสำหรับการติดตั้งในบ้านส่วนตัว

มากหรือน้อยสำหรับ บ้านหลังเล็กเหมาะสมกับตัวอีกด้วย เครื่องสูบน้ำแบบพิเศษจะสูบน้ำจากบ่อน้ำไปยังเครื่องระเหย หลังจากนั้นน้ำจะถูกระบายไปยังอีกบ่อหนึ่งที่อยู่ด้านล่างของแม่น้ำ และไหลลงสู่ชั้นใต้ดินลึก 15 เมตร

คำแนะนำจากผู้เชี่ยวชาญ:ก่อนใช้ระบบน้ำ-น้ำ จำเป็นต้องป้องกันไม่ให้เศษขยะเข้าไปในเครื่องระเหยและป้องกันสนิม รวมทั้งติดตั้งตัวกรอง หากน้ำอุดมไปด้วยเกลือก็จำเป็นต้องมีตัวแลกเปลี่ยนความร้อนระดับกลางที่มีการหมุนเวียนอยู่ในนั้น น้ำสะอาดหรือสารป้องกันการแข็งตัว

อย่างไรก็ตาม หากน้ำจากบ่อน้ำระบายได้ไม่ดี ปั๊มอาจเกิดน้ำท่วมเล็กน้อยและน้ำท่วมได้

กฎการติดตั้งปั๊มความร้อนแบบอากาศสู่น้ำ

แผนภาพการทำงานของปั๊มลมสู่น้ำ (คลิกเพื่อดูภาพขยาย)

เป็นที่นิยมน้อยกว่าน้ำบาดาลเนื่องจากในฤดูหนาวไม่สามารถเอาความร้อนออกจากอากาศได้เพียงพอ -20 °C เป็นขีดจำกัดของการทำงานของปั๊มความร้อน หลังจากนั้นเครื่องกำเนิดความร้อนเพิ่มเติมจะทำงาน

รูปแบบการติดตั้งพื้นฐาน:

  1. โครงสร้างแบบโมโนบล็อกถูกติดตั้งภายในอาคาร อุปกรณ์ทั้งหมดถูกประกอบเข้าด้วยกันในตลับเดียวท่ออากาศที่ยืดหยุ่นได้เชื่อมต่อกลไกเข้ากับถนน นอกจากนี้ยังมีการสร้างโมโนบล็อกภายนอก
  2. เทคโนโลยี Split ประกอบด้วยสองช่วงตึกที่เชื่อมต่อกัน
  3. แห่งหนึ่งตั้งอยู่ริมถนน อีกแห่งหนึ่งอยู่ในอาคาร ในอันแรกมีการติดตั้งพัดลมพร้อมเครื่องระเหยและในอันที่สอง - ระบบอัตโนมัติและคอนเดนเซอร์ สามารถติดตั้งคอมเพรสเซอร์ได้ทั้งในร่มและกลางแจ้ง

รับทราบ:เมื่อเลือกปั๊มความร้อนจากแหล่งอากาศ โปรดจำไว้ว่าเมื่อมันเย็นลง กำลังจะสูญเสียไปเกือบครึ่งหนึ่ง

ในปั๊มความร้อนประเภทนี้ มีการแนะนำฟังก์ชันที่ช่วยให้คุณสามารถรวบรวมความร้อนจากห้อง การระบายอากาศ และก๊าซไอเสีย ด้วยเหตุนี้จึงทำให้ห้องร้อนและทำให้น้ำร้อนไหลได้

เมื่อซื้อปั๊มความร้อน คุณต้องให้ความสำคัญกับความต้องการเฉพาะของบ้านคุณ

ตามหลักการแล้ว คุณจำเป็นต้องรู้การสูญเสียความร้อนของบ้านและสภาพอากาศของที่อยู่อาศัย ข้อมูลเหล่านี้มีความสำคัญในการเลือกกำลังและรุ่นของปั๊มความร้อนที่เหมาะสม

แต่คุณต้องจำไว้ว่าเมื่อเลือกปั๊มความร้อนแล้ว คุณต้องเลือกส่วนประกอบทั้งหมดของระบบทำความร้อนที่ปั๊มความร้อนทำงานอย่างถูกต้องด้วย

เป็นไปไม่ได้ที่จะหาปั๊มความร้อนแบบสากล เนื่องจากระบบทำความร้อนแต่ละระบบมีเอกลักษณ์เฉพาะตัว
อย่างไรก็ตาม ระบบทำความร้อนทั้งหมดที่มีอุปกรณ์นี้มีเกณฑ์ทั่วไปที่ส่งผลต่อรูปแบบการเชื่อมต่อปั๊มความร้อน:

  • การปรากฏตัวของแหล่งความร้อนเพิ่มเติม (หม้อไอน้ำร้อน แบตเตอรี่พลังงานแสงอาทิตย์, อบ);
  • การปรากฏตัวของวงจรน้ำ (พื้นอุ่น, ชุดคอยล์พัดลม, หม้อน้ำ);
  • ความจำเป็นในการจัดหาน้ำร้อน
  • การมีเครื่องปรับอากาศ
  • การมีอยู่ของระบบระบายอากาศ
  • ประเภทของปั๊มความร้อน

หากคุณคำนึงถึงความแตกต่างเหล่านี้และความต้องการส่วนบุคคลของคุณ คุณสามารถสร้าง ทางเลือกที่เหมาะสมและเป็นเจ้าของระบบทำความร้อนที่เชื่อถือได้ ทนทาน และประหยัด

ดูวิดีโอซึ่งแสดงขั้นตอนการติดตั้งปั๊มความร้อนทั้งหมด:

แหล่งความร้อนในรัสเซียซึ่งมีฤดูหนาวที่ยาวนานและค่อนข้างรุนแรง ต้องใช้ต้นทุนเชื้อเพลิงที่สูงมาก ซึ่งสูงกว่าค่าไฟฟ้าเกือบ 2 เท่า ข้อเสียเปรียบหลักของแหล่งความร้อนแบบดั้งเดิมคือพลังงานต่ำประสิทธิภาพทางเศรษฐกิจและสิ่งแวดล้อม นอกจากนี้ อัตราค่าขนส่งที่สูงสำหรับการส่งมอบผู้ให้บริการด้านพลังงานยังทำให้ปัจจัยลบในแหล่งความร้อนแบบดั้งเดิมแย่ลงไปอีก

เกณฑ์มาตรฐานที่บ่งชี้อย่างมากสำหรับการประเมินความเป็นไปได้ของการใช้การติดตั้งปั๊มความร้อนในรัสเซียคือประสบการณ์จากต่างประเทศ มันแตกต่างกันใน ประเทศต่างๆและขึ้นอยู่กับสภาพอากาศและ ลักษณะทางภูมิศาสตร์, ระดับของการพัฒนาเศรษฐกิจ, ความสมดุลของเชื้อเพลิงและพลังงาน, อัตราส่วนของราคาสำหรับเชื้อเพลิงและไฟฟ้าประเภทหลัก, ระบบความร้อนและพลังงานที่ใช้ตามประเพณี ฯลฯ ภายใต้เงื่อนไขที่คล้ายคลึงกันโดยคำนึงถึงสถานะของรัสเซีย เศรษฐกิจ ประสบการณ์จากต่างประเทศ ถือเป็นแนวทางการพัฒนาที่แท้จริงในอนาคต

คุณลักษณะของการจ่ายความร้อนในรัสเซียซึ่งแตกต่างจากประเทศส่วนใหญ่ของโลกคือการกระจายระบบทำความร้อนแบบอำเภออย่างแพร่หลายในเมืองใหญ่

แม้ว่าในช่วงสองสามทศวรรษที่ผ่านมา การผลิตปั๊มความร้อนได้เพิ่มขึ้นอย่างมากทั่วโลก แต่ในประเทศของเรา HPP ยังไม่พบการใช้งานที่กว้างขวาง มีเหตุผลหลายประการที่นี่:

ประเพณีเน้นไปที่การให้ความร้อนในเขต;

อัตราส่วนที่ไม่เอื้ออำนวยระหว่างค่าไฟฟ้าและเชื้อเพลิง

ตามกฎแล้วการผลิต HP จะดำเนินการบนพื้นฐานของเครื่องทำความเย็นที่ใกล้ที่สุดในแง่ของพารามิเตอร์ซึ่งไม่ได้นำไปสู่ ประสิทธิภาพสูงสุดเทนเนสซี;

ในอดีตที่ผ่านมา มีทางยาวไกลจากการออกแบบ HP ไปจนถึงการว่าจ้าง

ในประเทศของเรา ปัญหาการออกแบบของ HP ได้รับการจัดการมาตั้งแต่ปี 1926/27/ ตั้งแต่ปี 1976 HP ได้ทำงานในอุตสาหกรรมที่โรงงานผลิตชา (Samtredia, Georgia) /13/ ที่ Podolsk Chemical and Metallurgical Plant (PCMZ) ตั้งแต่ปี 1987 /24/ ที่โรงงานผลิตนม Sagarejo (จอร์เจีย) ใน ฟาร์มโคนมภูมิภาคมอสโก "Gorki-2" ตั้งแต่ปี 2506

นอกจากอุตสาหกรรมแล้ว HP ยังใช้ใน ห้างสรรพสินค้า(Sukhumi) สำหรับการจ่ายความร้อนและความเย็นในอาคารที่อยู่อาศัย (นิคมบูคูเรียมอลโดวา) ในหอพัก "Druzhba" (ยัลตา) โรงพยาบาลภูมิอากาศ (Gagra) ห้องโถงรีสอร์ทของ Pitsunda

ย้อนกลับไปในทศวรรษที่ 70 การนำความร้อนกลับคืนอย่างมีประสิทธิภาพด้วยความช่วยเหลือของการติดตั้งปั๊มความร้อนได้ดำเนินการที่สถานีพลังงานความร้อนใต้พิภพ Pauzhetskaya ใน Kamchatka TNU ประสบความสำเร็จในการใช้ระบบทดลองการจ่ายความร้อนใต้พิภพสำหรับเขตที่อยู่อาศัยและโรงงานเรือนกระจก Sredne-Parutinsky ใน Kamchatka ในกรณีเหล่านี้ แหล่งความร้อนใต้พิภพ /12/ ถูกใช้เป็นแหล่งพลังงานศักยภาพต่ำ



การใช้และโดยเฉพาะอย่างยิ่งการผลิตปั๊มความร้อนในประเทศของเรากำลังพัฒนาล่าช้ามาก ผู้บุกเบิกด้านการสร้างและการใช้งานปั๊มความร้อนในอดีตสหภาพโซเวียตคือ VNIIholodmash ในปี 2529-2532 VNIIkholodmash ได้พัฒนาปั๊มความร้อนอัดไอจำนวนหนึ่งที่มีเอาต์พุตความร้อนตั้งแต่ 17 กิโลวัตต์เป็น 11.5 เมกะวัตต์ในขนาดน้ำต่อน้ำสิบสองขนาด นอกจากนี้ น้ำทะเลยังเป็นแหล่งความร้อนอุณหภูมิต่ำสำหรับปั๊มความร้อนด้วยปั๊มความร้อน "น้ำ-อากาศ" 300 - 1,000 กิโลวัตต์สำหรับ 45 และ 65 กิโลวัตต์ ปั๊มความร้อนส่วนใหญ่ในซีรีส์นี้ผ่านขั้นตอนการผลิตและทดสอบแล้ว ซึ่งเป็นเครื่องต้นแบบที่โรงงานวิศวกรรมทำความเย็นห้าแห่ง ขนาดมาตรฐานสี่ขนาดคือปั๊มความร้อนที่ผลิตในปริมาณมากโดยให้ความร้อนที่ส่งออก 14; หนึ่งร้อย; 300; 8500 กิโลวัตต์ วางจำหน่ายทั้งหมดจนถึงปี 1992 มี 3,000 หน่วย พลังงานความร้อนของกลุ่มปฏิบัติการของปั๊มความร้อนเหล่านี้อยู่ที่ประมาณ 40 MW /16, 17/

ในช่วงเวลานี้ มีการพัฒนาปั๊มความร้อนพื้นฐานใหม่จำนวนหนึ่ง เช่น การดูดซับ การสลายการสลาย การอัด การทำงานกับบิวเทนและน้ำในฐานะสารทำงาน เป็นต้น

ในอนาคตความต้องการปั๊มความร้อนลดลง เครื่องจักรที่เชี่ยวชาญจำนวนมากและการพัฒนาใหม่ ๆ ไม่มีการอ้างสิทธิ์

อย่างไรก็ตาม ในช่วงไม่กี่ปีที่ผ่านมา รูปภาพเริ่มเปลี่ยนไป มีแรงจูงใจทางเศรษฐกิจที่แท้จริงสำหรับการอนุรักษ์พลังงาน เนื่องจากการเพิ่มขึ้นของราคาพลังงาน ตลอดจนการเปลี่ยนแปลงอัตราค่าไฟฟ้าและ ประเภทต่างๆเชื้อเพลิง. ในหลายกรณี ข้อกำหนดด้านความสะอาดของสิ่งแวดล้อมของระบบจ่ายความร้อนมีความสำคัญต่อสิ่งแวดล้อม โดยเฉพาะอย่างยิ่ง สิ่งนี้ใช้กับบ้านแต่ละหลังชั้นยอด บริษัทเฉพาะทางแห่งใหม่ปรากฏในมอสโก, โนโวซีบีร์สค์, นิจนีนอฟโกรอดและเมืองอื่น ๆ ออกแบบการติดตั้งปั๊มความร้อนและผลิตเฉพาะปั๊มความร้อน ด้วยความพยายามของบริษัทเหล่านี้ กองปั๊มความร้อนที่มีความจุความร้อนรวมประมาณ 50 เมกะวัตต์ได้เริ่มดำเนินการแล้ว



ในระบบเศรษฐกิจการตลาดที่แท้จริงในรัสเซีย ปั๊มความร้อนมีโอกาสที่จะขยายตัวได้อีก และการผลิตปั๊มความร้อนสามารถเทียบได้กับการผลิตเครื่องทำความเย็นในคลาสที่เกี่ยวข้องกัน โอกาสนี้สามารถประเมินได้เมื่อพิจารณาถึงสภาวะของความร้อนและการจ่ายพลังงานในพื้นที่หลักของการติดตั้งปั๊มความร้อน: ภาคที่อยู่อาศัยและชุมชน สถานประกอบการอุตสาหกรรม รีสอร์ทเพื่อสุขภาพและศูนย์กีฬา และการผลิตทางการเกษตร

ในภาคที่อยู่อาศัยและส่วนรวม การติดตั้งปั๊มความร้อนถูกใช้อย่างแพร่หลายที่สุดในโลกและการปฏิบัติของรัสเซีย ส่วนใหญ่สำหรับการทำความร้อนและการจ่ายน้ำร้อน (DHW) ทิศทางหลัก:

การจ่ายความร้อนอัตโนมัติจากการติดตั้งปั๊มความร้อน

การใช้การติดตั้งปั๊มความร้อนกับระบบทำความร้อนแบบกระจายศูนย์ที่มีอยู่แล้ว

สำหรับการจ่ายความร้อนอัตโนมัติของอาคารแต่ละหลัง พื้นที่ในเมือง การตั้งถิ่นฐาน ส่วนใหญ่เป็นปั๊มความร้อนแบบอัดไอที่มีพลังงานความร้อน 10–30 กิโลวัตต์ ใช้ในหน่วยอุปกรณ์ของอาคารที่แยกจากกัน และเขตและการตั้งถิ่นฐานสูงสุด 5 เมกะวัตต์

ขณะนี้โปรแกรม "การพัฒนาพลังงานที่ไม่ใช่แบบดั้งเดิมในรัสเซีย" กำลังดำเนินการอยู่ ประกอบด้วยส่วนการพัฒนาการติดตั้งปั๊มความร้อน การคาดการณ์การพัฒนาขึ้นอยู่กับการประมาณการของผู้ผลิตปั๊มความร้อน เช่นเดียวกับผู้ใช้ในภูมิภาคต่างๆ ของประเทศ ความต้องการของกำลังการผลิตที่แตกต่างกัน และความเป็นไปได้ของการผลิต โครงการขนาดใหญ่ประมาณ 30 โครงการส่วนใหญ่คาดการณ์ถึงการใช้ปั๊มความร้อนสำหรับส่วนที่อยู่อาศัยและส่วนรวม รวมถึงในระบบทำความร้อนแบบอำเภอ

งานจำนวนหนึ่งดำเนินการภายใต้กรอบของโครงการระดับภูมิภาคเพื่อการประหยัดพลังงานและการเปลี่ยนระบบจ่ายความร้อนแบบดั้งเดิมด้วยหน่วยปั๊มความร้อน: ภูมิภาคโนโวซีบีร์สค์, ภูมิภาคนิจนีนอฟโกรอด, โนริลสค์, เนรุงรี, ยาคุเทีย, ดิฟโนกอร์ส, ภูมิภาคครัสโนยาสค์. ความจุความร้อนที่ป้อนเข้าโดยเฉลี่ยต่อปีจะอยู่ที่ประมาณ 100 เมกะวัตต์

ภายใต้เงื่อนไขเหล่านี้การสร้างความร้อนโดยปั๊มความร้อนที่ทำงานอยู่ทั้งหมดในปี 2548 มีจำนวน 2.2 ล้าน Gcal และการเปลี่ยนเชื้อเพลิงอินทรีย์ - เชื้อเพลิงมาตรฐาน 160,000 ตัน พลังงานความร้อนผลผลิตประจำปี 300 MW ดังนั้นจึงมีการวางแผนความก้าวหน้าในการกระจายการติดตั้งปั๊มความร้อนในรัสเซีย

สำหรับปั๊มความร้อนที่มีเอาต์พุตความร้อนขนาดใหญ่ตั้งแต่ 500 กิโลวัตต์ถึง 40 เมกะวัตต์ หลังจากปี 2548 ปริมาณความร้อนที่ป้อนเข้าโดยเฉลี่ยต่อปีอยู่ที่ 280 เมกะวัตต์ และหลังจากปี พ.ศ. 2553 - สูงสุด 800 เมกะวัตต์ เนื่องจากในช่วงเวลานี้มีการวางแผนที่จะใช้ปั๊มความร้อนอย่างกว้างขวางในระบบทำความร้อนแบบแยกส่วน

ในการผลิตทางการเกษตร การใช้งานหลักของปั๊มความร้อนคือการแปรรูปนมและการจ่ายความร้อนไปยังแผงลอยหลัก

ในฟาร์มโคนม ค่าใช้จ่ายด้านพลังงานที่มีนัยสำคัญมากถึง 50% ตกอยู่ที่การขับเคลื่อนของคอมเพรสเซอร์ของเครื่องทำความเย็นที่ออกแบบมาเพื่อให้นมที่รีดนมสดเย็นและทำให้น้ำร้อนสำหรับความต้องการด้านสุขอนามัยและเทคโนโลยี การรวมกันของความต้องการความร้อนและความเย็นทำให้เกิดเงื่อนไขที่เอื้ออำนวยต่อการใช้ปั๊มความร้อน ความร้อนจำนวนมากจะถูกลบออกด้วยอากาศถ่ายเทของแผงลอย ซึ่งสามารถใช้เป็นแหล่งพลังงานต่ำสำหรับปั๊มความร้อนขนาดเล็กได้สำเร็จ ในฟาร์มปศุสัตว์ หน่วยปั๊มความร้อนจะติดตั้งเครื่องปรับอากาศในห้องคอกสัตว์พร้อมๆ กัน และจ่ายความร้อนไปยังโรงงานผลิต

แอปพลิเคชัน ระบบกระจายอำนาจการจ่ายความร้อนตามการติดตั้งปั๊มความร้อนในพื้นที่ที่ไม่มีเครือข่ายความร้อน หรือในพื้นที่ที่อยู่อาศัยใหม่ จะช่วยหลีกเลี่ยงข้อเสียมากมายในด้านเทคโนโลยี เศรษฐกิจ และสิ่งแวดล้อมของระบบทำความร้อนแบบอำเภอ การแข่งขันกับพวกเขาในแง่ของพารามิเตอร์ทางเศรษฐกิจสามารถเป็นโรงต้มน้ำแบบอำเภอที่ใช้ก๊าซเท่านั้น

ขณะนี้มีการติดตั้งดังกล่าวเป็นจำนวนมาก และในอนาคตความต้องการพวกเขาจะเติบโตอย่างรวดเร็ว

การประหยัด การทดแทน เชื้อเพลิงอินทรีย์โดยใช้ปั๊มความร้อนเกิดขึ้นเนื่องจากการมีส่วนร่วมที่เป็นประโยชน์ของการปล่อยความร้อนเกรดต่ำที่ CHP ทำได้สองวิธี:

การใช้น้ำในกระบวนการหล่อเย็น CHP โดยตรงเป็นแหล่งความร้อนคุณภาพต่ำสำหรับปั๊มความร้อน

ใช้เป็นแหล่งความร้อนคุณภาพต่ำสำหรับปั๊มความร้อนของน้ำในเครือข่ายที่ส่งคืนกลับสู่ CHPP อุณหภูมิจะลดลงถึง 20 - 25 °C

วิธีแรกจะดำเนินการเมื่อปั๊มความร้อนอยู่ใกล้กับ CHP วิธีที่สอง - เมื่อใช้ใกล้กับผู้ใช้ความร้อน ในทั้งสองกรณี ระดับอุณหภูมิของแหล่งกำเนิดความร้อนที่มีศักยภาพต่ำจะค่อนข้างสูง ซึ่งสร้างข้อกำหนดเบื้องต้นสำหรับการทำงานของปั๊มความร้อนที่มีปัจจัยการแปลงสูง

การใช้ปั๊มความร้อนในระบบทำความร้อนแบบอำเภอสามารถปรับปรุงประสิทธิภาพทางเทคนิคและเศรษฐกิจของระบบพลังงานในเมืองได้อย่างมาก โดยให้:

พลังงานความร้อนที่เพิ่มขึ้นตามปริมาณความร้อนที่ใช้ไปก่อนหน้านี้ที่ปล่อยเข้าสู่ระบบระบายความร้อนด้วยน้ำในกระบวนการผลิต

ลดการสูญเสียความร้อนระหว่างการขนส่งน้ำในเครือข่ายไปยัง ท่อส่งหลัก;

เพิ่มภาระการให้ความร้อน 15 - 20% โดยใช้น้ำในเครือข่ายหลักเท่ากันและลดการขาดน้ำในเครือข่ายที่สถานีทำความร้อนกลางใน microdistricts ที่ห่างไกลจาก CHPP

การเกิดขึ้นของแหล่งสำรองเพื่อรองรับภาระความร้อนสูงสุด

ในการทำงานในระบบทำความร้อนแบบอำเภอ ต้องใช้ปั๊มความร้อนขนาดใหญ่ที่มีกำลังความร้อนหลายเมกะวัตต์สำหรับการติดตั้งในสถานีไฟฟ้าย่อยที่ให้ความร้อนและสูงถึงหลายสิบเมกะวัตต์เพื่อใช้ในโรงไฟฟ้าพลังความร้อน

ที่สถานประกอบการอุตสาหกรรม การติดตั้งปั๊มความร้อนจะใช้ความร้อนของระบบหมุนเวียนน้ำ ความร้อนจากการระบายอากาศ และความร้อนของน้ำเสีย

ด้วยความช่วยเหลือของ HPP คุณสามารถถ่ายโอนความร้อนเหลือทิ้งส่วนใหญ่ไปยังเครือข่ายทำความร้อนได้ประมาณ 50 - 60% โดยที่:

ไม่จำเป็นต้องใช้เชื้อเพลิงเพิ่มเติมเพื่อผลิตความร้อนนี้

จะดีขึ้น สถานการณ์ทางนิเวศวิทยา;

การลดอุณหภูมิของน้ำหมุนเวียนในคอนเดนเซอร์เทอร์ไบน์ สูญญากาศจะดีขึ้นอย่างมากและกำลังไฟฟ้าจากเทอร์ไบน์จะเพิ่มขึ้น

การสูญเสียน้ำหมุนเวียนและค่าใช้จ่ายในการสูบน้ำจะลดลง

จนกระทั่งเมื่อไม่นานนี้ เชื่อกันว่าการใช้การติดตั้งปั๊มความร้อนในองค์กรที่จัดหาความร้อนจาก CHPP นั้นไม่ประหยัดอย่างเห็นได้ชัด ขณะนี้กำลังแก้ไขประมาณการเหล่านี้ ประการแรก พวกเขาคำนึงถึงความเป็นไปได้ของการใช้เทคโนโลยีที่กล่าวถึงข้างต้นในภาคที่อยู่อาศัยและชุมชนเมื่อ เครื่องทำความร้อนอำเภอ. ประการที่สอง อัตราส่วนราคาจริงสำหรับไฟฟ้า ความร้อนจาก CHPP และเชื้อเพลิงกำลังบังคับให้บางองค์กรเปลี่ยนไปใช้เครื่องกำเนิดความร้อนและแม้แต่ไฟฟ้าของตนเอง ด้วยวิธีนี้ การติดตั้งปั๊มความร้อนจะมีประสิทธิภาพสูงสุด ประหยัดเชื้อเพลิงได้มากโดยเฉพาะอย่างยิ่ง "mini-CHP" โดยอิงจากเครื่องกำเนิดไฟฟ้าดีเซลที่ทำงานบน ก๊าซธรรมชาติซึ่งขับเคลื่อนคอมเพรสเซอร์ปั๊มความร้อนพร้อมกัน ในเวลาเดียวกันการติดตั้งระบบระบายความร้อนจะให้ความร้อนและการจ่ายน้ำร้อนแก่องค์กร

นอกจากนี้ยังมีแนวโน้มสำหรับองค์กรที่จะใช้หน่วยปั๊มความร้อนร่วมกับการใช้ความร้อนจากการปล่อยระบายอากาศ การให้ความร้อนด้วยอากาศเป็นเรื่องปกติสำหรับสถานประกอบการอุตสาหกรรมหลายแห่ง การติดตั้งสำหรับการนำความร้อนกลับคืนจากการปล่อยการระบายอากาศทำให้สามารถอุ่นเครื่องที่เข้ามาก่อนได้ อากาศภายนอกสูงถึง 8 0 C อุณหภูมิของน้ำในเครือข่ายที่อุ่นในหน่วยปั๊มความร้อนซึ่งจำเป็นสำหรับการทำความร้อนอากาศร้อนไม่เกิน 70 0 C ภายใต้เงื่อนไขเหล่านี้หน่วยปั๊มความร้อนสามารถทำงานที่ปัจจัยการแปลงที่สูงเพียงพอ

ผู้ประกอบการอุตสาหกรรมจำนวนมากต้องการความเย็นประดิษฐ์ในเวลาเดียวกัน ดังนั้นในโรงงานเส้นใยประดิษฐ์ในการประชุมเชิงปฏิบัติการการผลิตหลัก เทคโนโลยีการปรับอากาศจึงถูกนำมาใช้เพื่อรักษาอุณหภูมิและความชื้น ระบบปั๊มความร้อนแบบรวม ปั๊มความร้อน - ตู้เย็นซึ่งผลิตความร้อนและความเย็นไปพร้อม ๆ กัน เป็นวิธีที่ประหยัดที่สุด

ปัจจุบัน HPPs ผลิตในรัสเซียตาม คำสั่งซื้อส่วนบุคคลโดยบริษัทต่างๆ ตัวอย่างเช่น ใน Nizhny Novgorod บริษัท Triton ผลิต HP ด้วยความร้อนที่ส่งออกตั้งแต่ 10 ถึง 2,000 กิโลวัตต์พร้อมกำลังคอมเพรสเซอร์ตั้งแต่ 3 ถึง 620 กิโลวัตต์ สารทำงานคือ R-142; ≈ 3; ค่าใช้จ่ายของ TN จาก 5,000 ถึง 300,000 ดอลลาร์สหรัฐ ระยะเวลาคืนทุน 2 - 3 ปี

จนถึงปัจจุบัน CJSC Energia ยังคงเป็นผู้ผลิตปั๊มความร้อนอัดไอแบบต่อเนื่องเพียงรายเดียวในประเทศของเรา ปัจจุบัน บริษัทกำลังควบคุมการผลิตหน่วยปั๊มความร้อนระบบดูดกลืน รวมทั้งปั๊มความร้อนเทอร์โบคอมเพรสเซอร์ที่มีความจุหน่วยขนาดใหญ่กว่า 3 เมกะวัตต์

บริษัท "พลังงาน" ได้ผลิตและเปิดตัวเครื่องปั๊มความร้อนความจุต่างๆ ประมาณ 100 หน่วย ทั่วอาณาเขต อดีตสหภาพโซเวียต. หน่วยแรกได้รับการติดตั้งใน Kamchatka

ในรูป 8.1. วัตถุบางอย่างที่ปั๊มความร้อนของ CJSC "Energia" ทำงาน

CJSC Energia ผลิตปั๊มความร้อนที่มีความจุความร้อน 300 ถึง 2500 กิโลวัตต์พร้อมการรับประกันการทำงานตั้งแต่ 35 ถึง 45,000 ชั่วโมง ราคาของปั๊มความร้อนตั้งไว้ที่ 160 - 180 USD สำหรับเอาต์พุตความร้อน 1 กิโลวัตต์ (Q นิ้ว)

นับตั้งแต่ก่อตั้ง CJSC Energia ได้นำหน่วยปั๊มความร้อนที่ใช้งานได้ซึ่งมีความจุหลากหลายใน CIS และประเทศเพื่อนบ้าน โดยรวมแล้ว ตั้งแต่ปี 1990 ถึง 2004 CJSC ENERGIA ได้เปิดตัวปั๊มความร้อน 125 ตัวความจุต่างๆ ที่โรงงาน 63 แห่งในรัสเซียและประเทศเพื่อนบ้าน

ข้าว. 8.1. ติดตั้งปั๊มความร้อนของ CJSC "Energia":

หน่วยปั๊มความร้อนในโรงเรียนมัธยมหมายเลข 1, Karasuk, ภูมิภาค Novosibirsk และปั๊มความร้อน NT - 1000 ที่ CHPP ในหมู่บ้าน Rechkunovka, Novosibirsk

ด้านล่างนี้เป็นคำอธิบายสั้น ๆ ของวัตถุที่ใหญ่ที่สุดที่นำเสนอโดย CJSC Energia, Novosibirsk, Table 8.1..

ตาราง 8.1. วัตถุบางอย่างที่ปั๊มความร้อนของ CJSC Energia ทำงาน

ชื่อวัตถุ แหล่งความร้อน กำลังไฟทั้งหมด kW ประเภทของปั๊มความร้อน ปีที่เปิดตัว
Tyumen, ปริมาณน้ำ Velizhansky, ความร้อนของหมู่บ้าน น้ำดื่ม 7-9 °С 2 ปั๊ม NT-3000
Karasuk, ภูมิภาคโนโวซีบีสค์, ความร้อนของโรงเรียนมัธยมหมายเลข 1 น้ำบาดาล 24 °С 2 ปั๊ม NKT-300
Gornoaltaysk, CSB, เครื่องทำความร้อนในอาคาร น้ำบาดาล 7 - 9 °C 1 ปั๊ม NKT-300
ป / ครัวเรือน "Mirny" ดินแดนอัลไตความร้อนของหมู่บ้าน น้ำบาดาล 23 °C 3 ปั๊ม NKT-300
ลิทัวเนีย, คอนัส, โรงงานเส้นใยประดิษฐ์, เครื่องทำความร้อนในโรงงาน การปล่อยเทคโนโลยี - น้ำ 20 °С 2 ปั๊ม NT-3000 1995 1996
มอสโก, Interstroyplast (หน้าต่างของผู้คน), ระบายความร้อนด้วยน้ำสำหรับเครื่องอัดรีด น้ำแปรรูป 16 °C 1 ปั๊ม NT-500
คาซัคสถาน, Ust-Kamenogorsk, Kazzinc JSC, การให้ความร้อนน้ำป้อนก่อนการบำบัดน้ำเคมีจาก 8 ถึง 40 °С น้ำในกระบวนการรีไซเคิล (การเปลี่ยนคูลลิ่งทาวเวอร์) 1 ปั๊ม HT-3000
ครัสโนยาสค์, ศูนย์วิทยาศาสตร์มอสโก, ความร้อนของสถาบันนิเวศวิทยา Yenisei - น้ำในฤดูหนาวประมาณ 2 ° C 1 ปั๊ม NT-500
Yelizovo, ภูมิภาค Kamchatka, ปริมาณน้ำ, เครื่องทำความร้อนในอาคาร น้ำดื่ม 2 - 9 °C 1 ปั๊ม NKT-300

ในภูมิภาค Nizhny Novgorod การพัฒนาและการผลิต HP ด้วย

1996 บริษัท วิจัยและผลิต CJSC Triton Ltd. ตลอดระยะเวลาที่ผ่านมา HP ที่มีความสามารถหลากหลายได้รับการออกแบบและติดตั้ง:

TN-24, Q = 24 kW, เครื่องทำความร้อนที่อยู่อาศัย F = 200 m 2 BAT - น้ำบาดาล ติดตั้งในหมู่บ้าน Bolshiye Orly เขต Borsky เขต Nizhny Novgorod ปี 1998

ТН-45, Q = 45 kW, เครื่องทำความร้อนของอาคารบริหาร, โกดังและโรงจอดรถ, F > 1200 m 2 , NIT - น้ำบาดาล Nizhny Novgorod ติดตั้งในภูมิภาคมอสโกในปี 1997 เจ้าของคือ Symbol LLP

ТN-600, Q = 600 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อนของคอมเพล็กซ์โรงแรมและกระท่อมสามหลัง, F > 7000 m 2 , NIT - น้ำบาดาล ติดตั้งในเขต Avtozavodsky, Nizhny Novgorod, 1996 เจ้าของ - GAZ

ТН-139, Q = 139 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อนของอาคารผลิต F > 960 m 2, NIT - พื้นดิน ติดตั้งในเขต Kanavinsky, Nizhny Novgorod, 1999 เจ้าของ - GZD

ТН-119, Q = 119 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อนของร้านขายยา F > 770 m 2 , NIT - น้ำบาดาล ติดตั้งในเขต Borsky ภูมิภาค Nizhny Novgorod ในปี 2542 เจ้าของคือ Tsentrenergostroy

ТН-300, Q = 300 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อนของโรงเรียน F > 3000 m 2 , BAT - น้ำบาดาล รับหน้าที่ใน เขต Avtozavodsky, Nizhny Novgorod 1999 เจ้าของ - กรมสามัญศึกษา อบต.

TN-360, Q = 360 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อนของศูนย์นันทนาการ F > 4000 m 2, NIT - น้ำบาดาล ดำเนินการในเขต Dalnekonstantinovsky ภูมิภาค Nizhny Novgorod ในปี 2542 เจ้าของ - Gidromash

ТН-3500, Q = 3500 kW, เครื่องทำความร้อน, การจ่ายน้ำร้อน, การระบายอากาศของอาคารบริหารของสถานีใหม่ F > 15000 m 2 , NIT - น้ำกลับ, ระบบจ่ายความร้อนของ Sormovskaya CHPP เขต Kanavinsky, Nizhny Novgorod 2000 เจ้าของ - GZD

HP Q สองอัน = 360 และ 200 kW สำหรับภูมิภาค Penza, 2 Gcal - สำหรับ Tuapse

ด้วยการมีส่วนร่วมของผู้เชี่ยวชาญจากสถาบันอุณหภูมิสูงของ Russian Academy of Sciences (IHT RAS) จึงมีการพัฒนาและสร้างการติดตั้งและระบบทดลองและการสาธิตจำนวนหนึ่งโดยใช้ปั๊มความร้อนสำหรับการจ่ายความร้อนไปยังวัตถุต่างๆ /48/

ในเขตชานเมืองของเดอร์ ใน Gribanovo ในปี 2544 ระบบจ่ายความร้อนด้วยปั๊มความร้อนพลังงานแสงอาทิตย์สำหรับอาคารห้องปฏิบัติการถูกนำไปทดลองใช้งานในพื้นที่ทดสอบ NPO Astrophysics ในฐานะที่เป็นแหล่งความร้อนคุณภาพต่ำสำหรับปั๊มความร้อน มีการใช้ตัวแลกเปลี่ยนความร้อนภาคพื้นดินแนวตั้งที่มีความยาวรวมประมาณ 30 ม. (เทคโนโลยีของ OAO Insolar-Invest) อุปกรณ์ทำความร้อน - fancoils และเครื่องทำความร้อนใต้พื้น ตัวสะสมพลังงานแสงอาทิตย์จัดหาน้ำร้อนความร้อนจากแสงอาทิตย์ส่วนเกินในฤดูร้อนถูกสูบเข้าไปในดินเพื่อเร่งการฟื้นฟูระบอบอุณหภูมิ

ในปี 2547 JSC "Insolar-Invest" หน่วยปั๊มความร้อนอัตโนมัติแบบทดลอง (ATNU) ถูกนำไปใช้งานซึ่งออกแบบมาเพื่อให้ความร้อนกับน้ำประปาที่ด้านหน้าหม้อไอน้ำของโรงงานทำความร้อนในเขต Zelenograd ตาราง 8.2.

เนื่องจากเป็นแหล่งความร้อนคุณภาพต่ำ จึงมีการใช้น้ำเสียจากบ้านเรือนที่ไม่ผ่านการบำบัด ซึ่งสะสมอยู่ในถังรับของสถานีสูบน้ำเสียหลัก (GKNS) ATNU ออกแบบมาเพื่อทดสอบเทคโนโลยีสำหรับการใช้ความร้อนของน้ำเสียดิบ กำหนดผลกระทบของการติดตั้งกับพารามิเตอร์ระบอบการปกครองของโรงไฟฟ้าพลังความร้อน ตรวจสอบประสิทธิภาพทางเศรษฐกิจ และพัฒนาคำแนะนำสำหรับการสร้างการติดตั้งที่คล้ายกันในมอสโก เศรษฐกิจของเมือง

ตารางที่ 8.2. การออกแบบหลักและพารามิเตอร์การทำงานของ ATNU

ATNU ประกอบด้วยห้าส่วนหลัก:

หน่วยความร้อนปั๊มความร้อน (TTU);

ท่อของระบบเก็บความร้อนเกรดต่ำ (SSNT);

เครื่องแลกเปลี่ยนความร้อน

ท่อระบายน้ำแรงดัน;

กลุ่มให้อาหารเครื่องสูบอุจจาระใน GKNS

น้ำเสียที่ไม่ผ่านการบำบัดที่มีอุณหภูมิ 20 0 C จากถังรับจะถูกป้อนโดยปั๊มอุจจาระของ Flygt ไปยังเครื่องแลกเปลี่ยนความร้อนของเสีย โดยที่ความร้อนจะถูกถ่ายเทไปยังตัวพาความร้อนระดับกลาง (น้ำ) ระบายความร้อนด้วยอุณหภูมิ 15.4 0 C แล้วจึงส่งคืน ไปที่ถัง ปริมาณการใช้น้ำเสียทั้งหมด - 400 ม. 3 / ชม.

วงจรหมุนเวียนน้ำเสียดิบได้รับการออกแบบโดยคำนึงถึงการปฏิบัติงานของท่อแรงดันในระบบบำบัดน้ำเสีย อัตราการไหลในช่องทางของเครื่องแลกเปลี่ยนความร้อนทำให้มั่นใจได้ว่าไม่มีคราบสะสมบนพื้นผิวการแลกเปลี่ยนความร้อน

ให้ความร้อนในตัวแลกเปลี่ยนความร้อนเหลือทิ้งที่อุณหภูมิ 13 0 C ตัวพาความร้อนกลางจะถูกส่งไปยังปั๊มความร้อนซึ่งจะถูกทำให้เย็นลงที่อุณหภูมิ 8 0 C ให้ความร้อนแก่ฟรีออนของวงจรบีบอัดไอ และส่งไปยังเครื่องแลกเปลี่ยนความร้อนเหลือทิ้งอีกครั้ง

การใช้ปั๊มความร้อนในวงจรวงแหวนในรัสเซีย

โดยทั่วไป จะพิจารณาตัวอย่างการใช้การติดตั้งปั๊มความร้อนเดี่ยว การติดตั้งเหล่านี้รวมถึงปั๊มความร้อนตั้งแต่หนึ่งตัวขึ้นไปที่ทำงานแยกจากกันและทำหน้าที่จ่ายความร้อนจำเพาะ มีระบบปั๊มความร้อนแบบวงแหวนในตัวที่ช่วยให้คุณบรรลุเป้าหมาย ประสิทธิภาพสูงสุดและการออม HP หลายตัวได้รับการติดตั้งในระบบวงแหวน ซึ่งใช้ในการผลิตทั้งความร้อนและความเย็น ขึ้นอยู่กับความต้องการ ส่วนต่างๆอาคาร. มีข้อมูลน้อยมากเกี่ยวกับระบบดังกล่าว

เมื่อไม่นานมานี้ บริษัทจัดหาปั๊มความร้อนในรัสเซียได้ดำเนินโครงการปรับปรุงระบบทำความร้อนและเครื่องปรับอากาศในโรงแรมมอสโกและศูนย์รวมความบันเทิงแห่งหนึ่ง /54/ มาดูกันว่าระบบนี้ทำงานอย่างไร 8.2.

วงจรน้ำประกอบด้วยปั๊มน้ำและถังเก็บอุณหภูมิต่ำ เนื่องจากปริมาณความร้อนสะสมเพิ่มขึ้นและอุณหภูมิของน้ำในวงจรจะคงที่ VT ทั้งหมดเชื่อมต่อกับวงจรนี้

ลูกศรแสดงทิศทางการเคลื่อนที่ของความร้อน ด้านหลังปั๊มหมุนเวียนมีการติดตั้งปั๊มความร้อนประเภท "น้ำ - น้ำ" ซึ่งให้ความร้อนน้ำในแอ่งของคอมเพล็กซ์ สระมีหลายปริมาตรและมีอุณหภูมิของน้ำต่างกัน สำหรับแต่ละพูลจะมีการจัดตั้ง TN

เอชพี "น้ำ-ลม" อากาศเย็นในครัวที่ให้บริการร้านอาหาร บาร์ ร้านกาแฟ โรงอาหาร สำหรับพนักงาน ในห้องเหล่านี้ มีการปล่อยความร้อนขนาดใหญ่อยู่เสมอ และ HP จะทำให้อากาศเย็นลง โดยนำความร้อนเข้าสู่วงจรน้ำทั่วไป

ข้าว. 8.2. ตัวอย่างปั๊มความร้อนรูปวงแหวน

HP "น้ำ-น้ำ" ใช้ความร้อนส่วนเกินผ่านระบบจ่ายน้ำร้อน (DHW) ความร้อนถูกนำมาจากวงจรน้ำของการบริหารและ พื้นที่สำนักงาน. สำหรับเครื่องปรับอากาศ แต่ละห้องเหล่านี้มี HP แบบย้อนกลับได้สำหรับความร้อนหรือความเย็น ในฤดูร้อนปั๊มเหล่านี้จะทำให้อากาศเย็นลงและในฤดูหนาวจะทำให้ร้อนขึ้น

HP ทั้งหมดเหล่านี้รวมกันเป็นวงแหวนเดียวกับ HP ในส่วนอื่น ๆ ของอาคารที่ต้องการความร้อนและส่วนเกิน (สถานที่ทางเทคนิคและการใช้งาน ร้านกาแฟ ร้านอาหาร สวนฤดูหนาว, ห้องเย็น) และระหว่างกันมีการแลกเปลี่ยนความร้อน

สำหรับการทำงานของ HP ปกติ อุณหภูมิของน้ำในวงจรต้องอยู่ระหว่าง 18 0 С ถึง 35 0 С หากจำนวน HP ที่ทำงานในโหมดทำความร้อนเท่ากับจำนวน HP ที่ทำงานในโหมดทำความเย็น ระบบจะไม่ทำงาน ต้องการความร้อนจากภายนอกหรือนำออกสู่ภายนอก ระบบวงแหวนทำงานอย่างมีประสิทธิภาพสูงสุดที่อุณหภูมิภายนอกอาคารตั้งแต่ -4 0 С ถึง +14 0 С ค่าพลังงานสำหรับการทำงานของวงจรวงแหวนทั้งหมดอยู่ในต้นทุนการทำงานเท่านั้น ปั๊มหมุนเวียนและปั๊มความร้อนภายในอาคาร ไม่จำเป็นต้องใช้แหล่งพลังงานความร้อน ก๊าซหรือเครื่องทำความร้อนไฟฟ้าที่มีราคาแพง หรือการได้รับพลังงานจากภายนอก

ที่อุณหภูมิภายนอกที่ต่ำกว่าและขาดความร้อนในวงจรน้ำ อุณหภูมิในนั้นอาจลดลงต่ำกว่า 18 0 C จากนั้นเพื่อให้ความร้อนวงจรน้ำตามพารามิเตอร์ที่กำหนด คุณสามารถใช้แหล่งความร้อนภายนอกของโรงงานทำความร้อนในเมือง หม้อไอน้ำ หรือปั๊มความร้อนใต้พิภพที่สูบความร้อนจากน้ำใต้ดินหรือจากแหล่งน้ำใกล้เคียง แหล่งที่มาเช่นน้ำบาดาลหรือแม่น้ำที่มีอุณหภูมิ 4 0 C จะเพียงพอที่จะให้ความร้อนแก่น้ำในวงจรถึงระดับ 18 0 C และสำหรับการทำงานปกติของปั๊มความร้อนในอาคารทั้งหมด

น่าเสียดายที่วิธีการนี้ถูกจำกัดในรัสเซียจนถึงตอนนี้ ค่าใช้จ่ายสูงในขั้นตอนการออกแบบและการขาดแรงจูงใจทางเศรษฐกิจสำหรับโซลูชั่นการประหยัดพลังงานและเป็นมิตรกับสิ่งแวดล้อม แหล่งความร้อนระดับต่ำอื่นๆ สามารถใช้ในระบบปั๊มความร้อนแบบวงแหวนได้ สิ่งอำนวยความสะดวกมากมาย: ซักรีดขนาดใหญ่, ธุรกิจที่ใช้น้ำสำหรับ กระบวนการทางเทคโนโลยี, มีการไหลของน้ำเสียที่สำคัญที่อุณหภูมิสูงเพียงพอ ในกรณีนี้ การรวมปั๊มความร้อนในระบบวงแหวนที่ใช้ความร้อนนี้เป็นเรื่องที่สมเหตุสมผล

วงจรน้ำยังมีถังเก็บอุณหภูมิต่ำ ยิ่งถังใหญ่ ความร้อนมากขึ้นซึ่งหากจำเป็นก็สามารถใช้ระบบสะสมได้ ระบบวงแหวนสามารถเข้าควบคุมฟังก์ชันการทำความร้อนได้อย่างสมบูรณ์ ซึ่งเป็นระบบโมโนวาเลนต์ อย่างไรก็ตาม สามารถใช้ปั๊มความร้อนพร้อมกันกับระบบทำความร้อนแบบเดิม - ระบบไบวาเลนต์ได้ หากมีแหล่งความร้อนเพียงพอที่เชื่อมต่อกับวงแหวนที่ไซต์ และหากความต้องการน้ำร้อนมีน้อย ระบบวงแหวนก็สามารถตอบสนองความต้องการเหล่านี้ได้อย่างเต็มที่

ระบบปั๊มความร้อนแบบวงแหวนสามารถใช้ได้กับเครื่องปรับอากาศในห้องที่มีความจำเป็นเท่านั้น แต่ ระบบวงแหวนเครื่องปรับอากาศมีประสิทธิภาพโดยเฉพาะอย่างยิ่งในอาคารที่มีห้องหลายห้อง โดยมีวัตถุประสงค์ที่แตกต่างกัน ซึ่งต้องใช้อุณหภูมิอากาศที่แตกต่างกัน HP ในฐานะเครื่องปรับอากาศทำงานได้อย่างมีประสิทธิภาพมากกว่าอุปกรณ์ปรับอากาศอื่นๆ ที่เป็นที่รู้จัก

พื้นฐานของประสิทธิภาพสูงของปั๊มความร้อนนั้นอยู่ที่ข้อเท็จจริงที่ว่าพลังงานที่ใช้ไปภายในอาคารเพื่อผลิตความร้อนไม่ได้ถูกปล่อย "เข้าสู่ท่อ" แต่ถูกใช้ภายในอาคารที่มีความจำเป็น ความร้อนจะถูกจัดเก็บและถ่ายเทอย่างมีประสิทธิภาพภายในระบบวงแหวน

ปัจจัยสำคัญประการที่สองของประสิทธิภาพทางเศรษฐกิจคือความเป็นไปได้ของการใช้แหล่งความร้อน "เปล่า" ที่มีศักยภาพต่ำ - บ่อบาดาล,อ่างเก็บน้ำ,ท่อระบายน้ำ. ด้วยความช่วยเหลือของคอมเพรสเซอร์โดยใช้แหล่งกำเนิดที่มีอุณหภูมิ 4 ° C เราจะได้น้ำร้อน 50 - 60 0 C โดยใช้ไฟฟ้า 1 กิโลวัตต์เพื่อให้ได้พลังงานความร้อน 3 - 4 กิโลวัตต์ หากใช้ระบบธรรมดา อบไอน้ำ, ประสิทธิภาพเพียง 30 - 40% จากนั้นปั๊มความร้อนประสิทธิภาพจะเพิ่มขึ้นหลายเท่า

โดยเฉพาะอย่างยิ่งในโรงแรมที่อธิบายไว้ - ศูนย์ความบันเทิงบรรลุผลดังต่อไปนี้

ลดต้นทุนทุนในการซื้อและติดตั้งอุปกรณ์ 13 - 15% เมื่อเทียบกับระบบคอยล์เย็น-พัดลม ระบบการสื่อสารทางวิศวกรรมถูกทำให้ง่ายขึ้นเมื่อเปรียบเทียบกับระบบปรับอากาศส่วนกลาง มีการสร้างปากน้ำที่สะดวกสบายในสถานที่: ความสอดคล้องของความดันความชื้นและอุณหภูมิของอากาศ ข้อกำหนดด้านสุขอนามัย. ต้นทุนรวมของการทำความร้อนและการจ่ายน้ำร้อนลดลงมากกว่า 50% เมื่อเทียบกับการทำความร้อนจากส่วนกลาง

ระบบปั๊มความร้อนรูปวงแหวนไม่ต้องการอุปกรณ์ควบคุมและติดตามที่ซับซ้อนและมีราคาแพงเพื่อเพิ่มประสิทธิภาพการทำงาน การใช้รีเลย์ความร้อนหลายตัวเทอร์โมสแตทเพื่อรักษาอุณหภูมิในวงจรน้ำภายในขอบเขตที่กำหนดก็เพียงพอแล้ว เพื่อความสะดวกและการควบคุมด้วยภาพเพิ่มเติม สามารถใช้ระบบอัตโนมัติที่มีราคาแพงได้เช่นกัน

ด้วยช่วงอุณหภูมิที่กำหนดในวงจรน้ำของระบบวงแหวน 18 - 35 0 C ไม่มีคอนเดนเสทก่อตัวบนท่อและไม่มีการสูญเสียความร้อนที่เห็นได้ชัดเจน นี่เป็นปัจจัยสำคัญที่มีการแตกแขนงของระบบอย่างมีนัยสำคัญ (การกระจาย ตัวยก การเชื่อมต่อ ซึ่งสามารถมีได้ค่อนข้างมากในอาคารที่มีสถาปัตยกรรมที่ซับซ้อน)

เมื่อใช้ HP ในระบบระบายอากาศในห้อง จำนวนและความยาวทั้งหมดของท่อลมจะลดลงเมื่อเทียบกับเครื่องปรับอากาศส่วนกลาง การติดตั้งปั๊มความร้อนจะติดตั้งโดยตรงในห้องปรับอากาศหรือในห้องที่อยู่ติดกัน กล่าวคือ เครื่องปรับอากาศจะถูกติดตั้งทันที เพื่อหลีกเลี่ยงการขนส่งอากาศสำเร็จรูปผ่านท่อยาว

ในรัสเซีย ระบบ TH-based ระบบแรกดังกล่าวได้รับการติดตั้งในปี 1990 ที่โรงแรม Iris Congress นี่คือระบบปรับอากาศแบบไบวาเลนต์วงแหวนของบริษัท ClimateMaster ของสหรัฐอเมริกา สำหรับการทำความร้อนในโรงแรม ใช้ห้องครัวที่ให้ความร้อน ห้องซักรีด ห้องเทคนิค หน่วยทำความเย็นและห้องแช่แข็ง การแลกเปลี่ยนความร้อนระหว่างเครื่องปรับอากาศของห้องพักในโรงแรม ห้องประชุม ศูนย์ออกกำลังกาย ร้านอาหาร และสถานที่บริหาร การทำงานของระบบเป็นเวลา 15 ปีแสดงให้เห็นถึงความน่าเชื่อถือของอุปกรณ์และความเป็นไปได้ในการใช้งานในสภาพอากาศของเรา

เมื่อออกแบบระบบปั๊มความร้อนสำหรับวัตถุ อันดับแรก จำเป็นต้องศึกษาแหล่งความร้อนที่เป็นไปได้ต่ำที่เป็นไปได้ทั้งหมด และผู้ใช้ความร้อนที่มีศักยภาพสูงทั้งหมดที่วัตถุนี้ เพื่อประเมินความร้อนที่เพิ่มขึ้นและการสูญเสียความร้อนทั้งหมด จำเป็นต้องเลือกแหล่งดังกล่าวเพื่อนำไปใช้ประโยชน์โดยที่ความร้อนถูกปล่อยออกมาอย่างสม่ำเสมอและเป็นเวลานาน การคำนวณที่แม่นยำและแม่นยำจะช่วยให้ HP ทำงานได้อย่างเสถียรและคุ้มค่า ความจุรวมของปั๊มความร้อนเหลือทิ้งไม่ควรซ้ำซ้อนโดยเปล่าประโยชน์ ระบบต้องมีความสมดุล แต่ไม่ได้หมายความว่าอย่างนั้น ความจุทั้งหมดแหล่งที่มาและผู้บริโภคของความร้อนควรอยู่ใกล้พวกเขาสามารถแตกต่างกันอัตราส่วนของพวกเขายังสามารถเปลี่ยนแปลงอย่างมีนัยสำคัญเมื่อสภาพการทำงานของระบบเปลี่ยนแปลง ความยืดหยุ่นของระบบช่วยให้คุณเลือกตัวเลือกที่ดีที่สุดเมื่อออกแบบและวางความเป็นไปได้ในการขยายเพิ่มเติม นอกจากนี้ยังจำเป็นต้องคำนึงถึงลักษณะเฉพาะของสภาพภูมิอากาศของภูมิภาคด้วย สภาพภูมิอากาศเป็นหัวใจสำคัญในการเลือกระบบสภาพอากาศที่มีประสิทธิภาพ

ในละติจูดทางใต้ ภารกิจหลักคือการทำให้อากาศเย็นลงและปล่อยความร้อนออกสู่ภายนอก ซึ่งการใช้ความร้อนนั้นไม่มีความหมาย ระบบทำความเย็นแบบดั้งเดิม - คอยล์พัดลมหรือสิ่งที่คล้ายกันค่อนข้างเหมาะสมที่นี่ ในละติจูดทางตอนเหนือ ต้องใช้พลังงานมากเกินไปในการให้ความร้อนแก่โรงงาน ซึ่งเป็นความร้อนที่มีศักยภาพสูงจำนวนมากที่จะต้องจ่ายให้กับระบบ ดังนั้นจึงจำเป็นต้องติดตั้งระบบสองวาเลนท์ HP ร่วมกับระบบทำความร้อน ใน อากาศอบอุ่นละติจูดกลาง ขอแนะนำให้ใช้ระบบวงแหวนแบบโมโนวาเลนต์ซึ่งมีประสิทธิภาพสูงสุด

จนถึงปัจจุบัน เป็นที่เชื่อกันอย่างกว้างขวางว่า TN มีราคาแพงเกินไป ค่าใช้จ่ายในการติดตั้งและติดตั้งอุปกรณ์สูงและด้วยราคาความร้อนที่มีอยู่ในรัสเซียระยะเวลาคืนทุนนานเกินไป อย่างไรก็ตาม จากการปฏิบัติแสดงให้เห็นว่าการติดตั้งระบบปั๊มความร้อนในโรงงานขนาดใหญ่และขนาดกลางสามารถประหยัดเงินลงทุนได้ 10 - 15% ไม่ต้องพูดถึงค่าใช้จ่ายในการดำเนินงาน นอกจากนี้ ระบบวงแหวนยังช่วยลดการใช้ทรัพยากรพลังงานให้มากที่สุด ซึ่งราคาก็เพิ่มขึ้นอย่างรวดเร็วมากขึ้นเรื่อยๆ

ตามการวิจัยการคำนวณของ Techart มีการติดตั้งปั๊มความร้อน 5.3 MW ในรัสเซียในปี 2552 พลวัต ตลาดรัสเซียปั๊มความร้อนใต้พิภพตามการคาดการณ์ของ Research.Techart ในระยะกลางจะต่ำเนื่องจากวิกฤตเศรษฐกิจ อย่างไรก็ตาม ในบางภูมิภาค ตลาดสามารถพัฒนาอย่างแข็งขันได้

ความต้องการที่เพิ่มขึ้นจากภาคโครงสร้างพื้นฐานและที่อยู่อาศัยจะดำเนินต่อไป และยอดขายส่วนใหญ่จะอยู่ที่ 15-38kW PTNs โครงสร้างการบริโภคที่สัมพันธ์กับประเภทของ PTN จะไม่เปลี่ยนแปลง คาดว่าส่วนแบ่งของผลิตภัณฑ์ในประเทศจะเพิ่มขึ้นตามปริมาณตลาดทั้งหมด

ในระยะยาว ปัจจัยนำในการพัฒนาตลาดคือการดำเนินกลยุทธ์ด้านพลังงานของรัฐ หลังจากปี 2559 เป็นที่คาดการณ์ การเติบโตอย่างแข็งขันตลาด. ในด้านประสิทธิภาพคาดว่าจะมีการเปลี่ยนไปใช้ PTN ด้วยสารทำความเย็นคาร์บอน ในเวลาเดียวกัน ปริมาณการใช้ปั๊มความร้อนกำลังต่ำและกำลังปานกลางและกำลังสูงจะเพิ่มขึ้น ซึ่งเป็นผลมาจากแนวโน้มการใช้ระบบนำความร้อนจากน้ำเสียกลับมาใช้ใหม่ กับพื้นหลังของความต้องการที่เพิ่มขึ้นการพัฒนาฐานการผลิตในประเทศจะเริ่มขึ้น - จำนวน ผู้ผลิตรัสเซียจะเพิ่มขึ้นและพวกเขาจะเป็นผู้นำในตลาด

ภายในปี 2020 ขนาดของตลาด CVT อาจสูงถึง 8,000 - 11,000 ยูนิต, 460 - 500 MW การคาดการณ์ขนาดของตลาด PTN ในปี 2030 - ช่วงเวลาของการดำเนินการตามยุทธศาสตร์พลังงานปัจจุบันของรัสเซียเสร็จสิ้น - 11,000 - 15,000 หน่วย, 500 - 700 MW

มีอะไรให้อ่านอีกบ้าง