การติดตั้งปั๊มความร้อน ประเภทของการติดตั้งปั๊มความร้อน

ด้านหลัง ปีที่แล้วปั๊มความร้อนได้ครอบครองตลาดเฉพาะของพวกเขาในตลาดสภาพอากาศของรัสเซีย ท่ามกลางเทคโนโลยียอดนิยมอื่นๆ การอภิปรายเกี่ยวกับข้อดีและข้อเสียของการติดตั้งปั๊มความร้อน (HPU) เกิดขึ้นทั้งในหน้าของสื่ออุตสาหกรรมและในการประชุมเฉพาะเรื่องและ โต๊ะกลม. เมื่อเร็ว ๆ นี้มีข้อมูลมากมายเกี่ยวกับปั๊มความร้อน - ทั้งในอินเทอร์เน็ตภาษารัสเซียและในสื่อเฉพาะทาง อย่างไรก็ตาม ยังมีสิ่งพิมพ์เกี่ยวกับระบบปั๊มความร้อนแบบรวมอยู่น้อยมาก บทความนี้มีวัตถุประสงค์เพื่อเติมช่องว่างนี้บ้าง เพื่อสรุปคำถามบางข้อที่เกิดขึ้นในผู้เชี่ยวชาญ เมื่อพวกเขาทำความคุ้นเคยกับระบบถ่ายเทความร้อนแบบวงแหวนในครั้งแรก และเพื่อตอบคำถามเหล่านั้นโดยสังเขป

ดังนั้นจึงเป็นที่ทราบกันดีเกี่ยวกับปั๊มความร้อนว่านี่คืออุปกรณ์ภูมิอากาศที่สามารถใช้ความร้อนได้ สิ่งแวดล้อมโดยใช้คอมเพรสเซอร์เพื่อเพิ่มอุณหภูมิของสารหล่อเย็นให้อยู่ในระดับที่ต้องการและถ่ายเทความร้อนนี้ไปยังจุดที่ต้องการ

เกือบจะเป็นไปได้เสมอที่จะดึงความร้อนออกจากสิ่งแวดล้อม หลังจากนั้น " น้ำเย็น"- แนวคิดเชิงอัตวิสัยตามความรู้สึกของเรา แม้แต่น้ำในแม่น้ำที่เย็นที่สุดก็มีความร้อนอยู่จำนวนหนึ่ง แต่เป็นที่ทราบกันดีอยู่แล้วว่าความร้อนส่งผ่านจากร่างกายที่ร้อนกว่าไปยังที่เย็นกว่าเท่านั้น ความร้อนสามารถบังคับทิศทางจากร่างกายที่เย็นไปยัง อันอุ่นแล้วร่างกายที่เย็นยิ่งเย็นลงและความร้อนขึ้นโดยใช้ปั๊มความร้อนที่ "สูบ" ความร้อนจากอากาศแม่น้ำหรือดินทำให้อุณหภูมิลดลงมากยิ่งขึ้นทำให้ความร้อน อาคารในกรณีคลาสสิก ถือว่าการใช้ไฟฟ้า 1 กิโลวัตต์ในการทำงาน HPP สามารถผลิตพลังงานความร้อนได้ตั้งแต่ 3 ถึง 6 กิโลวัตต์ ในทางปฏิบัติหมายความว่าพลังงานของหลอดไฟในครัวเรือนสองหรือสามดวงใน ช่วงฤดูหนาวอุ่นได้ ห้องนั่งเล่นขนาดกลาง ในฤดูร้อน ทำงานใน โหมดย้อนกลับ, ปั๊มความร้อนสามารถทำให้อากาศภายในห้องของอาคารเย็นลง ความร้อนจากอาคารจะถูกดูดกลืนโดยชั้นบรรยากาศ แม่น้ำ หรือดิน

ปัจจุบันมีการติดตั้งปั๊มความร้อนจำนวนมาก ซึ่งช่วยให้สามารถใช้กันอย่างแพร่หลายในอุตสาหกรรม เกษตรกรรมในด้านที่อยู่อาศัยและบริการชุมชน ตัวอย่างของการใช้ HPP ในตอนท้ายของบทความ เราจะพิจารณาสองโครงการ - หนึ่งในนั้นคือโครงการของระบบวงแหวนขนาดใหญ่ที่นำมาใช้ใน ดินแดนครัสโนดาร์ที่สองคือโครงการก่อสร้างขนาดเล็กในภูมิภาคมอสโก

ปั๊มความร้อนคืออะไร?

ปั๊มความร้อนมีเอาต์พุตความร้อนที่หลากหลายตั้งแต่ไม่กี่กิโลวัตต์จนถึงหลายร้อยเมกะวัตต์ พวกเขาสามารถทำงานร่วมกับ แหล่งต่างๆความร้อนในสภาวะต่างๆ ของการรวมตัว ในเรื่องนี้สามารถแบ่งออกเป็นประเภทต่อไปนี้: น้ำ - น้ำ, น้ำ - อากาศ, อากาศ - น้ำ, อากาศ - อากาศ. ปั๊มความร้อนถูกผลิตขึ้นเพื่อทำงานกับแหล่งความร้อนระดับต่ำมากที่สุด อุณหภูมิต่างกันถึงลบ สามารถใช้เป็นตัวรับความร้อนสูงที่ต้องการได้ อุณหภูมิต่างกันแม้จะสูงกว่า 1,000C ทั้งนี้ขึ้นอยู่กับสิ่งนี้ ปั๊มความร้อนสามารถแบ่งออกเป็นอุณหภูมิต่ำ อุณหภูมิปานกลาง และอุณหภูมิสูง

ปั๊มความร้อนยังแตกต่างกันในแง่ของ อุปกรณ์ทางเทคนิค. ในเรื่องนี้สามารถแยกแยะได้สองทิศทาง: การอัดไอและการดูดซับ HPP ปั๊มความร้อนสำหรับงานของพวกเขาสามารถใช้พลังงานประเภทอื่นได้นอกเหนือจากไฟฟ้าเช่นสามารถทำงานบน หลากหลายชนิดเชื้อเพลิง.

แหล่งความร้อนคุณภาพต่ำและตัวรับความร้อนคุณภาพสูงจากแหล่งต่างๆ รวมกันทำให้เกิดปั๊มความร้อนประเภทต่างๆ นี่คือตัวอย่างบางส่วน:

  • HPP โดยใช้ความร้อน น้ำบาดาลเพื่อให้ความร้อน
  • HPP โดยใช้ความร้อนจากอ่างเก็บน้ำธรรมชาติสำหรับการจ่ายน้ำร้อน
  • HPU - เครื่องปรับอากาศที่ใช้น้ำทะเลเป็นแหล่งและรับความร้อน
  • HPI – เครื่องปรับอากาศที่ใช้ อากาศภายนอกเป็นแหล่งและรับความร้อน
  • HPI สำหรับทำน้ำร้อนในสระว่ายน้ำโดยใช้ความร้อนจากอากาศภายนอก
  • HPP ใช้ความร้อนจากน้ำเสียในระบบจ่ายความร้อน
  • HPP ใช้ความร้อนของอุปกรณ์วิศวกรรมและเทคนิคในระบบจ่ายความร้อน
  • HPP สำหรับทำความเย็นนมและในเวลาเดียวกันให้น้ำร้อนสำหรับการจ่ายน้ำร้อนในฟาร์มโคนม
  • HPP สำหรับการกู้คืนความร้อนจาก กระบวนการทางเทคโนโลยีในความร้อนหลักของอากาศจ่าย

อุปกรณ์ปั๊มความร้อนจำนวนมากผลิตขึ้นเป็นจำนวนมาก แต่สามารถผลิตปั๊มความร้อนตามโครงการพิเศษได้เช่นกัน มีการติดตั้งทดลอง ตัวอย่างนำร่อง ตลอดจนการพัฒนาเชิงทฤษฎีมากมาย

หากโรงงานมีปั๊มความร้อนให้ใช้หลายตัว ซึ่งจะออกแบบให้ผลิตได้ทั้งความร้อนและความเย็น ประสิทธิภาพของปั๊มจะเพิ่มขึ้นหลายเท่าหากรวมกันเป็นระบบเดียว สิ่งเหล่านี้เรียกว่าระบบปั๊มความร้อนแบบวงแหวน (KHNS) ระบบดังกล่าวเหมาะสมที่จะใช้กับวัตถุขนาดกลางและขนาดใหญ่

ระบบปรับอากาศแบบวงแหวน

ระบบเหล่านี้ใช้ปั๊มความร้อนแบบน้ำและอากาศที่ทำหน้าที่ของเครื่องปรับอากาศภายในอาคาร ในห้องที่มีเครื่องปรับอากาศ (หรือถัดจากนั้น) ติดตั้งปั๊มความร้อนซึ่งกำลังถูกเลือกตามพารามิเตอร์ของห้อง, วัตถุประสงค์, ลักษณะของอากาศจ่ายที่ต้องการ - การระบายอากาศ, จำนวนคนที่เป็นไปได้, อุปกรณ์ที่ติดตั้งและเกณฑ์อื่น ๆ HPP ทั้งหมดสามารถย้อนกลับได้ กล่าวคือ ออกแบบมาสำหรับทั้งอากาศเย็นและอากาศร้อน ทั้งหมดเชื่อมต่อกันด้วยวงจรน้ำทั่วไป - ท่อที่น้ำหมุนเวียน น้ำเป็นทั้งแหล่งและตัวรับความร้อนสำหรับ HPI ทั้งหมด อุณหภูมิในวงจรสามารถเปลี่ยนแปลงได้ตั้งแต่ 18 ถึง 320C ระหว่างปั๊มความร้อนที่ให้ความร้อนในอากาศกับปั๊มที่ทำให้เย็นลง ความร้อนจะถูกแลกเปลี่ยนผ่านวงจรน้ำ ขึ้นอยู่กับลักษณะของสถานที่ตลอดจนช่วงเวลาของปีและช่วงเวลาของวัน - ใน ห้องต่างๆอาจต้องใช้ความร้อนหรือความเย็น ด้วยการทำงานพร้อมกันในอาคารเดียวกันของ HPI ที่ผลิตความร้อนและความเย็น ความร้อนจะถูกถ่ายเทจากห้องที่มีส่วนเกินไปยังห้องที่ไม่เพียงพอ ดังนั้นจึงมีการแลกเปลี่ยนความร้อนระหว่างโซนรวมกันเป็นวงแหวนเดียว

นอกจาก HPP ที่ทำหน้าที่ของเครื่องปรับอากาศแล้ว HPP สำหรับวัตถุประสงค์อื่นอาจรวมอยู่ใน HPP ด้วย หากมีความต้องการความร้อนเพียงพอที่โรงงาน ความร้อนเหลือทิ้งสามารถนำมาใช้อย่างมีประสิทธิภาพผ่านระบบวงแหวนโดยใช้ HPI ตัวอย่างเช่น ในที่ที่มีการไหลของน้ำเสียอย่างเข้มข้น การติดตั้ง HPI แบบน้ำต่อน้ำนั้นสมเหตุสมผล ซึ่งจะทำให้ความร้อนเหลือทิ้งถูกนำมาใช้โดยใช้ HPS ปั๊มความร้อนดังกล่าวจะสามารถดึงความร้อนออกจากน้ำเสีย ถ่ายโอนโดยใช้วงจรวงแหวน แล้วใช้ความร้อนในห้อง

อากาศที่ถูกขับออกจากอาคารโดยการระบายอากาศยังมีความร้อนอยู่เป็นจำนวนมาก ในกรณีที่ไม่มีสิ่งเจือปนจำนวนมากในอากาศเสียที่ขัดขวางการทำงานของ HPI คุณสามารถใช้ความร้อนของอากาศเสียโดยการติดตั้ง HPI แบบอากาศสู่น้ำ ผู้บริโภคทุกคนในอาคารสามารถใช้ความร้อนนี้ผ่าน CHP ได้ ซึ่งทำได้ยากโดยใช้เครื่องกำเนิดใหม่และการกู้คืนแบบเดิม นอกจากนี้ กระบวนการรีไซเคิลในกรณีนี้อาจมีประสิทธิภาพมากขึ้น เนื่องจากไม่ขึ้นอยู่กับอุณหภูมิของอากาศภายนอกที่รับเข้ามา จัดหาการระบายอากาศและอุณหภูมิที่ตั้งไว้เพื่อให้ความร้อนอากาศที่ฉีดเข้าไปในห้อง

นอกจากนี้ เมื่อใช้งานปั๊มความร้อนแบบย้อนกลับได้ทั้งในระบบบำบัดน้ำเสียและไอเสีย สามารถใช้เพื่อขจัดความร้อนส่วนเกินออกจากวงจรน้ำในช่วงฤดูร้อน และลดความจุที่ต้องการของหอทำความเย็น

ในฤดูร้อน ด้วยความช่วยเหลือของปั๊มความร้อน ความร้อนส่วนเกินในวงจรน้ำจะถูกใช้ผ่านผู้บริโภคที่มีอยู่ในโรงงาน ตัวอย่างเช่น สามารถเชื่อมต่อ HPI ระหว่างน้ำกับน้ำกับระบบวงแหวน เพื่อถ่ายเทความร้อนส่วนเกินไปยังระบบจ่ายน้ำร้อน (DHW) ในสถานที่ที่มีความต้องการน้ำร้อนเพียงเล็กน้อยเช่น ปั๊มความร้อนก็อาจเพียงพอที่จะสนองพวกเขาได้อย่างสมบูรณ์

หากสถานประกอบการมีสระว่ายน้ำอย่างน้อย 1 สระ เช่น ในสถานบริการสุขภาพ บ้านพัก สถานบันเทิง และโรงแรม น้ำร้อนในสระก็สามารถให้ความร้อนได้โดยใช้ปั๊มความร้อนแบบน้ำต่อน้ำโดยเชื่อมต่อกับ KTS

การรวมระบบวงแหวนกับระบบอื่นๆ

ระบบระบายอากาศในอาคารที่ใช้ระบบปั๊มความร้อนรูปวงแหวนต้องได้รับการพัฒนาโดยคำนึงถึงลักษณะเฉพาะของการทำงานของ HPP ที่ปรับสภาพอากาศ จำเป็นต้องหมุนเวียนอากาศในปริมาตรที่จำเป็นสำหรับการทำงานที่มั่นคงของปั๊มความร้อนเหล่านี้ รักษาอุณหภูมิที่ตั้งไว้ในห้องและการนำความร้อนกลับคืนอย่างมีประสิทธิภาพ (ยกเว้นกรณีที่ไม่ต้องการการหมุนเวียนซ้ำ เช่น โถงสระว่ายน้ำ ท้องถิ่น เครื่องดูดควันครัว). มีคุณสมบัติอื่นๆ ในการพัฒนาระบบระบายอากาศด้วย CTNS

อย่างไรก็ตาม ในขณะเดียวกัน ระบบเสียงกริ่งก็ให้มากกว่า ระบบง่ายๆระบายอากาศได้ดีกว่าเครื่องปรับอากาศประเภทอื่น ปั๊มความร้อนดำเนินการปรับอากาศโดยตรงที่ไซต์งาน ในห้องนั้นเอง ซึ่งช่วยลดความจำเป็นในการขนส่งอากาศที่เสร็จแล้วผ่านท่ออากาศยาวที่หุ้มฉนวนความร้อน เช่น กับเครื่องปรับอากาศส่วนกลาง

ระบบวงแหวนสามารถเข้าควบคุมฟังก์ชั่นการทำความร้อนได้อย่างเต็มที่ แต่ไม่รวมการใช้งานร่วมกับระบบทำความร้อน ในกรณีนี้จะใช้ระบบทำความร้อนที่มีประสิทธิภาพน้อยกว่าและง่ายกว่าในทางเทคนิค ระบบไบวาเลนต์ดังกล่าวเหมาะสำหรับ ละติจูดเหนือที่ต้องการความร้อนมากขึ้นเพื่อให้ความร้อนและจะต้องจ่ายให้กับ มากกว่าจากแหล่งที่มีศักยภาพสูง หากอาคารมี แต่ละระบบเครื่องปรับอากาศและเครื่องทำความร้อน ระบบเหล่านี้มักจะรบกวนซึ่งกันและกัน โดยเฉพาะในช่วงเปลี่ยนผ่าน การใช้ระบบวงแหวนร่วมกับระบบทำความร้อนไม่ก่อให้เกิดปัญหาดังกล่าว เนื่องจากการทำงานของระบบจะขึ้นอยู่กับสภาพที่แท้จริงของสภาพอากาศในแต่ละโซน

ที่สถานประกอบการ ระบบปั๊มความร้อนแบบวงแหวนสามารถเกี่ยวข้องกับการให้ความร้อนหรือความเย็นกับน้ำหรืออากาศเพื่อวัตถุประสงค์ทางเทคโนโลยี และกระบวนการเหล่านี้จะรวมอยู่ในความสมดุลของการจ่ายความร้อนทั่วไปขององค์กร

เมื่อพูดถึงระบบจ่ายความร้อนแบบเดิมๆ เป็นเรื่องยากที่จะเห็นด้วยกับประสิทธิภาพที่จำกัด ใช้ความร้อนเพียงบางส่วน กระจายสู่บรรยากาศอย่างรวดเร็ว (ในระหว่างการให้ความร้อนและการระบายอากาศ) นำออกจาก น้ำเสีย(ผ่านการจ่ายน้ำร้อน กระบวนการทางเทคโนโลยี) และด้วยวิธีอื่นๆ นอกจากนี้ยังเป็นการดีหากมีการติดตั้งเครื่องแลกเปลี่ยนความร้อนแบบอากาศสู่อากาศในระบบระบายอากาศ หรือเครื่องแลกเปลี่ยนความร้อนแบบน้ำสู่น้ำเพื่อการนำความร้อนกลับมาใช้ใหม่ เช่น หน่วยทำความเย็น หรืออุปกรณ์นำความร้อนกลับคืนในพื้นที่อื่นๆ ในทางกลับกัน KTNS แก้ปัญหานี้ในลักษณะที่ซับซ้อน ในหลายกรณีทำให้การกู้คืนความร้อนมีประสิทธิภาพมากขึ้น

ระบบควบคุมวงแหวนอัตโนมัติ

สร้างความผิดหวังให้กับผู้ผลิตระบบอัตโนมัติที่มีราคาแพงหลายราย ระบบปั๊มความร้อนไม่ต้องการสิ่งอำนวยความสะดวกที่ซับซ้อน ระบบควบคุมอัตโนมัติ. กฎระเบียบทั้งหมดที่นี่จะลดลงเพื่อรักษาค่าอุณหภูมิของน้ำในวงจรเท่านั้น เพื่อป้องกันไม่ให้น้ำหล่อเย็นต่ำกว่าขีดจำกัดที่ตั้งไว้ จำเป็นต้องเปิดฮีตเตอร์เพิ่มเติมให้ทันเวลา และในทางกลับกันเพื่อไม่ให้เกินขีด จำกัด บนจำเป็นต้องเปิดหอทำความเย็นในเวลาที่เหมาะสม ระบบควบคุมอัตโนมัตินี้ ขั้นตอนง่ายๆสามารถใช้งานได้โดยใช้เทอร์โมสตัทหลายตัว เนื่องจากอุณหภูมิของน้ำในวงจร HPNS อาจแตกต่างกันไปในช่วงที่ค่อนข้างกว้าง (โดยปกติอยู่ที่ 18 ถึง 320C) จึงไม่จำเป็นต้องใช้วาล์วควบคุมที่แม่นยำ

สำหรับกระบวนการถ่ายเทความร้อนจากปั๊มความร้อนไปยังผู้บริโภคนั้น จะถูกควบคุมโดยระบบอัตโนมัติที่ติดตั้งอยู่ในปั๊มความร้อนแต่ละตัว ตัวอย่างเช่น HPI สำหรับเครื่องปรับอากาศมีเซ็นเซอร์อุณหภูมิ (เทอร์โม) ติดตั้งโดยตรงในห้อง เทอร์โมสแตทธรรมดานี้เพียงพอที่จะควบคุมการทำงานของ HP

ปั๊มความร้อนให้สิ่งจำเป็นอย่างเต็มที่ พารามิเตอร์อุณหภูมิอากาศในห้องซึ่งทำให้สามารถปฏิเสธแดมเปอร์ควบคุมในระบบระบายอากาศและวาล์วควบคุมในระบบทำความร้อน (ด้วยระบบไบวาเลนต์) สถานการณ์ทั้งหมดนี้มีส่วนช่วยในการลดต้นทุนและเพิ่มความน่าเชื่อถือของระบบวิศวกรรมโดยรวม

ที่โรงงานขนาดใหญ่ ซึ่งระบบวงแหวนประกอบด้วยปั๊มความร้อนจำนวนมากและมีการติดตั้งปั๊มความร้อนประเภทต่างๆ (สำหรับเครื่องปรับอากาศ การนำความร้อนกลับมาใช้ใหม่ และสำหรับกระบวนการทางเทคโนโลยี) มักจะเหมาะสมที่จะนำไปใช้งานมากกว่านี้ ระบบที่ซับซ้อนการควบคุมอัตโนมัติซึ่งช่วยให้คุณปรับการทำงานของทั้งระบบให้เหมาะสมที่สุด

การทำงานของระบบปั๊มความร้อนรูปวงแหวนได้รับผลกระทบจาก ปัจจัยดังต่อไปนี้:

  • ประการแรก อุณหภูมิของน้ำในวงจร ค่าสัมประสิทธิ์การแปลงความร้อน (COP) ขึ้นอยู่กับนั่นคืออัตราส่วนของปริมาณความร้อนที่จ่ายให้กับผู้บริโภคต่อปริมาณพลังงานที่ปั๊มความร้อนใช้
  • ประการที่สอง อุณหภูมิอากาศภายนอก
  • ประการที่สาม พารามิเตอร์การทำงานของหอทำความเย็น สำหรับความร้อนในปริมาณเท่ากันที่เอาออกที่ เงื่อนไขต่างๆหอหล่อเย็นใช้พลังงานในปริมาณที่แตกต่างกันออกไป ในทางกลับกันก็ขึ้นอยู่กับอุณหภูมิของอากาศภายนอก ความชื้น การปรากฏตัวของลมและสภาวะอื่นๆ
  • ประการที่สี่ จากจำนวนพนักงานใน ช่วงเวลานี้ในระบบปั๊มความร้อน ที่นี่ กำลังทั้งหมดของ HPI ซึ่งนำความร้อนจากวงจรน้ำ มีความสำคัญเมื่อเปรียบเทียบกับพลังของ HPI ทั้งหมดที่ถ่ายเทความร้อนไปยังวงจร กล่าวคือ ปริมาณความร้อนที่เข้าสู่วงจรหรือนำออกจากวงจร

ดีสำหรับเด็ก ดีสำหรับงบประมาณ

ไปที่คำอธิบายของโครงการโดยใช้ระบบปั๊มความร้อนแบบวงแหวน

โครงการแรกคือการสร้างใหม่ตามแบบแผน โรงเรียนมัธยมทางตอนใต้ของรัสเซีย ฤดูร้อนที่แล้ว ฝ่ายบริหาร ดินแดนครัสโนดาร์ดำเนินโครงการนี้ใน Ust-Labinsk (โรงเรียนในเมืองหมายเลข 2) ระหว่างการก่อสร้างใหม่ ได้มีการรักษามาตรฐานสูงสุดในด้านข้อกำหนดด้านสุขอนามัยและการเข้าพักที่สะดวกสบายสำหรับเด็กที่โรงเรียน โดยเฉพาะอย่างยิ่ง มีการติดตั้งระบบสภาพอากาศแบบครบวงจรในอาคาร โดยให้การควบคุมอุณหภูมิ การไหลของอากาศบริสุทธิ์ และความชื้นในแต่ละโซน

ในการดำเนินโครงการนี้ วิศวกรต้องการความมั่นใจในระดับที่เหมาะสม การควบคุมส่วนบุคคลในแต่ละชั้นเรียน ประการที่สอง สันนิษฐานว่าระบบวงแหวนจะช่วยลดต้นทุนการให้ความร้อนแก่โรงเรียนได้อย่างมาก และแก้ปัญหาอุณหภูมิน้ำต่ำในโรงทำความร้อนในบริเวณโรงเรียน ระบบประกอบด้วยปั๊มความร้อนมากกว่าห้าสิบตัวที่ผลิตโดย Climatemaster (USA) และหอทำความเย็น ได้รับความร้อนเพิ่มเติมจากโรงทำความร้อนของเมือง ระบบสภาพอากาศอยู่ภายใต้การควบคุมอัตโนมัติและสามารถรักษาความสะดวกสบายสูงสุดสำหรับแต่ละคนได้อย่างอิสระและในขณะเดียวกันก็มีโหมดการทำงานที่ประหยัด

การทำงานของระบบที่อธิบายไว้ในฤดูหนาวให้ผลลัพธ์ดังต่อไปนี้:

  • ก่อนการปรับปรุงให้ทันสมัย ​​(ก่อนการติดตั้งปั๊มความร้อน) ค่าทำความร้อนรายเดือนสำหรับ 2,500 m2 คือ 18,440 รูเบิล
  • หลังจากการปรับปรุงอาคารให้ทันสมัย ​​พื้นที่ทำความร้อนเพิ่มขึ้นเป็น 3000 ตร.ม. และค่าใช้จ่ายในการทำความร้อนรายเดือนลดลงเหลือ 9800 รูเบิล

ดังนั้นการใช้ปั๊มความร้อนทำให้สามารถลดต้นทุนการทำความร้อนในอาคารได้มากกว่าครึ่งหนึ่งซึ่งเป็นพื้นที่ที่ให้ความร้อนเพิ่มขึ้นเกือบ 20%

ความร้อนอัตโนมัติ

ปัญหาการก่อสร้างกระท่อมในภูมิภาคมอสโกในปัจจุบันเกิดจากโครงสร้างพื้นฐาน ( ไฟฟ้าของเน็ต,ท่อน้ำ) มักจะป้องกันการเจริญเติบโตของการตั้งถิ่นฐานใหม่ ที่มีอยู่ สถานีไฟฟ้าย่อยไม่สามารถรับมือกับปริมาณงานที่เพิ่มขึ้นได้ การหยุดชะงักของการจ่ายไฟฟ้าอย่างต่อเนื่อง (อุบัติเหตุที่สถานีไฟฟ้าย่อยเก่า สายไฟชำรุด) บังคับให้ผู้บริโภคมองหาวิธีการจ่ายไฟอัตโนมัติ

ในโครงการที่อธิบายไว้ วิศวกรต้องเผชิญกับภารกิจในการจัดหาห้องหลายห้อง กระท่อมสองชั้นด้วยความร้อนใต้หลังคาและไฟฟ้า พื้นที่ทำความร้อนทั้งหมดของบ้านคือ 200 m2 จากการสื่อสารที่ล้มเหลว - น้ำบาดาลและไฟฟ้า

เนื่องจากข้อกำหนดด้านประสิทธิภาพการใช้พลังงานอยู่ในระดับแนวหน้า จึงตัดสินใจติดตั้งแผงโซลาร์เซลล์ ซื้อและติดตั้งโมดูลเซลล์แสงอาทิตย์ขนาด 3.5 กิโลวัตต์ที่ไซต์หลังบ้าน ตามการคำนวณของวิศวกร นี่น่าจะเพียงพอแล้วสำหรับการชาร์จแบตเตอรี ซึ่งในทางกลับกัน ก็จะป้อนอาหารให้โรงเรือนและระบบทำความร้อนอย่างต่อเนื่อง ค่าใช้จ่ายทั้งหมดของระบบอยู่ที่ประมาณ 27,000 เหรียญ ระบุว่าแหล่งที่มาที่ได้รับ ไฟฟ้าฟรีและบทความนี้จะถูกลบออกจาก งบประมาณครอบครัวปรากฎว่าค่าติดตั้ง แบตเตอรี่พลังงานแสงอาทิตย์คืนทุนภายในเวลาไม่ถึง 10 ปี และหากเราพิจารณาเป็นอย่างอื่น เราจะต้องสร้างสถานีย่อยหรือใช้ชีวิตโดยที่ไฟฟ้าดับอย่างต่อเนื่อง ค่าใช้จ่ายก็ถือว่าได้รับการชำระแล้ว

เพื่อให้ความร้อน ได้มีการตัดสินใจใช้ระบบปั๊มความร้อนใต้พิภพ ซื้อปั๊มความร้อนแบบน้ำต่อน้ำของอเมริกา ปั๊มความร้อนชนิดนี้ด้วยความช่วยเหลือของเครื่องแลกเปลี่ยนความร้อนผลิต น้ำร้อนซึ่งสามารถใช้สำหรับการจ่ายน้ำร้อนและทำความร้อนโดยใช้แบตเตอรี่หม้อน้ำ วงจรเองที่จ่ายความร้อนเกรดต่ำไปยังปั๊มความร้อนนั้นถูกวางโดยตรงบนไซต์ที่อยู่ติดกับกระท่อมที่ความลึก 2 ม. วงจรคือ ท่อโพลีเอทิลีนที่มีเส้นผ่านศูนย์กลาง 32 มม. และยาว 800 ม. การติดตั้งปั๊มความร้อนพร้อมติดตั้ง จัดหาอุปกรณ์และส่วนประกอบราคา 10,000 ดอลลาร์สหรัฐ

ดังนั้น หลังจากใช้เงินไปประมาณ 40,000 ดอลลาร์สหรัฐในการจัดระบบพลังงานอิสระของตัวเอง เจ้าของกระท่อมจึงยกเว้นค่าใช้จ่ายด้านการจ่ายความร้อนออกจากงบประมาณของเขา และให้ความร้อนอัตโนมัติที่เชื่อถือได้

ความเป็นไปได้ของการประยุกต์ใช้ระบบวงแหวน

จากที่กล่าวมาข้างต้น ความเป็นไปได้ของการใช้ระบบปั๊มความร้อนรูปวงแหวนนั้นกว้างผิดปกติ สามารถใช้กับวัตถุได้หลากหลาย เหล่านี้คือการบริหาร อาคารสาธารณะ, สถาบันทางการแพทย์และสุขภาพ, บ้านพัก, สถานบันเทิงและ สปอร์ตคอมเพล็กซ์,สถานประกอบการอุตสาหกรรมต่างๆ ระบบมีความยืดหยุ่นมากจนสามารถประยุกต์ใช้งานได้ในหลายกรณีและในหลายกรณี จำนวนมากตัวเลือก.

ในการพัฒนาระบบดังกล่าว ก่อนอื่น จำเป็นต้องประเมินความต้องการความร้อนและความเย็นของวัตถุที่ออกแบบ เพื่อศึกษาแหล่งความร้อนที่เป็นไปได้ทั้งหมดภายในอาคารและตัวรับความร้อนในอนาคตทั้งหมด เพื่อกำหนดความร้อนที่เพิ่มขึ้นและการสูญเสียความร้อน สามารถใช้แหล่งความร้อนที่เหมาะสมที่สุดใน ระบบวงแหวนในกรณีที่ความร้อนนี้จะเป็นที่ต้องการ ความจุรวมของปั๊มความร้อนการนำความร้อนกลับมาใช้ใหม่ไม่ควรเกินความจำเป็น ภายใต้เงื่อนไขบางประการ ตัวเลือกที่ทำกำไรได้มากที่สุดอาจเป็นการติดตั้ง HPP ที่ใช้สภาพแวดล้อมภายนอกเป็นแหล่งและรับความร้อน ระบบต้องมีความสมดุลในแง่ของความร้อน แต่ไม่ได้หมายความว่าความจุรวมของแหล่งความร้อนและผู้บริโภคควรเท่ากัน แต่อาจแตกต่างกันได้เนื่องจากอัตราส่วนสามารถเปลี่ยนแปลงได้อย่างมากเมื่อสภาพการทำงานของระบบเปลี่ยนแปลง

วิธีจัดการกับอันตรายจากไฟไหม้ของท่ออากาศ

ด้านหลัง เมื่อเร็ว ๆ นี้จำนวนไฟไหม้และการระเบิดภายในท่อระบายอากาศและระบบปรับอากาศเพิ่มขึ้นอย่างรวดเร็ว แม้ว่าไฟดังกล่าวจะเกิดขึ้นเสมอ แต่การเปลี่ยนแปลงล่าสุดได้นำไปสู่ไฟที่ใหญ่กว่ามากที่เกี่ยวข้อง มากกว่าของคน

การวิเคราะห์ระบบจ่ายความร้อนขั้นสูง

รายงานนี้กล่าวถึงประเด็นที่เกี่ยวข้องกับการเปลี่ยนแปลงของระบบ เครื่องทำความร้อนอำเภอเพื่อกระจายอำนาจ บวกและ ด้านลบทั้งสองระบบ มีการนำเสนอผลการเปรียบเทียบระบบเหล่านี้

ในปีที่ผ่านมา ปั๊มความร้อนได้ครอบครองตลาดเฉพาะด้านของตลาดสภาพอากาศของรัสเซีย ท่ามกลางเทคโนโลยียอดนิยมอื่นๆ การอภิปรายเกี่ยวกับข้อดีและข้อเสียของการติดตั้งปั๊มความร้อน (HPU) เกิดขึ้นทั้งในหน้าของสื่ออุตสาหกรรมและในการประชุมเฉพาะเรื่องและโต๊ะกลม เมื่อเร็ว ๆ นี้มีข้อมูลมากมายเกี่ยวกับปั๊มความร้อน - ทั้งในอินเทอร์เน็ตภาษารัสเซียและในสื่อเฉพาะทาง อย่างไรก็ตาม ยังมีสิ่งพิมพ์เกี่ยวกับระบบปั๊มความร้อนแบบรวมอยู่น้อยมาก บทความนี้มีวัตถุประสงค์เพื่อเติมช่องว่างนี้บ้าง เพื่อสรุปคำถามบางข้อที่เกิดขึ้นในผู้เชี่ยวชาญ เมื่อพวกเขาทำความคุ้นเคยกับระบบถ่ายเทความร้อนแบบวงแหวนในครั้งแรก และเพื่อตอบคำถามเหล่านั้นโดยสังเขป

ดังนั้นจึงเป็นที่ทราบกันดีเกี่ยวกับปั๊มความร้อนว่านี่คืออุปกรณ์ภูมิอากาศที่สามารถใช้ความร้อนจากสิ่งแวดล้อม โดยใช้คอมเพรสเซอร์เพื่อเพิ่มอุณหภูมิของสารหล่อเย็นให้ถึงระดับที่ต้องการและถ่ายเทความร้อนนี้ไปยังที่ที่ต้องการ

เกือบจะเป็นไปได้เสมอที่จะดึงความร้อนออกจากสิ่งแวดล้อม ท้ายที่สุดแล้ว "น้ำเย็น" เป็นแนวคิดส่วนตัวตามความรู้สึกของเรา แม้แต่น้ำในแม่น้ำที่เย็นที่สุดก็ยังมีความร้อนอยู่บ้าง แต่เป็นที่ทราบกันดีอยู่แล้วว่าความร้อนส่งผ่านจากตัวที่ร้อนกว่าไปยังตัวที่เย็นกว่าเท่านั้น ความร้อนสามารถบังคับทิศทางจากร่างกายที่เย็นไปยังร่างกายที่อบอุ่น จากนั้นร่างกายที่เย็นชาก็จะเย็นลงยิ่งขึ้นไปอีก และร่างกายที่อุ่นก็จะร้อนขึ้น การใช้ปั๊มความร้อนที่ "สูบฉีด" ความร้อนจากอากาศ น้ำในแม่น้ำ หรือดิน ทำให้อุณหภูมิลดลงมากยิ่งขึ้นไปอีก ทำให้อาคารร้อนขึ้นได้ ในกรณีคลาสสิก ถือว่าการใช้ไฟฟ้า 1 กิโลวัตต์ในการทำงาน HPI สามารถผลิตพลังงานความร้อนได้ตั้งแต่ 3 ถึง 6 กิโลวัตต์ ในทางปฏิบัติ นี่หมายความว่าพลังของหลอดไฟในบ้านสองหรือสามดวงในฤดูหนาวสามารถให้ความร้อนกับห้องนั่งเล่นขนาดกลางได้ ในฤดูร้อน โดยการทำงานในโหมดย้อนกลับ ปั๊มความร้อนสามารถทำให้อากาศภายในห้องของอาคารเย็นลงได้ ความร้อนจากอาคารจะถูกดูดกลืนโดยชั้นบรรยากาศ แม่น้ำ หรือดิน

ปัจจุบันมีการติดตั้งปั๊มความร้อนจำนวนมาก ซึ่งช่วยให้สามารถใช้กันอย่างแพร่หลายในอุตสาหกรรม การเกษตร ที่อยู่อาศัย และบริการชุมชน ตัวอย่างการใช้ HPP ในตอนท้ายของบทความเราจะพิจารณาสองโครงการ - หนึ่งในนั้นคือโครงการระบบวงแหวนขนาดใหญ่ที่ดำเนินการในดินแดนครัสโนดาร์โครงการที่สองคือโรงงานก่อสร้างขนาดเล็กในมอสโก ภูมิภาค.

ปั๊มความร้อนคืออะไร?

ปั๊มความร้อนมีเอาต์พุตความร้อนที่หลากหลายตั้งแต่ไม่กี่กิโลวัตต์จนถึงหลายร้อยเมกะวัตต์ สามารถทำงานกับแหล่งความร้อนต่าง ๆ ในสถานะการรวมตัวที่แตกต่างกัน ในเรื่องนี้สามารถแบ่งออกเป็นประเภทต่อไปนี้: น้ำ - น้ำ, น้ำ - อากาศ, อากาศ - น้ำ, อากาศ - อากาศ. ผลิตปั๊มความร้อน ซึ่งออกแบบมาเพื่อทำงานกับแหล่งความร้อนระดับต่ำในอุณหภูมิต่างๆ จนถึงค่าลบ สามารถใช้เป็นตัวรับความร้อนสูงที่ต้องการอุณหภูมิที่ต่างกัน แม้จะสูงกว่า 1,000C ทั้งนี้ขึ้นอยู่กับสิ่งนี้ ปั๊มความร้อนสามารถแบ่งออกเป็นอุณหภูมิต่ำ อุณหภูมิปานกลาง และอุณหภูมิสูง

ปั๊มความร้อนยังแตกต่างกันในการออกแบบทางเทคนิค ในเรื่องนี้สามารถแยกแยะได้สองทิศทาง: การอัดไอและการดูดซับ HPP ปั๊มความร้อนยังสามารถใช้พลังงานประเภทอื่นๆ ในการทำงานได้ นอกเหนือจากไฟฟ้า เช่น สามารถใช้เชื้อเพลิงประเภทต่างๆ ได้

แหล่งความร้อนคุณภาพต่ำและตัวรับความร้อนคุณภาพสูงจากแหล่งต่างๆ รวมกันทำให้เกิดปั๊มความร้อนประเภทต่างๆ นี่คือตัวอย่างบางส่วน:

  • HPP โดยใช้ความร้อนของน้ำใต้ดินเพื่อให้ความร้อน
  • HPP โดยใช้ความร้อนจากอ่างเก็บน้ำธรรมชาติสำหรับการจ่ายน้ำร้อน
  • เครื่องปรับอากาศ HPI ใช้น้ำทะเลเป็นแหล่งและรับความร้อน
  • เครื่องปรับอากาศ HPI ที่ใช้อากาศภายนอกเป็นแหล่งและรับความร้อน
  • HPI สำหรับทำน้ำร้อนในสระว่ายน้ำโดยใช้ความร้อนจากอากาศภายนอก
  • HPP ใช้ความร้อนจากน้ำเสียในระบบจ่ายความร้อน
  • HPP ใช้ความร้อนของอุปกรณ์วิศวกรรมและเทคนิคในระบบจ่ายความร้อน
  • HPP สำหรับทำความเย็นนมและในเวลาเดียวกันให้น้ำร้อนสำหรับการจ่ายน้ำร้อนในฟาร์มโคนม
  • HPP สำหรับการนำความร้อนกลับมาใช้ใหม่จากกระบวนการทางเทคโนโลยีในการให้ความร้อนเบื้องต้นของอากาศจ่าย

อุปกรณ์ปั๊มความร้อนจำนวนมากผลิตขึ้นเป็นจำนวนมาก แต่สามารถผลิตปั๊มความร้อนตามโครงการพิเศษได้เช่นกัน มีการติดตั้งทดลอง ตัวอย่างอุตสาหกรรมนำร่อง ตลอดจนการพัฒนาเชิงทฤษฎีมากมาย

หากโรงงานมีปั๊มความร้อนให้ใช้หลายตัว ซึ่งจะออกแบบให้ผลิตได้ทั้งความร้อนและความเย็น ประสิทธิภาพของปั๊มจะเพิ่มขึ้นหลายเท่าหากรวมกันเป็นระบบเดียว สิ่งเหล่านี้เรียกว่าระบบปั๊มความร้อนแบบวงแหวน (KHNS) ระบบดังกล่าวเหมาะสมที่จะใช้กับวัตถุขนาดกลางและขนาดใหญ่

ระบบปรับอากาศแบบวงแหวน

ระบบเหล่านี้ใช้ปั๊มความร้อนแบบน้ำและอากาศที่ทำหน้าที่ของเครื่องปรับอากาศภายในอาคาร ในห้องที่มีเครื่องปรับอากาศ (หรือถัดจากนั้น) มีการติดตั้งปั๊มความร้อนซึ่งกำลังถูกเลือกตามพารามิเตอร์ของห้อง, วัตถุประสงค์, ลักษณะของที่ต้องการ อุปทานและการระบายอากาศ, จำนวนคนที่เป็นไปได้, อุปกรณ์ที่ติดตั้งและเกณฑ์อื่น ๆ HPP ทั้งหมดสามารถย้อนกลับได้ กล่าวคือ ออกแบบมาสำหรับทั้งอากาศเย็นและอากาศร้อน ทั้งหมดเชื่อมต่อกันด้วยวงจรน้ำทั่วไป - ท่อที่น้ำหมุนเวียน น้ำเป็นทั้งแหล่งและตัวรับความร้อนสำหรับ HPI ทั้งหมด อุณหภูมิในวงจรสามารถเปลี่ยนแปลงได้ตั้งแต่ 18 ถึง 320C ระหว่างปั๊มความร้อนที่ให้ความร้อนในอากาศกับปั๊มที่ทำให้เย็นลง ความร้อนจะถูกแลกเปลี่ยนผ่านวงจรน้ำ ขึ้นอยู่กับลักษณะของสถานที่ เช่นเดียวกับช่วงเวลาของปีและช่วงเวลาของวัน อาจต้องใช้ความร้อนหรือความเย็นของอากาศในห้องต่างๆ ด้วยการทำงานพร้อมกันในอาคารเดียวกันของ HPI ที่ผลิตความร้อนและความเย็น ความร้อนจะถูกถ่ายเทจากห้องที่มีส่วนเกินไปยังห้องที่ไม่เพียงพอ ดังนั้นจึงมีการแลกเปลี่ยนความร้อนระหว่างโซนรวมกันเป็นวงแหวนเดียว

นอกจาก HPP ที่ทำหน้าที่ของเครื่องปรับอากาศแล้ว HPP สำหรับวัตถุประสงค์อื่นอาจรวมอยู่ใน HPP ด้วย หากมีความต้องการความร้อนเพียงพอที่โรงงาน ความร้อนเหลือทิ้งสามารถนำมาใช้อย่างมีประสิทธิภาพผ่านระบบวงแหวนโดยใช้ HPI ตัวอย่างเช่น ในที่ที่มีการไหลของน้ำเสียอย่างเข้มข้น การติดตั้ง HPI แบบน้ำต่อน้ำนั้นสมเหตุสมผล ซึ่งจะทำให้ความร้อนเหลือทิ้งถูกนำมาใช้โดยใช้ HPS ปั๊มความร้อนดังกล่าวจะสามารถดึงความร้อนออกจากน้ำเสีย ถ่ายโอนโดยใช้วงจรวงแหวน แล้วใช้ความร้อนในห้อง

อากาศที่ถูกขับออกจากอาคารโดยการระบายอากาศยังมีความร้อนอยู่เป็นจำนวนมาก ในกรณีที่ไม่มีสิ่งเจือปนจำนวนมากในอากาศเสียที่ขัดขวางการทำงานของ HPI คุณสามารถใช้ความร้อนของอากาศเสียโดยการติดตั้ง HPI แบบอากาศสู่น้ำ ผู้บริโภคทุกคนในอาคารสามารถใช้ความร้อนนี้ผ่าน CHP ได้ ซึ่งทำได้ยากโดยใช้เครื่องกำเนิดใหม่และการกู้คืนแบบเดิม นอกจากนี้ กระบวนการรีไซเคิลในกรณีนี้สามารถมีประสิทธิภาพมากขึ้น เนื่องจากไม่ขึ้นอยู่กับอุณหภูมิของอากาศภายนอกที่ระบายอากาศเข้า และอุณหภูมิที่ตั้งไว้เพื่อให้ความร้อนกับอากาศที่ฉีดเข้าไปในอาคาร

นอกจากนี้ เมื่อใช้งานปั๊มความร้อนแบบย้อนกลับได้ทั้งในระบบบำบัดน้ำเสียและไอเสีย สามารถใช้เพื่อขจัดความร้อนส่วนเกินออกจากวงจรน้ำในช่วงฤดูร้อน และลดความจุที่ต้องการของหอทำความเย็น

ในฤดูร้อน ด้วยความช่วยเหลือของปั๊มความร้อน ความร้อนส่วนเกินในวงจรน้ำจะถูกใช้ผ่านผู้บริโภคที่มีอยู่ในโรงงาน ตัวอย่างเช่น สามารถเชื่อมต่อ HPI ระหว่างน้ำกับน้ำกับระบบวงแหวน เพื่อถ่ายเทความร้อนส่วนเกินไปยังระบบจ่ายน้ำร้อน (DHW) ในโรงงานที่ไม่ต้องการน้ำร้อนเพียงเล็กน้อย ปั๊มความร้อนนี้อาจเพียงพอที่จะตอบสนองความต้องการได้อย่างเต็มที่

หากสถานประกอบการมีสระว่ายน้ำอย่างน้อย 1 สระ เช่น ในสถานบริการสุขภาพ บ้านพัก สถานบันเทิง และโรงแรม สามารถให้ความร้อนน้ำในสระโดยใช้ปั๊มความร้อนแบบน้ำต่อน้ำโดยเชื่อมต่อกับ KTN

การรวมระบบวงแหวนกับระบบอื่นๆ

ระบบระบายอากาศในอาคารที่ใช้ระบบปั๊มความร้อนรูปวงแหวนต้องได้รับการพัฒนาโดยคำนึงถึงลักษณะเฉพาะของการทำงานของ HPP ที่ปรับสภาพอากาศ จำเป็นต้องหมุนเวียนอากาศในปริมาณที่จำเป็นสำหรับการทำงานที่มั่นคงของปั๊มความร้อนเหล่านี้ รักษาอุณหภูมิที่ตั้งไว้ในห้องและการนำความร้อนกลับคืนอย่างมีประสิทธิภาพ (ยกเว้นกรณีที่ไม่ต้องการการหมุนเวียนซ้ำ เช่น โถงสระว่ายน้ำ ห้องครัวในท้องที่ หมวก) มีคุณสมบัติอื่นๆ ในการพัฒนาระบบระบายอากาศด้วย CTNS

อย่างไรก็ตาม ในขณะเดียวกัน ระบบวงแหวนก็ช่วยให้ระบบระบายอากาศได้ง่ายกว่าวิธีการปรับอากาศแบบอื่นๆ ปั๊มความร้อนดำเนินการปรับอากาศโดยตรงที่ไซต์งาน ในห้องนั้นเอง ซึ่งช่วยลดความจำเป็นในการขนส่งอากาศที่เสร็จแล้วผ่านท่ออากาศยาวที่หุ้มฉนวนความร้อน เช่น กับเครื่องปรับอากาศส่วนกลาง

ระบบวงแหวนสามารถเข้าควบคุมฟังก์ชั่นการทำความร้อนได้อย่างเต็มที่ แต่ไม่รวมการใช้งานร่วมกับระบบทำความร้อน ในกรณีนี้จะใช้ระบบทำความร้อนที่มีประสิทธิภาพน้อยกว่าและง่ายกว่าในทางเทคนิค ระบบไบวาเลนต์ดังกล่าวมีความเหมาะสมมากกว่าในละติจูดเหนือ เมื่อจำเป็น ความร้อนมากขึ้นเพื่อให้ความร้อนและจะต้องจัดหาในปริมาณที่มากขึ้นจากแหล่งที่มีศักยภาพสูง หากมีการติดตั้งระบบปรับอากาศและระบบทำความร้อนแยกต่างหากในอาคาร ระบบเหล่านี้มักจะรบกวนซึ่งกันและกัน โดยเฉพาะในช่วงเปลี่ยนผ่าน การใช้ระบบวงแหวนร่วมกับระบบทำความร้อนไม่ก่อให้เกิดปัญหาดังกล่าว เนื่องจากการทำงานของระบบจะขึ้นอยู่กับสภาพที่แท้จริงของสภาพอากาศในแต่ละโซน

ที่สถานประกอบการ ระบบปั๊มความร้อนแบบวงแหวนสามารถเกี่ยวข้องกับการให้ความร้อนหรือความเย็นกับน้ำหรืออากาศเพื่อวัตถุประสงค์ทางเทคโนโลยี และกระบวนการเหล่านี้จะรวมอยู่ในความสมดุลของการจ่ายความร้อนทั่วไปขององค์กร

เมื่อพูดถึงระบบจ่ายความร้อนแบบเดิมๆ เป็นเรื่องยากที่จะเห็นด้วยกับประสิทธิภาพที่จำกัด ความร้อนถูกใช้ไปบางส่วนและกระจายสู่ชั้นบรรยากาศอย่างรวดเร็ว (ระหว่างการทำความร้อนและการระบายอากาศ) การกำจัดด้วยน้ำเสีย (ผ่านการจ่ายน้ำร้อน กระบวนการทางเทคโนโลยี) และด้วยวิธีอื่นๆ นอกจากนี้ยังเป็นการดีหากจะติดตั้งเครื่องแลกเปลี่ยนความร้อนแบบอากาศสู่อากาศในระบบระบายอากาศหรือแบบน้ำสู่น้ำเพื่อการนำความร้อนกลับมาใช้ใหม่ เป็นต้น หน่วยทำความเย็นหรืออุปกรณ์กู้คืนความร้อนในพื้นที่อื่นๆ ในทางกลับกัน KTNS แก้ปัญหานี้ในลักษณะที่ซับซ้อน ในหลายกรณีทำให้การกู้คืนความร้อนมีประสิทธิภาพมากขึ้น

ระบบควบคุมวงแหวนอัตโนมัติ

สร้างความผิดหวังให้กับผู้ผลิตระบบอัตโนมัติที่มีราคาแพงหลายราย ระบบปั๊มความร้อนไม่ต้องการการควบคุมอัตโนมัติที่ซับซ้อน กฎระเบียบทั้งหมดที่นี่จะลดลงเพื่อรักษาค่าอุณหภูมิของน้ำในวงจรเท่านั้น เพื่อป้องกันไม่ให้น้ำหล่อเย็นต่ำกว่าขีดจำกัดที่ตั้งไว้ จำเป็นต้องเปิดฮีตเตอร์เพิ่มเติมให้ทันเวลา และในทางกลับกันเพื่อไม่ให้เกินขีด จำกัด บนจำเป็นต้องเปิดหอทำความเย็นในเวลาที่เหมาะสม การควบคุมอัตโนมัติของกระบวนการง่ายๆ นี้สามารถทำได้โดยใช้ตัวควบคุมอุณหภูมิหลายตัว เนื่องจากอุณหภูมิของน้ำในวงจร HPNS อาจแตกต่างกันไปในช่วงที่ค่อนข้างกว้าง (โดยปกติอยู่ที่ 18 ถึง 320C) จึงไม่จำเป็นต้องใช้วาล์วควบคุมที่แม่นยำ

สำหรับกระบวนการถ่ายเทความร้อนจากปั๊มความร้อนไปยังผู้บริโภคนั้น จะถูกควบคุมโดยระบบอัตโนมัติที่ติดตั้งอยู่ในปั๊มความร้อนแต่ละตัว ตัวอย่างเช่น HPI สำหรับเครื่องปรับอากาศมีเซ็นเซอร์อุณหภูมิ (เทอร์โม) ติดตั้งโดยตรงในห้อง เทอร์โมสแตทธรรมดานี้เพียงพอที่จะควบคุมการทำงานของ HP

ปั๊มความร้อนให้พารามิเตอร์อุณหภูมิที่จำเป็นของอากาศภายในอาคารอย่างเต็มที่ ซึ่งทำให้สามารถปฏิเสธแดมเปอร์ควบคุมในระบบระบายอากาศและวาล์วควบคุมในระบบทำความร้อนได้ (ด้วยระบบไบวาเลนต์) สถานการณ์ทั้งหมดเหล่านี้มีส่วนช่วยในการลดต้นทุนและเพิ่มความน่าเชื่อถือ ระบบวิศวกรรมโดยทั่วไป.

ที่โรงงานขนาดใหญ่ที่ระบบวงแหวนประกอบด้วยปั๊มความร้อนจำนวนมากและมีการติดตั้ง HPP ประเภทต่างๆ (สำหรับเครื่องปรับอากาศ การนำความร้อนกลับมาใช้ใหม่ และเพื่อให้มั่นใจถึงกระบวนการทางเทคโนโลยี) มักจะเหมาะสมที่จะใช้ระบบควบคุมอัตโนมัติที่ซับซ้อนมากขึ้น ซึ่งช่วยให้ เพิ่มประสิทธิภาพการทำงานของทั้งระบบ

การทำงานของระบบปั๊มความร้อนรูปวงแหวนได้รับอิทธิพลจากปัจจัยต่อไปนี้:

  • ประการแรก อุณหภูมิของน้ำในวงจร ค่าสัมประสิทธิ์การแปลงความร้อน (COP) ขึ้นอยู่กับนั่นคืออัตราส่วนของปริมาณความร้อนที่จ่ายให้กับผู้บริโภคต่อปริมาณพลังงานที่ปั๊มความร้อนใช้
  • ประการที่สอง อุณหภูมิอากาศภายนอก
  • ประการที่สาม พารามิเตอร์การทำงานของหอทำความเย็น สำหรับปริมาณความร้อนที่ถ่ายเทออกเท่ากันภายใต้สภาวะที่ต่างกัน สามารถใช้พลังงานในปริมาณที่แตกต่างกันโดยหอหล่อเย็น ในทางกลับกันก็ขึ้นอยู่กับอุณหภูมิของอากาศภายนอก ความชื้น การปรากฏตัวของลมและสภาวะอื่นๆ
  • ประการที่สี่เกี่ยวกับจำนวนปั๊มความร้อนที่ทำงานอยู่ในระบบ ที่นี่ กำลังทั้งหมดของ HPI ซึ่งนำความร้อนจากวงจรน้ำ มีความสำคัญเมื่อเปรียบเทียบกับพลังของ HPI ทั้งหมดที่ถ่ายเทความร้อนไปยังวงจร กล่าวคือ ปริมาณความร้อนที่เข้าสู่วงจรหรือนำออกจากวงจร

ดีสำหรับเด็ก ดีสำหรับงบประมาณ

ไปที่คำอธิบายของโครงการโดยใช้ระบบปั๊มความร้อนแบบวงแหวน

โครงการแรกคือการสร้างโรงเรียนการศึกษาทั่วไปทางตอนใต้ของรัสเซียขึ้นใหม่ ฤดูร้อนที่แล้วการบริหารของดินแดนครัสโนดาร์ดำเนินโครงการนี้ใน Ust-Labinsk (โรงเรียนในเมืองหมายเลข 2) ระหว่างการก่อสร้างใหม่ ได้มีการรักษามาตรฐานสูงสุดในด้านข้อกำหนดด้านสุขอนามัยและการเข้าพักที่สะดวกสบายสำหรับเด็กที่โรงเรียน โดยเฉพาะอย่างยิ่งในอาคารมีการติดตั้งระบบสภาพอากาศที่เต็มเปี่ยมโดยให้การควบคุมอุณหภูมิการไหลเข้าในแต่ละโซน อากาศบริสุทธิ์และความชื้น

ในการดำเนินโครงการนี้ วิศวกรต้องการความมั่นใจในระดับที่เหมาะสม การควบคุมส่วนบุคคลในแต่ละชั้นเรียน ประการที่สอง สันนิษฐานว่าระบบวงแหวนจะช่วยลดต้นทุนการให้ความร้อนแก่โรงเรียนได้อย่างมาก และแก้ปัญหาอุณหภูมิน้ำต่ำในโรงทำความร้อนในบริเวณโรงเรียน ระบบประกอบด้วยปั๊มความร้อนมากกว่าห้าสิบตัวที่ผลิตโดย Climatemaster (USA) และหอทำความเย็น ได้รับความร้อนเพิ่มเติมจากโรงทำความร้อนของเมือง ระบบสภาพอากาศอยู่ภายใต้การควบคุมอัตโนมัติและสามารถรักษาความสะดวกสบายสูงสุดสำหรับแต่ละคนได้อย่างอิสระและในขณะเดียวกันก็มีโหมดการทำงานที่ประหยัด

การทำงานของระบบที่อธิบายไว้ในฤดูหนาวให้ผลลัพธ์ดังต่อไปนี้:

  • ก่อนการปรับปรุงให้ทันสมัย ​​(ก่อนการติดตั้งปั๊มความร้อน) ค่าทำความร้อนรายเดือนสำหรับ 2,500 m2 คือ 18,440 รูเบิล
  • หลังจากการปรับปรุงอาคารให้ทันสมัย ​​พื้นที่ทำความร้อนเพิ่มขึ้นเป็น 3000 ตร.ม. และค่าใช้จ่ายในการทำความร้อนรายเดือนลดลงเหลือ 9800 รูเบิล

ดังนั้นการใช้ปั๊มความร้อนทำให้สามารถลดต้นทุนการทำความร้อนในอาคารได้มากกว่าครึ่งหนึ่งซึ่งเป็นพื้นที่ที่ให้ความร้อนเพิ่มขึ้นเกือบ 20%

ความร้อนอัตโนมัติ

ปัญหาของการก่อสร้างกระท่อมในภูมิภาคมอสโกในปัจจุบันเกิดจากโครงสร้างพื้นฐาน (เครือข่ายไฟฟ้า, ท่อน้ำ) มักจะไม่อนุญาตให้การตั้งถิ่นฐานใหม่เติบโต สถานีย่อยหม้อแปลงที่มีอยู่ไม่สามารถรับมือกับโหลดที่เพิ่มขึ้นได้ การหยุดชะงักของการจ่ายไฟฟ้าอย่างต่อเนื่อง (อุบัติเหตุที่สถานีไฟฟ้าย่อยเก่า สายไฟชำรุด) บังคับให้ผู้บริโภคมองหาวิธีการจ่ายไฟอัตโนมัติ

ในโครงการที่อธิบายไว้ วิศวกรต้องเผชิญกับงานในการจัดหากระท่อมสองชั้นหลายห้องพร้อมห้องใต้หลังคาที่มีความร้อนและไฟฟ้า พื้นที่ทำความร้อนทั้งหมดของบ้านคือ 200 m2 ของการสื่อสารสรุป - น้ำบาดาลและไฟฟ้า

เนื่องจากข้อกำหนดด้านประสิทธิภาพการใช้พลังงานอยู่ในระดับแนวหน้า จึงตัดสินใจติดตั้งแผงโซลาร์เซลล์ ซื้อและติดตั้งโมดูลเซลล์แสงอาทิตย์ขนาด 3.5 กิโลวัตต์ที่ไซต์หลังบ้าน ตามการคำนวณของวิศวกร นี่น่าจะเพียงพอแล้วสำหรับการชาร์จแบตเตอรี ซึ่งในทางกลับกัน ก็จะป้อนอาหารให้โรงเรือนและระบบทำความร้อนอย่างต่อเนื่อง ค่าใช้จ่ายทั้งหมดของระบบอยู่ที่ประมาณ 27,000 เหรียญ หากเราพิจารณาว่าได้รับแหล่งไฟฟ้าฟรีและรายการนี้จะถูกตัดออกจากงบประมาณของครอบครัว ปรากฎว่าค่าใช้จ่ายในการติดตั้งแบตเตอรี่โซลาร์เซลล์จะชำระหมดภายในเวลาไม่ถึง 10 ปี และหากเราพิจารณาเป็นอย่างอื่น เราจะต้องสร้างสถานีย่อยหรือใช้ชีวิตโดยที่ไฟฟ้าดับอย่างต่อเนื่อง ค่าใช้จ่ายก็ถือว่าได้รับการชำระแล้ว

เพื่อให้ความร้อน ได้มีการตัดสินใจใช้ระบบปั๊มความร้อนใต้พิภพ ซื้อปั๊มความร้อนแบบน้ำต่อน้ำของอเมริกา ปั๊มความร้อนชนิดนี้ผลิตน้ำร้อนโดยใช้เครื่องแลกเปลี่ยนความร้อน ซึ่งสามารถใช้สำหรับการจ่ายน้ำร้อนและทำความร้อนด้วยแบตเตอรี่หม้อน้ำ วงจรที่จ่ายความร้อนเกรดต่ำไปยังปั๊มความร้อนนั้นถูกวางโดยตรงบนไซต์ที่อยู่ติดกับกระท่อมที่ความลึก 2 ม. วงจรนี้เป็นท่อโพลีเอทิลีนที่มีขนาดเส้นผ่าศูนย์กลาง 32 มม. และความยาว 800 ม. . ที่ 10,000 ดอลลาร์สหรัฐ.

ดังนั้น หลังจากใช้เงินไปประมาณ 40,000 ดอลลาร์สหรัฐในการจัดระบบพลังงานอิสระของตัวเอง เจ้าของกระท่อมจึงยกเว้นค่าใช้จ่ายด้านการจ่ายความร้อนออกจากงบประมาณของเขา และให้ความร้อนอัตโนมัติที่เชื่อถือได้

ความเป็นไปได้ของการประยุกต์ใช้ระบบวงแหวน

จากที่กล่าวมาข้างต้น ความเป็นไปได้ของการใช้ระบบปั๊มความร้อนรูปวงแหวนนั้นกว้างผิดปกติ สามารถใช้กับวัตถุได้หลากหลาย เหล่านี้คือการบริหารอาคารสาธารณะสถาบันการแพทย์และสุขภาพบ้านพักสถานบันเทิงและกีฬาต่างๆ ผู้ประกอบการอุตสาหกรรม. ระบบมีความยืดหยุ่นมากจนสามารถใช้งานได้มากที่สุด โอกาสต่างๆและในตัวเลือกมากมาย

ในการพัฒนาระบบดังกล่าว ก่อนอื่น จำเป็นต้องประเมินความต้องการความร้อนและความเย็นของวัตถุที่ออกแบบ เพื่อศึกษาแหล่งความร้อนที่เป็นไปได้ทั้งหมดภายในอาคารและตัวรับความร้อนในอนาคตทั้งหมด เพื่อกำหนดความร้อนที่เพิ่มขึ้นและการสูญเสียความร้อน แหล่งความร้อนที่เหมาะสมที่สุดสามารถใช้ในระบบวงแหวนได้หากต้องการความร้อนนี้ ความจุรวมของปั๊มความร้อนการนำความร้อนกลับมาใช้ใหม่ไม่ควรเกินความจำเป็น ภายใต้เงื่อนไขบางประการ ตัวเลือกที่ทำกำไรได้มากที่สุดอาจเป็นการติดตั้ง HPP ที่ใช้สภาพแวดล้อมภายนอกเป็นแหล่งและรับความร้อน ระบบจะต้องสมดุลความร้อน แต่ไม่ได้หมายความว่าอย่างนั้น ความจุทั้งหมดแหล่งความร้อนและผู้บริโภคต้องเท่ากันอาจแตกต่างกันเนื่องจากอัตราส่วนสามารถเปลี่ยนแปลงได้อย่างมากเมื่อสภาพการทำงานของระบบเปลี่ยนแปลง

ดังนั้น ระบบปั๊มความร้อนแบบวงแหวนจึงทำหน้าที่ทั้งการทำความร้อนและการปรับอากาศ และการนำความร้อนกลับคืนมาอย่างมีประสิทธิภาพ การใช้ระบบเดียวแทนที่จะเป็นหลายระบบจะทำให้เกิดผลกำไรมากขึ้นในแง่ของเงินทุนและค่าใช้จ่ายในการดำเนินงาน

บทความที่จัดทำโดย บริษัท "AEROCLIMATE"

ทำกำไรน้อยลงและสูญเสียความเกี่ยวข้อง การเผาไหม้ของก๊าซหรือเชื้อเพลิงเหลวในหม้อไอน้ำทำให้งบประมาณลดลงอย่างที่ไม่เคยมีมาก่อน ประหยัดเงินได้มากโดยใช้ ปั๊มความร้อนสำหรับทำความร้อนที่บ้าน พวกเขาอยู่บนพื้นฐานของการใช้พลังงานธรรมชาติฟรีซึ่งมีอยู่ทุกหนทุกแห่ง มันต้องถ่ายเท่านั้น

ประสิทธิภาพการลงทุน

ก๊าซเหลวและน้ำมันดีเซลไม่สามารถแข่งขันกับปั๊มความร้อนได้ ทั้งในแง่ของต้นทุนการทำงานหรือความสะดวกสบายในการใช้งาน ใช้สำหรับทำความร้อน เชื้อเพลิงแข็งยากต่อการทำงานอัตโนมัติและใช้แรงงานมาก ไฟฟ้าเป็นพลังงานรูปแบบที่สะดวกสบายแต่มีราคาแพง หากต้องการเชื่อมต่อหม้อต้มน้ำไฟฟ้า คุณต้องมีสายไฟฟ้าแรงสูงแยกต่างหาก จนถึงตอนนี้ในสภาพภายในประเทศ ก๊าซธรรมชาติยังคงเป็นที่ต้องการตัวมากที่สุด มุมมองที่สะดวกสบายเชื้อเพลิง. แต่มีข้อเสียหลายประการ:

  1. การออกใบอนุญาต
  2. การประสานงานของโครงการในหน่วยงานกำกับดูแลและกับเพื่อนบ้าน
  3. ส่วนหนึ่งของการดำเนินการเชื่อมต่อและเชื่อมต่อสามารถทำได้โดยองค์กรที่ได้รับอนุญาตเท่านั้น
  4. การตรวจสอบมิเตอร์เป็นระยะ
  5. การกระจายเครือข่ายที่จำกัดและความห่างไกลของจุดเชื่อมต่อ
  6. ต้นทุนสูงสำหรับการวางสายการจัดหา
  7. อุปกรณ์ที่ใช้แก๊สเป็นแหล่งของภัยคุกคามและต้องมีการควบคุมที่มีการควบคุม

ข้อเสียเปรียบที่สำคัญของปั๊มความร้อนถือได้ว่าเป็นการลงทุนที่สูงในขั้นตอนการซื้อและติดตั้งอุปกรณ์เท่านั้น ราคามาตรฐาน ระบบทำความร้อนบนปั๊มความร้อนที่มีเครื่องแลกเปลี่ยนความร้อนใต้พิภพประกอบด้วยค่าใช้จ่ายของงานเจาะและอุปกรณ์เฉพาะพร้อมการติดตั้ง ชุดประกอบด้วย:

งานนี้ดำเนินการโดยบุคลากรที่ผ่านการรับรอง เครื่องมือระดับมืออาชีพ. ค่าใช้จ่ายล่วงหน้าที่สูงขึ้นเล็กน้อยนั้นสมดุลด้วยผลประโยชน์ที่สำคัญ:

  1. การติดตั้งปั๊มความร้อนนั้นประหยัดมาก ซึ่งทำให้คุณสามารถชดใช้ค่าใช้จ่ายเพิ่มเติมได้ในเวลาเพียงไม่กี่ฤดูกาล
  2. มีโอกาสเพียงพอสำหรับการนำการควบคุมอัตโนมัติที่ยืดหยุ่นไปใช้โดยต้องมีการบำรุงรักษาน้อยที่สุด
  3. ความสะดวกสบายในการใช้งาน
  4. เหมาะสำหรับการติดตั้งที่อยู่อาศัยด้วยการออกแบบที่สวยงามและทันสมัย
  5. การระบายความร้อนของอาคารโดยใช้อุปกรณ์ชุดเดียวกัน
  6. เมื่อทำงานเพื่อระบายความร้อน นอกเหนือจากโหมดการทำงานแบบแอ็คทีฟแล้ว ยังสามารถใช้อุณหภูมิน้ำและดินธรรมชาติที่ต่ำกว่าเพื่อใช้โหมดพาสซีฟโดยไม่ต้องใช้ ค่าใช้จ่ายเพิ่มเติมพลังงาน.
  7. พลังงานต่ำของอุปกรณ์ไม่จำเป็นต้องวางสายไฟหน้าตัดขนาดใหญ่
  8. ไม่จำเป็นต้องมีใบอนุญาต
  9. ความเป็นไปได้ของการใช้สายไฟที่มีอยู่ของอุปกรณ์ทำความร้อน

สำหรับการผลิตพลังงานความร้อน 1 กิโลวัตต์ก็เพียงพอที่จะใช้จ่ายไม่เกิน 250 วัตต์ สำหรับทำความร้อนในครัวเรือนส่วนตัวขนาด 1 ตร.ม. พื้นที่กินไฟเพียงประมาณ 25 W / h และนั่นคือน้ำร้อน คุณสามารถเพิ่มประสิทธิภาพในการใช้พลังงานได้ด้วยการปรับปรุงฉนวนกันความร้อนในบ้านของคุณ

มันทำงานอย่างไร

ปั๊มความร้อนซึ่งทำงานโดยยึดตามวัฏจักรคาร์โนต์ใช้พลังงานไม่ใช่เพื่อให้ความร้อนแก่สารหล่อเย็น แต่สำหรับการสูบความร้อนจากภายนอก เทคโนโลยีไม่ใช่เรื่องใหม่ ปั๊มความร้อนทำงานในบ้านของเราโดยเป็นส่วนหนึ่งของตู้เย็นมานานหลายทศวรรษ ในตู้เย็น ความร้อนจากห้องจะเคลื่อนออกสู่ภายนอก ในการติดตั้งระบบทำความร้อนล่าสุด มีการนำกระบวนการย้อนกลับมาใช้ แม้อุณหภูมิภายนอกจะต่ำ แต่ก็มีพลังงานมากมายอยู่ที่นั่น

เป็นไปได้ที่จะนำความร้อนจากตัวที่เย็นกว่าและให้มันร้อนขึ้นด้วยคุณสมบัติของสารในการใช้พลังงานระหว่างการระเหยและปล่อยระหว่างการควบแน่นรวมถึงการเพิ่มอุณหภูมิอันเป็นผลมาจากการบีบอัด เงื่อนไขที่จำเป็นสำหรับการต้มและการระเหยจะเกิดขึ้นโดยการเปลี่ยนความดัน ฟรีออนถูกใช้เป็นสารทำงานที่มีจุดเดือดต่ำ

ในปั๊มความร้อน การเปลี่ยนแปลงเกิดขึ้นใน 4 ขั้นตอน:

  1. เมื่อทำความเย็นต่ำกว่าอุณหภูมิแวดล้อม ของเหลวทำงานของของเหลวจะหมุนเวียนผ่านขดลวดเมื่อสัมผัสกับมัน ของเหลวร้อนขึ้นและระเหย
  2. ก๊าซถูกบีบอัดโดยคอมเพรสเซอร์ทำให้อุณหภูมิเกิน
  3. ในขดลวดภายในที่เย็นกว่า การควบแน่นเกิดขึ้นจากการปล่อยความร้อน
  4. ของเหลวจะถูกบายพาสผ่านอุปกรณ์ควบคุมปริมาณเพื่อรักษาความแตกต่างของแรงดันระหว่างคอนเดนเซอร์และเครื่องระเหย

นำไปปฏิบัติ

การสัมผัสโดยตรงของเครื่องระเหยและคอนเดนเซอร์กับภายนอกและ สภาพแวดล้อมภายในไม่เป็นเรื่องปกติสำหรับระบบทำความร้อนที่ใช้ปั๊มความร้อน การถ่ายเทพลังงานเกิดขึ้นในเครื่องแลกเปลี่ยนความร้อน น้ำหล่อเย็นที่สูบผ่านวงจรภายนอกจะปล่อยความร้อนไปยังเครื่องระเหยเย็น คอนเดนเซอร์ร้อนส่งผ่านไปยังระบบทำความร้อนของบ้าน

ประสิทธิภาพของรูปแบบดังกล่าวขึ้นอยู่กับความแตกต่างของอุณหภูมิระหว่างสภาพแวดล้อมภายนอกและภายในเป็นอย่างมาก ยิ่งมีขนาดเล็กยิ่งดี ดังนั้นความร้อนจึงไม่ค่อยถูกดึงออกจากอากาศภายนอกซึ่งมีอุณหภูมิต่ำมาก

ตามสถานที่รับพลังงานการติดตั้งประเภทต่อไปนี้มีความโดดเด่น:

  • "น้ำบาดาล";
  • "น้ำ-น้ำ";
  • "อากาศ-น้ำ".

เป็นตัวพาความร้อนในระบบดินและน้ำ ปลอดภัย ของเหลวป้องกันการแข็งตัว. อาจเป็นโพรพิลีนไกลคอล ไม่อนุญาตให้ใช้เอทิลีนไกลคอลเพื่อจุดประสงค์ดังกล่าว เนื่องจากหากระบบถูกลดแรงดันก็จะทำให้เกิดพิษต่อดินหรือชั้นหินอุ้มน้ำ

การติดตั้งน้ำบาดาล

ที่ระดับความลึกตื้นแล้ว อุณหภูมิของดินขึ้นอยู่เพียงเล็กน้อย สภาพอากาศดินจึงมีประสิทธิภาพ สภาพแวดล้อมภายนอก. ต่ำกว่า 5 เมตร เงื่อนไขไม่เปลี่ยนแปลงตลอดเวลาของปี การติดตั้งมี 2 ประเภท:

  • พื้นผิว;
  • ความร้อนใต้พิภพ

ในขั้นแรก ร่องลึกที่ขยายออกจะถูกขุดบนไซต์ให้มีความลึกต่ำกว่าระดับจุดเยือกแข็ง พวกเขาถูกจัดวางเป็นวงแหวน ท่อพลาสติกส่วนที่เป็นของแข็งและปกคลุมด้วยดิน

ใน ระบบความร้อนใต้พิภพการแลกเปลี่ยนความร้อนเกิดขึ้นที่ความลึกในหลุม อุณหภูมิที่สูงและคงที่ในส่วนลึกของโลกให้ผลทางเศรษฐกิจที่ดี บนไซต์มีการเจาะหลุมที่มีความลึก 50 ถึง 100 เมตรในปริมาณที่ต้องการตามการคำนวณ สำหรับอาคารบางหลัง 1 บ่ออาจเพียงพอสำหรับบางอาคาร 5 บ่อไม่เพียงพอ โพรบแลกเปลี่ยนความร้อนถูกหย่อนลงไปในบ่อน้ำ

การติดตั้งน้ำสู่น้ำ

ระบบดังกล่าวใช้พลังงานน้ำที่ไม่แข็งตัวในฤดูหนาวที่ด้านล่างของแม่น้ำและทะเลสาบหรือน้ำใต้ดิน การติดตั้งน้ำมี 2 ประเภทขึ้นอยู่กับสถานที่แลกเปลี่ยนความร้อน:

  • ในสระน้ำ
  • บนเครื่องระเหย

ตัวเลือกแรกมีราคาแพงที่สุดในแง่ของการลงทุน ท่อส่งจะจมลงสู่ก้นแหล่งน้ำใกล้เคียงและป้องกันพื้นผิวใหม่ ประการที่สองใช้ในกรณีที่ไม่มีแหล่งน้ำในบริเวณใกล้เคียง กำลังเจาะ 2 หลุม: อุปทานและรับ จากอันแรก น้ำจะถูกสูบไปยังตัวที่สองผ่านตัวแลกเปลี่ยนความร้อน

การติดตั้งอากาศสู่น้ำ

ติดตั้งเครื่องแลกเปลี่ยนความร้อนด้วยอากาศใกล้กับบ้านหรือบนหลังคา อากาศภายนอกถูกสูบผ่าน ระบบดังกล่าวมีประสิทธิภาพน้อยกว่า แต่ราคาถูก การติดตั้งในสถานที่ลีช่วยปรับปรุงประสิทธิภาพการทำงาน

การประกอบตัวเองของระบบ

ด้วยความปรารถนาอย่างแรงกล้าคุณสามารถลองติดตั้งปั๊มความร้อนด้วยมือของคุณเอง ซื้อคอมเพรสเซอร์ฟรีออนอันทรงพลังเบย์ ท่อทองแดง, เครื่องแลกเปลี่ยนความร้อนและอื่น ๆ วัสดุสิ้นเปลือง. แต่มีรายละเอียดปลีกย่อยมากมายในงานนี้ พวกเขามีไม่มากในการปฏิบัติตาม งานติดตั้ง, ในการคำนวน การปรับจูน และบาลานซ์ระบบที่ถูกต้องเท่าไหร่

เพียงพอที่จะหยิบสาย freon ไม่สำเร็จเพื่อให้ของเหลวที่เข้าสู่คอมเพรสเซอร์ปิดการใช้งานทันที ความยากลำบากอาจเกิดขึ้นกับการดำเนินการ การควบคุมอัตโนมัติประสิทธิภาพของระบบ

การมีตู้เย็นและเครื่องปรับอากาศในบ้านมีเพียงไม่กี่คนที่รู้ว่ามีการนำหลักการทำงานของปั๊มความร้อนมาใช้

ประมาณ 80% ของพลังงานที่จ่ายโดยปั๊มความร้อนมาจากความร้อนโดยรอบในรูปของการแผ่รังสีดวงอาทิตย์ที่กระจัดกระจาย มันคือปั๊มของเขาที่เพียงแค่ "ปั๊ม" จากถนนเข้าไปในบ้าน การทำงานของปั๊มความร้อนคล้ายกับหลักการทำงานของตู้เย็น เฉพาะทิศทางการถ่ายเทความร้อนเท่านั้นที่แตกต่างกัน

พูดง่ายๆ…

เพื่อแช่ขวด น้ำแร่คุณใส่ไว้ในตู้เย็น ตู้เย็นจะต้อง "นำ" ส่วนหนึ่งของพลังงานความร้อนออกจากขวดและตามกฎการอนุรักษ์พลังงานให้ย้ายไปที่ไหนสักแห่ง ตู้เย็นถ่ายเทความร้อนไปยังหม้อน้ำ ซึ่งมักจะอยู่ที่ผนังด้านหลัง ในเวลาเดียวกันหม้อน้ำก็ร้อนขึ้นโดยปล่อยความร้อนไปที่ห้อง อันที่จริงมันทำให้ห้องร้อน โดยเฉพาะอย่างยิ่งที่เห็นได้ชัดเจนในตลาดขนาดเล็กขนาดเล็กในฤดูร้อน โดยมีตู้เย็นหลายเครื่องในห้อง

เราขอเชิญคุณจินตนาการ สมมติว่าเราจะใส่วัตถุอุ่น ๆ ไว้ในตู้เย็นอย่างต่อเนื่อง และโดยการทำให้เย็นลง จะทำให้อากาศในห้องร้อนขึ้น ลุย "สุดขั้ว" กันเถอะ ... มาวางตู้เย็นกันเถอะ การเปิดหน้าต่างประตูช่องแช่แข็งเปิดออกสู่ภายนอก หม้อน้ำตู้เย็นจะอยู่ในห้อง ระหว่างการใช้งาน ตู้เย็นจะทำให้อากาศภายนอกเย็นลง โดยถ่ายเทความร้อนที่ "รับ" เข้ามาในห้อง นี่คือวิธีการทำงานของปั๊มความร้อน โดยนำความร้อนที่กระจายออกจากสิ่งแวดล้อมและถ่ายโอนไปยังห้อง

ปั๊มได้รับความร้อนที่ไหน?

หลักการทำงานของปั๊มความร้อนขึ้นอยู่กับ "การใช้ประโยชน์" ของแหล่งความร้อนคุณภาพต่ำจากธรรมชาติจากสิ่งแวดล้อม


พวกเขาอาจเป็น:

  • แค่อากาศภายนอก
  • ความร้อนของอ่างเก็บน้ำ (ทะเลสาบ ทะเล แม่น้ำ);
  • ความร้อนของดิน น้ำบาดาล (ความร้อนและบาดาล)

ปั๊มความร้อนและระบบทำความร้อนมีการจัดอย่างไร?

ปั๊มความร้อนถูกรวมเข้ากับระบบทำความร้อนซึ่งประกอบด้วย 2 วงจร + วงจรที่สาม - ระบบของปั๊มเอง สารหล่อเย็นที่ไม่แข็งตัวจะหมุนเวียนไปตามวงจรภายนอก ซึ่งใช้ความร้อนจากพื้นที่โดยรอบ

เมื่อมันเข้าไปในปั๊มความร้อนหรือค่อนข้างเป็นเครื่องระเหยสารหล่อเย็นจะให้สารทำความเย็นปั๊มความร้อนโดยเฉลี่ย 4 ถึง 7 °C และจุดเดือดของมันคือ -10 °C เป็นผลให้สารทำความเย็นเดือดตามด้วยการเปลี่ยนเป็นสถานะก๊าซ น้ำหล่อเย็นของวงจรภายนอกที่ระบายความร้อนแล้วไปที่ "ขดลวด" ถัดไปผ่านระบบเพื่อตั้งอุณหภูมิ

เป็นส่วนหนึ่งของวงจรการทำงานของปั๊มความร้อน "ที่ระบุไว้":

  • เครื่องระเหย;
  • คอมเพรสเซอร์ (ไฟฟ้า);
  • เส้นเลือดฝอย;
  • ตัวเก็บประจุ;
  • น้ำหล่อเย็น;
  • อุปกรณ์ควบคุมอุณหภูมิ

กระบวนการมีลักษณะเช่นนี้!

สารทำความเย็น "ต้ม" ในเครื่องระเหยผ่านท่อเข้าสู่คอมเพรสเซอร์ซึ่งขับเคลื่อนด้วยไฟฟ้า "ผู้ทำงานหนัก" นี้บีบอัดสารทำความเย็นที่เป็นก๊าซถึง ความดันสูงซึ่งส่งผลให้อุณหภูมิเพิ่มขึ้น

ก๊าซร้อนตอนนี้จะเข้าสู่ตัวแลกเปลี่ยนความร้อนอีกตัวหนึ่ง ซึ่งเรียกว่าคอนเดนเซอร์ ที่นี่ความร้อนของสารทำความเย็นจะถูกส่งไปยังอากาศภายในห้องหรือตัวพาความร้อนซึ่งไหลเวียนผ่านวงจรภายในของระบบทำความร้อน

สารทำความเย็นเย็นลงในเวลาเดียวกันกลายเป็นสถานะของเหลว จากนั้นจะผ่านวาล์วลดแรงดันของเส้นเลือดฝอย โดยจะ "สูญเสีย" ความดันและกลับเข้าสู่เครื่องระเหยอีกครั้ง

ปิดรอบแล้ว พร้อมซ้ำ!

การคำนวณค่าความร้อนโดยประมาณของการติดตั้ง

ภายในหนึ่งชั่วโมง น้ำหล่อเย็นสูงถึง 2.5-3 ม. 3 จะไหลผ่านตัวสะสมภายนอกผ่านปั๊ม ซึ่งโลกสามารถให้ความร้อนได้ ∆t = 5-7 °C

ในการคำนวณกำลังความร้อนของวงจรดังกล่าว ให้ใช้สูตร:

Q \u003d (T_1 - T_2) * V_warm

V_heat - อัตราการไหลของตัวพาความร้อนต่อชั่วโมง (m ^ 3 / h);

T_1 - T_2 - ความแตกต่างของอุณหภูมิขาเข้าและขาออก (°C)


ประเภทของปั๊มความร้อน

ตามประเภทของความร้อนที่ใช้กระจายความร้อนปั๊มมีความโดดเด่น:

  • น้ำบาดาล (ใช้ลูปกราวด์ปิดหรือโพรบความร้อนใต้พิภพลึกและ ระบบน้ำความร้อนในอวกาศ);
  • น้ำ - น้ำ (บ่อเปิดใช้สำหรับรับและปล่อยน้ำบาดาล - วงจรภายนอกไม่ได้วนซ้ำ ระบบภายในความร้อน - น้ำ);
  • น้ำอากาศ (การใช้วงจรน้ำภายนอกและระบบทำความร้อนแบบอากาศ);
  • (โดยใช้ความร้อนที่กระจายตัวของมวลอากาศภายนอกพร้อมระบบทำความร้อนด้วยอากาศของโรงเลี้ยง)

ข้อดีและประโยชน์ของปั๊มความร้อน

ประสิทธิภาพทางเศรษฐกิจ หลักการทำงานของปั๊มความร้อนไม่ได้ขึ้นอยู่กับการผลิต แต่ในการถ่ายโอน (การขนส่ง) ของพลังงานความร้อนสามารถเป็นที่ถกเถียงกันอยู่ว่าประสิทธิภาพของปั๊มนั้นมีค่ามากกว่าหนึ่ง ไร้สาระอะไร? - คุณจะพูด ในหัวข้อปั๊มความร้อนค่าจะปรากฏขึ้น - ค่าสัมประสิทธิ์การแปลง (การแปลง) ของความร้อน (KPT) โดยพารามิเตอร์นี้หน่วยของประเภทนี้จะถูกเปรียบเทียบกัน ของเขา ความหมายทางกายภาพ- แสดงอัตราส่วนของปริมาณความร้อนที่ได้รับต่อปริมาณพลังงานที่ใช้ไป ตัวอย่างเช่นที่ KPT = 4.8 ไฟฟ้าที่ปั๊มใช้ใน 1 กิโลวัตต์จะช่วยให้คุณได้รับความร้อน 4.8 กิโลวัตต์ฟรีนั่นคือของขวัญจากธรรมชาติ

การใช้งานทั่วไปอย่างทั่วถึง แม้จะขาดไป สายที่มีอยู่สายไฟสามารถให้การทำงานของคอมเพรสเซอร์ปั๊มความร้อนโดยไดรฟ์ดีเซล และมีความร้อน "ธรรมชาติ" ในทุกมุมโลก - ปั๊มความร้อนจะไม่ "หิว"


ความบริสุทธิ์ทางนิเวศวิทยาของการใช้งาน ไม่มีผลิตภัณฑ์การเผาไหม้ในปั๊มความร้อน และการใช้พลังงานต่ำ "ใช้ประโยชน์" โรงไฟฟ้าน้อยลง ช่วยลดการปล่อยก๊าซที่เป็นอันตรายทางอ้อม สารทำความเย็นที่ใช้ในปั๊มความร้อนเป็นมิตรกับโอโซนและไม่มีคลอโรคาร์บอน


โหมดการทำงานแบบสองทิศทาง ปั๊มความร้อนสามารถ ฤดูหนาวความร้อนในห้องและในฤดูร้อน - เย็น สามารถใช้ “ความร้อน” ที่นำมาจากสถานที่ได้อย่างมีประสิทธิภาพ เช่น ให้ความร้อนกับน้ำในสระหรือในระบบจ่ายน้ำร้อน


ความปลอดภัยในการปฏิบัติงาน ในหลักการทำงานของปั๊มความร้อน คุณจะไม่พิจารณาถึงกระบวนการที่เป็นอันตราย การไม่มีไฟเปิดและการปล่อยมลพิษที่เป็นอันตรายซึ่งเป็นอันตรายต่อมนุษย์ อุณหภูมิต่ำของตัวพาความร้อนทำให้ปั๊มความร้อนเป็นเครื่องใช้ในครัวเรือนที่ "ไม่เป็นอันตราย" แต่มีประโยชน์

ระบบอัตโนมัติเต็มรูปแบบของกระบวนการทำความร้อน


ความแตกต่างของการทำงานบางอย่าง

การใช้หลักการทำงานของปั๊มความร้อนอย่างมีประสิทธิภาพต้องปฏิบัติตามเงื่อนไขหลายประการ:

  • ห้องที่มีความร้อนจะต้องหุ้มฉนวนอย่างดี (สูญเสียความร้อนสูงถึง 100 W / m 2) - มิฉะนั้นเมื่อได้รับความร้อนจากถนนคุณจะให้ความร้อนแก่ถนนด้วยเงินของคุณเอง
  • ปั๊มความร้อนมีประโยชน์สำหรับ ระบบอุณหภูมิต่ำเครื่องทำความร้อน ภายใต้เกณฑ์ดังกล่าว ระบบทำความร้อนใต้พื้น (35-40 ° C) นั้นยอดเยี่ยม ค่าสัมประสิทธิ์การแปลงความร้อนขึ้นอยู่กับอัตราส่วนของอุณหภูมิของวงจรขาเข้าและขาออกอย่างมาก

มาสรุปกัน!

สาระสำคัญของหลักการทำงานของปั๊มความร้อนไม่ได้อยู่ในการผลิต แต่อยู่ในการถ่ายเทความร้อน สิ่งนี้ช่วยให้คุณได้ค่าสัมประสิทธิ์การแปลงพลังงานความร้อนสูง (จาก 3 ถึง 5) พูดง่ายๆ ว่าการใช้ไฟฟ้า 1 กิโลวัตต์ต่อ 1 กิโลวัตต์จะ "ถ่ายเท" ความร้อน 3-5 กิโลวัตต์ไปยังบ้าน มีอะไรอีกไหมที่ต้องพูด?

การติดตั้งปั๊มความร้อน (HPU) ใช้พลังงานทดแทนที่มีศักยภาพต่ำ พลังงานความร้อนสิ่งแวดล้อม (น้ำ อากาศ ดิน) และเพิ่มศักยภาพของสารหล่อเย็นหลักให้มากขึ้น ระดับสูงในขณะที่ใช้พลังงานปฐมภูมิหรือเชื้อเพลิงอินทรีย์น้อยลงหลายเท่า การติดตั้งปั๊มความร้อนทำงานตามวัฏจักรเทอร์โมไดนามิกคาร์โนต์ ซึ่งของเหลวอุณหภูมิต่ำ (แอมโมเนีย ฟรีออน ฯลฯ) ทำหน้าที่เป็นของไหลในการทำงาน การถ่ายเทความร้อนจากแหล่งที่มีศักยภาพต่ำไปยังระดับอุณหภูมิที่สูงขึ้นนั้นดำเนินการโดยการจ่ายพลังงานกลในคอมเพรสเซอร์ (แรงดันไอน้ำ HPI) หรือการจ่ายความร้อนเพิ่มเติม (ในการดูดซับ HPI)

การใช้ HPP ในระบบจ่ายความร้อนเป็นหนึ่งในทางแยกที่สำคัญที่สุดของเทคโนโลยี อุณหภูมิต่ำด้วยวิศวกรรมพลังงานความร้อนซึ่งนำไปสู่การประหยัดพลังงานของแหล่งพลังงานที่ไม่หมุนเวียนและรักษาสิ่งแวดล้อมโดยการลดการปล่อย CO2 และ NOx สู่บรรยากาศ การใช้ HPP มีแนวโน้มมากใน ระบบรวมการจ่ายความร้อนร่วมกับเทคโนโลยีอื่นๆ สำหรับการใช้แหล่งพลังงานหมุนเวียน (พลังงานแสงอาทิตย์ ลม พลังงานชีวภาพ) และช่วยให้คุณปรับพารามิเตอร์ของระบบที่เกี่ยวข้องให้เหมาะสมและบรรลุประสิทธิภาพทางเศรษฐกิจสูงสุด

เราจะเลือกใช้สารทำความเย็นที่ใช้งานได้ - R 22 ซึ่งมี ตัวเลือกต่อไปนี้: การไหลของสารทำความเย็น Oa = 0.06 kg/s; จุดเดือด Т0 = 3 °С; อุณหภูมิการควบแน่น Тk = 55 °С; อุณหภูมิน้ำหล่อเย็นที่ทางเข้าไปยังเครื่องระเหยจากแหล่งที่มีศักยภาพต่ำ Ґн = 8 °С; อุณหภูมิน้ำหล่อเย็น (น้ำ) ที่ทางออกคอนเดนเซอร์ f = 50 °C; อัตราการไหลของน้ำหล่อเย็นในคอนเดนเซอร์ Ok = 0.25 kg/s; ความแตกต่างของอุณหภูมิน้ำหล่อเย็นในคอนเดนเซอร์ D4 = 15 °C; พลังงานที่ใช้โดยคอมเพรสเซอร์ N = 3.5 kW; เอาต์พุตความร้อน HPI = 15.7 กิโลวัตต์; ปัจจัยการแปลง tsnt = 4.5

แผนผังของ HPP การบีบอัดไอแสดงในรูปที่ 7.2 และรวมถึงเครื่องระเหย คอมเพรสเซอร์ คอนเดนเซอร์ และปีกผีเสื้อ

4 - วาล์วปีกผีเสื้อขยายตัว; 5 - คอยล์ระเหยสารทำความเย็น;

6 - ถังระเหย; 7 - แหล่งพลังงานน้ำคุณภาพต่ำ

8 - ระบายไปที่ NIE; 9 - น้ำจากระบบทำความร้อนหรือประปา;

มีอะไรให้อ่านอีกบ้าง