Определение значений нормативной температуры обратной сетевой воды в нерасчетном режиме. Температура обратной сетевой воды – показатель здоровья теплоэнергетики города

Cтраница 1


Снижение температуры обратной воды против графика не лимитируется.  

Таким образом, первой задачей является снижение температуры обратной воды из систем отопления в расчетной точке до 60 С.  

Очень большую экономию тепловой энергии и снижение температуры обратной воды дает эта схема при работе тепловой сети со срезкой графика для горячего водоснабжения, так как позволяет при постоянной температуре сетевой воды в подающей магистрали получать переменную температуру приточного воздуха в соответствии с температурой наружного воздуха.  

Многие тепловые сети успешно выдерживают этот предел и даже добиваются снижения температуры обратной воды ниже установленного графика, повышая - тем самым технико-экономические показателя работы всей системы в целом.  

Экономия электроэнергии на перекачку теплоносителя, экономия топлива на ТЭЦ и снижение температуры обратной воды при трехимпульсном изодромном регулировании окупает все затраты на автоматизацию вводов.  

Применение поверхностных конденсационных котлов и экономайзеров для отопления целесообразно, таким образом, при условии снижения температуры обратной воды отопительной системы. Соответственно снижаются и средняя температура воды и, как было показано выше, температура прямой воды, поступающей в систему. Поэтому применение поверхностных конденсационных котлов и экономайзеров для нагрева воды систем отопления неизбежно связано с определенным перерасходом металла на сооружение систем отопления. Тем не менее за рубежом конденсационные котлы и экономайзеры используют в основном именно для систем отопления.  

Среднесуточная температура обратной воды из тепловой сети ие должна превышать заданную более чем на 2 С Снижение температуры обратной воды против графика не лимитируется.  


При снижении температуры обратной воды до расчетной величины следует ожидать некоторого снижения температуры уходящих газов.  

Определим оптимальную температуру обратной воды, поступающей из системы отопления здания в контактно-поверхностный водонагреватель ФНКВ-1. По мере снижения температуры обратной воды tz экономичность использования газа в аппарате повышается за счет использования тепла, выделящегося при конденсации водяных паров, находящихся в продуктах сгорания газа. Поэтому определение величины пт практически необходимо.  

Сырую воду на химводоочистку берут из сбросного циркуляционного водовода при температуре 20 - 35 С, что дает утилизацию сбросного тепла. Существенное повышение удельной выработки на тепловом потреблении дает снижение температуры обратной воды, которое получается в результате смешения обратной и более холодной подпиточной воды.  

Сильфон является регулирующим органом. При повышении температуры воды, выходящей из калорифера, жидкость в сильфоне нагревается и расширяется, что приводит к уменьшению проходного сечения клапана и сокращению расхода сетевой воды, а следовательно, к снижению температуры обратной воды.  

Таким образом, для рассмотренной схемы пропорционального регулирования температуры в помещении следует всегда предусматривать автоматически действующую защиту от замораживания калориферов. По этой схеме манометрический датчик температуры устанавливается в трубопроводе обратной воды после калорифера и настраивается на температуру 25 - 30 С. При снижении температуры обратной воды до установленного значения датчик дает сигнал, и Двухпозиционный регулятор срабатывает, открывая с помощью соленоидного вентиля проход для воды через обводную ветку.  

Для получения равномерного температурного поля после калорифера, что особенно важно иметь в кондиционерах, в которых сразу же за первым подогревом ставится оросительная камера, желательно значительное снижение температуры подаваемой в калорифер воды с одновременным уменьшением перепада температур прямой и обратной воды. Некоторое увеличение требуемой поверхности нагрева калориферов компенсируется снижением температуры обратной воды.  

Для снижения температуры воды, выходящей из ЦТП, и уменьшения теплопотерь ночью целесообразно переключать на это время циркуляционную линию системы горячего водоснабжения в трубопровод холодной воды перед I ступенью водонагревателя. Одновременно следует снизить уставку регулятора температуры горячей воды с 60 на 50 С. Днем циркуляционная линия должна быть включена в трубопровод нагреваемой воды перед II ступенью или, что более рационально, в трубопровод между секциями II ступени водонагревателя, температура воды в котором равна принятой температуре воды в циркуляционном трубопроводе (примерно перед тремя последними секциями по ходу движения нагреваемой воды), как показано на рис. 3.19. Переключение выполняется автоматически: реле времени, например в 0 ч, закрывает клапан 5, направляя циркуляционный поток в I ступень, и через электрогидравлическое реле переключается импульс на регулятор температуры с датчика, настроенного на поддержание температуры горячей воды 60 С, на другой датчик с уставкой на 45 - 50 С. В 6 ч реле времени делает обратное переключение, при открытом клапане 5 через него будет поступать циркуляционная вода, так как давление воды перед I ступенью значительно выше, чем в месте включения трубопровода, на котором установлен клапан. При автоматическом регулировании подачи тепла на отопление, когда температура воды из системы отопления будет ниже 40 - 45 С, переключение циркуляционного трубопровода перед I ступенью водонагревателя при таких температурах делать нецелесообразно. В связи с этим на обратном трубопроводе системы отопления установлен датчик температуры, по сигналу которого при снижении температуры обратной воды менее 40 - - 45 С клапан 5 остается открытым и в ночное время.  

Страницы:      1

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

Тепловая нагрузка на отопление и вентиляцию изменяется в за­висимости от температуры наружного воздуха. Расход теплоты на го­рячее водоснабжение не зависит от температуры наружного воздуха. В этих условиях необходимо регулировать параметры и расход тепло­носителя в соответствии с фактической потребностью абонентов.

4.1. Температурный график сетевой воды

При наличии разнородной нагрузки (отопление, вентиляция и ГВС) в общей тепловой сети расчет и построение температурного графика сетевой воды проводят по преобладающей тепловой нагрузке и для самой распространенной схемы присоединения абонентских ус­тановок. Преобладающей, как правило, является отопи­тельная нагрузка. Предпочтительной системой регулирования тепловой нагрузки является качественное регулирование, когда изменение тепловой нагрузки на отопление при изменении температуры наружного воздуха производится за счет изменения температуры сетевой воды при неизменном расходе. Такое регулирование производится на источнике теплоты.

Расчетные температуры сетевой воды в подающем и обратном трубопроводе ( - температуры теплоносителя в подающем и обратном трубопроводе и в системе отопления при ее зависимом присоединении соответственно) на коллекторах источника теплоты соответствуют расчетной температуре наружного воздуха и задаются при проектировании системы теплоснабжения , например, 150/70, 130/70 и т.д. Если тепловая нагрузка однородна, в частности, отопительная, то во всем диапазоне наружных температур можно проводить качественное регулирование. При этом тепловая нагрузка прямо пропорциональна температуре теплоносителя в подающем трубопроводе и обратно пропорциональна температуре наружного воздуха. Поэтому на температурном графике зависимости температур сетевой воды в подающем и обратном трубопроводе изображаются при однородной нагрузке и качественном регулировании прямыми линиями. За начальную точку этих прямых принимают температуру наружного воздуха +20 0 С (+18), когда тепловая нагрузка равна нулю. Тогда температуры сетевой воды в подающем и обратном трубопроводе тоже будет +20 0 С (+18). Конечными точками будут соответственно . При зависимом присоединении системы отопления на графике будет третья прямая, соединяющая начальную точку с расчетной температурой .

При наличии нагрузки горячего водоснабжения (гвс) температура воды в подающем трубопроводе не может быть снижена ниже 60 0 С при присоединении системы гвс по открытой схеме и ниже 70 0 С при присоединении по закрытой схеме, т. к. температура воды в водоразборных приборах должна быть от 55 0 С до 65 0 С, а в теплообменнике гвс теряется порядка 10 0 С. Таким образом, на температурном графике производится отсечка, как показано на рис.4 и 5. На графике регулирования закрытой схемы системы теплоснабжения температура наружного воздуха, соответствующая отсечке, , делит график на две области: область качественного регулирования II и область количественного регулирования I. На графике регулирования открытой системы теплоснабжения в зоне качественного регулирования появляется зона III, когда температура воды в обратном трубопроводе достигает 60 0 С и разбор воды на горячее водоснабжение производится только из него.

Рисунок 4. Температурный график регулирования открытой зависимой системы теплоснабжения

Рис.5 Температурный график регулирования закрытой независимой системы теплоснабжения

Наличие или отсутствие на графике регулирования ломаной зависит от того, является ли система теплоснабжения зависимой (рис. 4) или независимой (рис. 5).

Если , то регулирование рационально проводить по совместной нагрузке на отопление и горячее водоснабжение. При этом строится так называемый повышенный температурный график регулирования, позволяющий компенсировать повышенный расход тепла на горячее водоснабжение за счет увеличения разности температур прямой и обратной воды по сравнению с графиком регулирования по отопительной нагрузке.

При построения повышенного графика расход тепла на горячее водоснабжение принимается балансовым:

где - балансовый коэффициент, принимаемый обычно равным величине 1.2.

Вид графика представлен на рис.6.

Рисунок 6. Повышенный температурный график регулирования.

На рисунке: - температуры теплоносителя на коллекторах ТЭЦ; - температуры теплоносителя по отопительному графику; - температура теплоносителя в системах отопления.

Величины

Связаны уравнениием

(10)

Здесь, расчетная разность температур сетевой воды по отопительному графику

В начале определяется величина из уравнения

. (11)

Температура водопроводной воды после первой ступени подогревателя системы гвс где =5…10 о C – величина недогрева воды в подогревателе.

4.2. Расчет и построение графиков расхода сетевой воды

4.2.1. Расчетный расход сетевой воды на отопление:

(12)

где с=4,19 кДж/(кг×К) - теплоемкость воды.

В зоне качественного регулирования II расход теплоносителя на отопление постоянный, в зоне количественного регулирования I падает с ростом температуры наружного воздуха до 0 при +20 (18) 0 С (рис. 5 и 6).

4.2.2. Расчетный расход сетевой воды на вентиляцию:

определяется по (13):

(13)

Характер графика расхода на вентиляцию повторяет ход графика расхода на отопление (рис. 6 и 7).

4.3.3 Расход сетевой воды на горячее водоснабжение:

В открытых сетях теплоснабжения средний часовой расход воды на горячее водоснабжение будет:

(14)

В закрытых системах теплоснабжения средний часовой расход на горячее водоснабжения определяется по (13, 14).

При параллельной схеме присоединения водоподогревателей

(15)

Температура воды после параллельно включенного водоподогревателя горячего водоснабжения в точке излома графика температур воды; рекомендуется принимать = 30 °С.

При двухступенчатых системах присоединения водоподогревателей

, (16)

где - температура воды после первой ступени подогрева при двухступенчатых схемах присоединения водоподогревателей, °С.

По отношению к зонам регулирования температурного графика системы теплоснабжения расходы ведут себя следующим образом.

В зоне количественного регулирования I при постоянной температуре в подающем трубопроводе с учетом средней нагрузки на горячее водоснабжение расход сетевой воды на горячее водоснабжение остается постоянным и при открытой, и при закрытой системе теплоснабжения (рис. 5 и 6).

Эти расходы сетевой воды определяются следующим образом.

В зоне качественного регулирования (II, III – при открытой схеме и II – при закрытой) характер кривых существенно различается.

При открытой схеме в зоне II сетевая вода на горячее водоснабжение разбирается из подающего и обратного трубопроводов. Из подающего трубопровода расход сетевой воды уменьшается от максимальной величины при температуре наружного воздуха до нуля при температуре наружного воздуха . Наоборот, расход сетевой воды из обратного трубопровода меняется от нуля до максимального значения при тех же температурах наружного воздуха. В зоне III разбор сетевой воды на горячее водоснабжение идет только из обратного трубопровода и несколько падает по мере роста температуры воды от 60 до 70 0 С (рис. 5).

При закрытой схеме присоединения системы горячего водоснабжения теплообмен между системами теплоснабжения и горячего водоснабжения происходит в одноступенчатом (на подающей магистрали) или в двухступенчатом (на обеих магистралях) теплообменнике. В зоне II расход сетевой воды на горячее водоснабжение уменьшается от максимального при до нуля при для двухступенчатого теплообменника (рис. 6, сплошная линия) и до величины

(17)

(рис. 6, штриховая линия).

Затем, для наглядности, строится график суммарных расходов сетевой воды (рис. 7 и 8) согласно условию

. (18)

Рисунок 7. График расходов открытой тепловой сети

Рисунок 8. График расходов закрытой тепловой сети (сплошная линия – двухступенчатый подогрев горячей воды: штриховая – одноступенчатый).

Необходимый для гидравлического расчета тепловой сети расчетный расход сетевой воды в двухтрубной сети в открытых и закрытых системах теплоснабжения определяется по формуле (19):

. (19)

Коэффициент, учитывающий долю среднего расхода воды при регулировании по отопительной нагрузке., принимаемый из следующих соображений:

· открытая система: 100 и более МВт =0.6, менее 100МВт, =0.8;

· закрытая система: 100 и более МВт =1.0, менее 100МВт, =1.2.

При регулировании по совмещенной нагрузке отопления и горячего водоснабжения при корректированном графике регулирования коэффициент принимают равным 0.

При проектировании тепловых сетей в задачу гидравлического расчета входит определение диаметров трубопроводов и падения дав­ления по участкам и в целом по магистрали. Расчет ведется в два этапа: предварительный и поверочный.

5.1. Порядок проведения гидравлического расчета

Исходными данными для расчета являются: расчетная схема (см. рис. 1); расчетные расходы сетевой воды по участкам; вид и коли­чество местных сопротивлений на каждом участке.

Одним из основных параметров, определяющих гидравлическое сопротивление, является скорость воды в трубопроводах. В магист­ральных сетях скорость воды рекомендуют принимать в пределахl¸2 м/с, а в распределительных трубопроводах - 3¸5 м/с.

На первом, предварительном, этапе определяется расчетный ди­аметр трубопровода по принятым значениям скорости воды w и удельного падения давления . Для магистральных трубопрово­дов значение £ 80 Па/м, для распределительных сетей и ответв­лений =100¸300 Па/м. Условный диаметр рассматриваемого участка определяется с помощью номограммы для гидравлического расчета трубопровода (Приложение П) по расходу воды и принятому удельному падению давления . Т. к. точка пересечения на номограмме не попадает на какую-либо линию стандартного диаметра, то необходимо сместиться по линии расходов вверх или вниз до пересечения с линией стандартного диаметра. Если смещаться вверх, то выбирается меньший стандартный диаметр, но реальное удельное линейное сопротивление оказывается больше, а если вниз – то диаметр больше, а сопротивление меньше. Обычно, на участках трубопровода, близких к теплоисточнику переходят на большие диаметры, а ближе к концу магистрали – на меньшие. Необходимо также отслеживать, чтобы скорости воды на участке трубопровода не вышли за указанные пределы. Полученные фактические значения удельного линейного сопротивления и скорости движения воды заносятся в таблицу 2.

Таблица 2

Гидравлический расчет теплосети

Продолжение таблицы 2

Гидравлический расчет теплосети

По расчетной схеме и выбранной трассе трубопроводов опреде­ляются типы и количество местных сопротивлений: арматуры, отво­дов, компенсаторов и пр. По приложению П8 в зависимости от услов­ного диаметра и типа местных сопротивлений определяется эквива­лентная длина местных сопротивлений и заносится в таблицу 2. Расчетная длина участка трубопровода определяется суммированием фактической и эквивалентной длины.

Падение давления на расчетном участке вычисляется по формуле (20), Па:

(20)

где - длина расчетного участка, м;

Суммарная эквивалентная длина местных сопротивлений на дан­ном участке.

Потери напора на участке составят:

где =975 кг/м 3 - плотность воды при температуре 100 °С;

g =9,81 м/с 2 - ускорение свободного падения.

Полученные величины заносятся в графы поверочного расчета (таб. 2). Аналогично рас­считываются все участки магистрали.

Расчет ответвлений проводится так же, как участок магистрали, нос заданным падением давления (напора), определяемым после построения пьезометрического графика как разность напоров в подающей и обратной магистрали в точке присоединения ответвлеиия.

Также, как и для магистрали, для конкретного рассчитываемого ответвления измеряется длина трубопроводов от точки ответвления до самого дальнего потребителя (абонента) - l отв , м. Для этого ответвления протяженностью l отв предварительно удельное линейное падение давления, Па/м:

(22)

где ; Z - опытный коэффициент местных сопротивлений для ответвлений (для водоводов Z =0,03¸0,05); G отв - расчетный рас­ход теплоносителя на начальном участке ответвления, кг/с; - разность располагаемой падения давления на ответвлении и требуемого перепада давлений у последнего абонента, Па; - фактическая длина ответвления в двухтрубном исполнении.

При сложной схеме распределительных сетей ответвление делит­ся на участки аналогично разделению на участки магистральной сети.

4.2. Построение пьезометрического графика

Пьезометрический график строится на основании гидравлическо­го расчета (таб. 2). Пьезометрический график сети позволяет уста­новить взаимное соответствие рельефа местности, высоты абонент­ских систем и потерь напора в трубопроводах. По пьезометрическому графику можно определить напор в любой точке сети, располагаемый напор в местах ответвлений и на вводе в абонентские системы, а также провести корректировку схем присоединения абонентских сис­тем и действующие напоры в прямой и обратной магистралях сети.

Пьезометрический график строится в масштабе в координатах L-H (L - длина трассы, м; Н - напор, м). За начало координат при­нимается точка 0 , соответствующая установке сетевых насосов (рис. 6). Вправо от точки 0 вдоль оси L (линия I-I , отметка 0.0) нано­сится профиль трассы в соответствии с рельефом местности вдоль основной магистрали и ответвлений. Здесь принимается, что профиль трассы совпадает с рельефом местности. При несложной схеме теп­лоснабжения и небольшом числе абонентских вводов (не более 20) на ответвлениях и магистрали наносятся высоты зданий (абонентских систем). По оси ординат из точки 0 откладывается напор в метрах.

Построение пьезометрического графика начинают с гидростати­ческого режима, когда циркуляция воды в системе отсутствует, а вся система теплоснабжения, включая системы отопления или тепло­обменники систем отопления, заполнена водой с температурой до 100°С. Статическое давление в тепловой сети H ст обеспечивается подпиточными насосами. Линию статического напора S-S на графике проводят из условия прочности чугунных радиаторов, т.е. 60 м. Статическое давление должно быть выше высоты присоединенных зда­ний к системе теплоснабжения, а также обеспечить невскипание воды в тепловой сети. Если хотя бы одно из условий для абонентских вводов не соблюдается, необходимо предусмотреть разделение тепло­вой сети на зоны с поддержанием в каждой зоне своего статического давления.

Необходимый подпор современных сетевых насосов находится в пределах 10¸25 м из условия подавления кавитации на всасе в на­сос, а полный напор подпиточных насосов H ст =40¸60 м. Данное значение

Н ст откладывается по оси Н от точки 0 до А. От точки А начинается построение пьезометрического графика для обратной магистрали в динамическом режиме на основании данного гидравлического расчета. С точки А откладывается длина первого расчетного участка 0 – I (0 I). Далее по оси Н откладывается расчетная величина гидравлических потерь Δ Н І (точка 0 1 ). Выполняя описанные действия, определяем последовательно все точки пьезометрического графика обратной магистрали (точки 0 , 0 1 , 0 2 и т.д.).

От последней точки пьезометрического графика обратной ма­гистрали (точка 0 4 ) откладывается необходимый располагаемый напор у последнего абонентаDH аб » 15¸20 м при наличии элеватора или DH аб » 10м+H зд - при безэлеваторном подключении (точка П 4 ). Пьезометрический график прямой магистрали строится от точки П 4 в обратной последовательности по участкам сети. Соединяя все найденные точки (А,0 1 ,0 2 , ... ) получим пьезометрический график обратной магистрали. При правильных расчетах и построении пьезометрический график должен быть прямолинейным. В точке П , соответс­твующей месторасположению источника теплоты, вверх откладывается потеря напора в сетевых подогревателяхDH П =10¸20 м или в водо­грейном котлеDH П =15¸30 м.

Рисунок 9. Пьезометрический график и схема тепловой сети:

I - сетевой насос; II - подпиточный насос; III - теплоподготови-тельная установка; IV - регулятор давления; V - подпиточный бак.

5. ВЫБОР СХЕМ ПРИСОЕДИНЕНИЯ АБОНЕНТСКИХ СИСТЕМ ОТОПЛЕНИЯ К ТЕПЛОВОЙ СЕТИ

Пьезометрический график позволяет выбрать схему присоедине­ния абонентских установок к теплосети с учетом располагаемого пе­репада давлений и ограничений по избыточному давлению в трубопро­водах.

На рис. 10 представлены схемы присоединения абонентских отопительных систем к тепловой сети. Схемы (а), (б) и (в) представляют собой зависимые присоединения. Схема (а) используется в том случае, когда имеется центральный или групповой тепловой пункт, где готовится теплоноситель с требуемыми параметрами и перед системой отопления необходимо отрегулировать только давление. Рис.10б - элеваторная схема присоединения применяется при условии, что напор в обратной магистрали не превышает допус­тимого для местных отопительных систем, а располагаемый напор на вводе достаточен для работы элеватора (15¸18 м).

Если напор в обратной магистрали не превышает допустимого, а располагаемый напор недостаточен для работы элеватора, применяют зависимую схему со смесительным насосом (Рис.10в).

Если напор в обратной магистрали в статическом или динами­ческом режиме превышает допустимый напор для местных систем отоп­ления, применяют независимую схему с установкой водоводяного теплообменника (Рис.10г).

Обозначения на схеме:

ПК – пиковый котел; ТП – теплофикационный подогреватель; СН – сетевой насос; ПН – подпиточный насос; РР – регулятор расхода; Д – диафрагма; В - воздушник (кран Маевского); Э – элеватор; Н – смесительный насос; РТ – регулятор температуры; ТО – теплообменник системы отопления; ЦН – циркуляционный насос; РБ – расширительный бак.

На рис. 11 представлены схемы присоединения системы горячего водоснабжения к системе теплоснабжения.




Рисунок 11. Присоединение систем горячего водоснабжения к системе теплоснабжения


6. ВЫБОР НАСОСОВ

6.1. Выбор сетевых насосов

Сетевые насосы устанавливаются на источнике теплоты, их ко­личество должно быть не менее двух, из которых один резервный. Производительность всех рабочих насосов принимается равной сум­марному расходу сетевой воды с учетом коэффициента запаса насоса по производительности (1,05-1,1).

Напор сетевых насосов определяется по пьезометрическому гра­фику и равен, м:

H с.н. =H ст +DH п +DH о +DH аб,

где H ст - потери напора на станции, м;

DH п - потери напора в подающей линии, м;

DH аб - располагаемый напор у абонента,м;

DH о - потери напора в обратной линии, м.

Выбор насосов выполняется для отопительного и неотопительно­го периодов. При наличии подкачивающих насосов в сети напор сете­вых насосов уменьшается на напор подкачивающих насосов.

6.2. Выбор подпиточных насосов

Производительность подпиточных насосов определяется величи­ной потерь сетевой воды в системе теплоснабжения. В закрытых сис­темах потери сетевой воды составляют 0,5 % объема воды в сетях, м 3 /ч:

G подп. =0,005×V+G гвс,

где V=Q×(V с +V м) - объем воды в системе теплоснабжения, м 3 ; Q - тепловая мощность системы теплоснабжения, МВт; V с , V м - удельные объемы сетевой воды, находящейся в наружных сетях с подогрева­тельными установками и в местных системах, м 3 /МВт (V с =10¸20, V м =25).

Список литературы

1. Айзенберг И.И., Баймачев Е.Э., Выгонец А.В. и др. Учебное пособие по дипломному проектированию для студентов специальности 270109 – ТВ. – Иркутск: Иркутский дом печати, 2007, - 104 с.


В этой статье я хочу рассказать каким образом и на основании чего производится регулирование температуры теплоносителя. Не думаю, что данная статья будет полезна или интересна работникам теплоэнергетики, так как ничего нового они из нее не почерпнут. А вот обычным гражданам она, надеюсь, окажется полезной.

4.11.1. Режим работы теплофикационной установки электростанции и районной котельной (давление в подающих и обратных трубопроводах и температура в подающих трубопроводах) должен быть организован в соответствии с заданием диспетчера тепловой сети.

Температура сетевой воды в подающих трубопроводах в соответствии с утвержденным для системы теплоснабжения температурным графиком должна быть задана по усредненной температуре наружного воздуха за промежуток времени в пределах 12 — 24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов.

Температурный график разрабатывается для каждого города, в зависимости от местных условий. В нем четко определено какая должна быть температура сетевой воды в тепловой сети при конкретной температуре наружного воздуха. Например, при -35° температура теплоносителя должна быть 130/70. Первая цифра определяет температуру в подающем трубопроводе, вторая — в обратном. Задает эту температуру диспетчер тепловых сетей для всех теплоисточников (ТЭЦ, котельные).

Правила допускают отклонения от заданных параметров:

4.11.1. Отклонения от заданного режима за головными задвижками электростанции (котельной) должны быть не более:

  • по температуре воды, поступающей в тепловую сеть, ±3%;
  • по давлению в подающих трубопроводах ±5%;
  • по давлению в обратных трубопроводах ±0,2 кгс/см2 (±20 кПа).

4.12.36. Для водяных систем теплоснабжения в основу режима отпуска тепла должен быть положен график центрального качественного регулирования. Допускается применение качественно-количественного и количественного графиков регулирования отпуска тепла при необходимом уровне оснащения источников тепловой энергии, тепловых сетей и систем теплопотребления средствами автоматического регулирования, разработке соответствующих гидравлических режимов.

Так что, дорогие граждане, не пытайтесь как-то воздействовать на тепловые сети, если вам стало очень жарко весной. Они ничего для вас не сделают, т. к. не имеют ни права ни возможности. Жалуйтесь в администрацию, тогда, возможно, они прикажут прекратить отопительный сезон раньше. Но помните, что весной температура на улице изменчива и, если сегодня тепло и вы добились отключения отопления, то завтра может стать очень холодно, а отключать оборудование гораздо быстрее, чем включать его в работу.

Теперь поговорим о том, как бывает холодно в квартире зимой, особенно когда основательно «подморозит». Если в квартире холодно , то кто обычно виноват? Правильно — тепловые сети! Так думают большинство граждан. Отчасти, они правы, но не все так просто.

Начнем с того, что в сильные морозы газоснабжающие организации могут ввести ограничение на поставки газа . Из-за этого котельным приходится поддерживать температуру теплоносителя «сколько получится». Как правило, градусов на 10 ниже, чем заложено в температурном графике. Электростанциям проще — они переходят на сжигание мазута, а котельным, которые зачастую стоят чуть ли не посреди жилых кварталов, жечь мазут разрешают только в аварийных случаях (например, полное прекращение газоснабжения), чтобы люди не замерзли совсем. Из-за ограничений поставок газа могут даже отключить горячую воду , чтобы снизить расходы теплоносителя и тем самым поддерживать температуру в системах отопления на нужном уровне. Так что не удивляйтесь в случае чего.

Также причиной того, что зимой в квартирах холодно, является высокая степень изношенности самих тепловых сетей, а в частности тепловой изоляции трубопроводов . В результате, в дома, которые находятся довольно далеко от теплоисточника теплоноситель «доходит» уже порядком остывший.

Ну и последняя причина, о которой я расскажу — это неудовлетворительная теплоизоляция самих квартир и домов. Щели в окнах, дверях, отсутствие теплоизоляции самого дома — все это приводит к тому, что тепло уходит в окружающую среду и нам холодно. Эту причину устранить можете вы сами. Установите новые окна, сделайте теплоизоляцию квартиры, поменяйте радиаторы отопления на новые, ведь со временем чугунные батареи забиваются и теплоотдача значительно снижается. Кстати, если покрасить батарею в черный цвет , то она будет греть лучше. Это не шутка, опыты подтверждают этот факт.

Ну вот, кажется, и все, что я хотел рассказать в этой статье. Так же хочу оговориться, что я писал статью, основываясь во многом на личном опыте. В разных регионах нашей страны ситуация может быть разной и в корне отличаться от того, что я тут понаписал. Но в целом, думаю, обстановка схожа. По крайней мере в крупных городах.

Определение значений нормативной температуры обратной сетевой воды в нерасчетном режиме

к.т.н., доцент В.И. Рябцев, Г.А. Рябцев, инженер, Курский ГТ

Рациональное использование энергии является актуальной задачей для всех времен. Но это не всегда удается, особенно при нерасчетных и переходных процессах. А переменные тепловые режимы сетей почти совсем не освещены в технической литературе.

В настоящее время теплоснабжение большинства городов осуществляется с температурой сетевой воды в подающих магистралях, заниженной относительно директивного графика 150°/70° или 130°/70°. В таких условиях эксплуатационный персонал лишен возможности определять нормативную температуру возвращаемой обратной сетевой воды (t н о бр). И в силу этого создаются условия бесконтрольного использования теплоты.

Предлагается методика подсчета температуры обратной сетевой воды для переменных и нерасчетных тепловых режимов на основе графика 150°/70°, по которому запроектированы все теплоприемники потребителей и здания. Она наглядно представлена на рисунке, где график 150°/70° трансформирован как зависимость не только температуры воды на подающей магистрали (t пр), но и разности температур подающей и обратной сетевой воды (?t) от температуры наружного воздуха

Из графика видно, что для каждой температуры поступающей сетевой воды соответствует своя нормативная величина (?t H = t пр - t обр), которая также определяется еще и температурой наружного воздуха (t нв). Но как отмечалось выше, очень часто в действительности t пр не совпадает с требуемой по графику t нв. Точки 1 - это начальные условия -фактически температура подающей сетевой воды и реальный мороз. Этим двум точкам по нижней кривой соответствуют свои значения?t! и?t 2 . Обе величины не реальные, т.к. для?t 2 не соблюдено условие фактического более сильного мороза, а?t! не имеет такую высокую температуру t н. Поэтому искомая величина?t H находится между ними?t 2

теплоснабжение вода температура

T 2 - разность температур по графику 150°/70° для фактической температуры подающей сетевой воды;

t н б - температура сетевой воды в отопительной батарее потребителя, определенная по графику 150°/70° для фактического значения t ср нв;

t вн - температура воздуха внутри помещения, принимаемая за + 18 °С;

tф вн - фактическая температура наружного воздуха;

tф б - температура сетевой воды в батарее потребителя, определенная по графику 150°/70°для фактической температуры подающей сетевой воды;

V нв - температура наружного воздуха, взятая по

графику 150°/70° по фактической температуре подающей сетевой воды.

Проверка формулы показала практическое совпадение результатов.

Таким образом, удалось впервые показать, что в любом режиме работы теплосети для любой температуры воды в подающем теплопроводе существует своя нормативная температура возвращаемой обратной сетевой воды. Сравнение с нормативной и фактической температурой обратной сетевой воды является главнейшим рычагом в деле более полного и эффективного использования теплоты сетевой воды и основой глубокого анализа режима работы сети.

Литература

Е.Я.Соколов. Тепловые сети. Москва, 1982 г.

Справочник по теплоснабжению и вентиляции. Под. ред.Щекина. Киев, 1996 г.

Что еще почитать