Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха. Температурный график системы отопления

Температурный график работы тепловых сетей - это основа основ всей технической и экономической политики крупной теплоэнергетической системы города. При организации теплоснабжения десятков тысяч потребителей от тепловых сетей, объединяющих различные виды источников тепла (ТЭЦ, котельные) необходим единый технологический документ, который увязывает интересы всех сторон теплоэнергетического процесса: покупателей, производителей тепловой энергии, наладчиков гидравлических и температурных режимов тепловых сетей, инспекторов Госэнергонадзора, проектировщиков систем отопления. Температурный график - это «становой хребет», определяющий всю экономику теплоэнергетики крупного города. Как дирижер управляет оркестром, так и температурный график тепловых сетей управляет всеми элементами теплоэнергетической системы: производством, распределением и потреблением тепла, определяет возможные диапазоны комбинированного производства тепловой и электрической энергии. Само по себе применение того или иного температурного графика работы тепловых сетей непосредственной экономии или перерасхода для потребителя не несет. Однако затраты в обеспечение того или иного температурного графика тепловых сетей значительно отличаются как при строительстве тепловых сетей и при эксплуатации тепловых сетей. Сравнительную характеристику температурных графиков смотри табл.3

Таблица 3 Сравнительные характеристики температурных графиков тепловых сетей

Теплотрасса, работающая по проектному температурному графику

Необходимый напор сетевой воды на ТЭЦ (м.в.с)

при переходе от проектного графика на фактический (скорректированный) график.

Проектный

Металло емкость %

Нормативные потери тепла %

со срезкой

от 120>

до>30.0

до 480

Результаты технико-экономического анализа показывают, что температурные графики 150 -70 и 170-70є С являются самыми экономичными графиками, как по первоначальным капитальным затратам, а) по металлоемкости в строительные конструкции, так и эксплуатационным затратам: б) по снижению удельных потерь тепла через тепловую изоляцию, с) по сокращению издержек на перекачку сетевой воды. При этом:

  • - переход с графика 150-70°С на график 110-70є С, вызывает рост первоначальных капиталовложений с строительство тепловых сетей на 200%;
  • - переход от графика 150-70єС на график 110-70єС вызывает рост удельных нормативных потерь с 8.4% до 15.0% (При условии равной циркуляции и 100% загрузки трубопроводов в обоих случаях);
  • - переход на фактический режим работы тепловых сетей по графику 110є С против проектного графика 150-70є С требует одновременного роста циркуляции в 2 раза больше сетевой воды. Для обеспечения передачи равного количества тепла требуется рост перепада давления сетевой воды на ТЭЦ от 120 м.в.с до 480 м.в.с. Так как это практически невозможно, то потребители будут, безусловно, ограничены по теплу в 2 раза;
  • - если же тепловые сети были запроектированы на график 110-70єС, то переход на температурный график 150-70°С позволит снизить располагаемый напор на ТЭЦ от 120м.в.с. до 30.0 м.в.с.

Однако, необходимо отметить, что вышеприведенные выводы полностью справедливы только при дешевом топливе, как у нас в России. При очень дорогой стоимости топлива, как например в Дании, для максимальной выработки электроэнергии на тепловом потреблении на ТЭЦ, стремятся снижать температуру прямой сетевой воды от ТЭЦ как можно ниже, вплоть до минимально возможного - 80°С. Эффективная ценовая политика на тепловую и электрическую энергию, массовое применение количественного регулирования отпуска тепла, путем изменения расхода сетевой воды позволяют Дании проектировать магистральные тепловые сети с сечением труб в 2-3 раза больше, чем в России. Внутридомовые системы отопления также требуют применения радиаторов с большими в 2-3 раза поверхностями нагрева. Для нового перспективного проектирования систем отопления от ТЭЦ, при значительном росте стоимости топлива и в России также необходимо переходить на энергоэффективный график 80-35°С. Но пока мы не поймем, что в системах отопления России вместо «модных» теплосчетчиков необходимо в первую очередь устанавливать, действительно, энергосберегающие приборы такие как: батарейные регуляторы температуры типа «Данфосс» регуляторы расхода, давления, пока мы не построим достаточное количество теплотрасс от ТЭЦ об энергосберегающем температурном графике 80-35°С для ТЭЦ, остается только мечтать. Востребованность этих решений будет тогда, когда цена газа для внутри Российского потребителя от 40$ за тысячу м3 поднимется до уровня мировой цены газа до 160$ и более за тысячу м3 газа.

Соответствие фактической температуры сетевой воды нормативному значению по температурному графику является одним из главных показателей, характеризующих качество работы всей теплоэнергетической системы. По правилам технической эксплуатации (ПТЭ), недогрев «прямой» сетевой воды не должен быть больше ±(2.1ч4.5°С). Однако фактический недогрев прямой сетевой воды составляет 30-60°С, что в 10 раз больше допустимого по ПТЭ . В свою очередь потребитель также должен обеспечить полное использование тепла и температура «обратки» к ТЭЦ не должна быть выше +(1.2ч2.1єС) от норматива. Фактическое недоиспользование тепла у потребителя составляет до 12-30°С, что так- же в 10 раз больше допустимого по ПТЭ . Ужас! О каких снижениях тарифов можно говорить!! Какая - же энергосберегающая технология может быть в таких варварских условиях эксплуатации теплоэнергетических систем города?

В современных экономических условиях выполнение температурного графика является не столько технической задачей, сколько экономической, связанной с неплатежами муниципалитета за тепловую энергию. Из-за отсутствия необходимых средств у муниципалитета для оплаты тепла в соответствии с проектным графиком 150-70°С и перевода тепловых сетей на фактическую температуру прямой сетевой воды не выше 95ч100°С, приводит к невосполнимому технологическому ущербу в виде полной разрегулировки гидравлического режима тепловых сетей, и, в конечном итоге, к экономическому ущербу как для потребителей, так и для производителей тепла.

Из-за завышенного роста циркуляции сетевой воды, массового снижения перепадов давления у концевых потребителей тепла, при температурах наружного ниже -20-25°С создается неуправляемая аварийная ситуации. Тонкой наладкой гидравлических режимов с установкой нужных диаметров регулирующих шайб и сопел специалисты тепловых сетей занимаются месяцами, но достаточно один раз не обеспечить необходимую температуру в течение 2-4 дней как вся тонкая наладочная работа разваливается. Но самое главное, что никакой реальной экономии топлива на теплоснабжении города при этом нет. Наоборот имеется постоянный перерасход топлива из-за «перегрева» выше +22°С, близлежащих потребителей тепла ~ 60%, и массового «недогрева» ниже +18°С, удаленных потребителей тепла~30%. При снижении температуры наружного воздуха ниже минус 28°С может произойти массовый неуправляемый «недогрев» населения с температурой ниже +18°С уже для ~60% потребителей, и городских системах отопления может возникнуть неуправляемая аварийная ситуация, требующая вмешательства министерства чрезвычайных ситуаций.

Цена ущерба из-за отступления фактического температурного графика от нормативного температурного графика 150-70°С для Омска только по затратам на сверхнормативную перекачку сетевой воды составляет порядка 40 млн.рублей в год. В последнее время в системах теплоснабжения установилась «модная» и эффективно лоббируемая тенденция по установке теплосчетчиков, якобы позволяющих экономить средства на теплоснабжении потребителей. Да, приборы учета тепла позволяют юридически показать фактически потребленное тепло. Но никакой реальной экономии топливо энергетических ресурсов они не приносят. Вместо того, чтобы в условиях ограниченного финансирования, тратить огромные средства на доказательную сторону недостатков теплоснабжения в виде установки очень дорогих теплосчетчиков, (30ч80тысяч рублей) необходимо в системах отопления домов устанавливать «настоящих работяг» - регуляторы расхода, регуляторы температуры, регуляторы давления. Вот они, действительно, снижают энергетические затраты и позволяют работать строго по температурному графику тепловых сетей. А для проведения эффективной претензионной работы с любым поставщиком и потребителем тепловой энергии достаточно трех обыкновенных термометров стоимостью 100 рублей каждый, и температурного графика на одной странице.

Но главный энергосберегающий эффект кроется не сколько в сокращении затрат на перекачку сетевой воды, а прежде всего в возможности обеспечения совместной работы ТЭЦ в базовом режиме с максимальной выработкой электроэнергии на тепловом потреблении и котельных в пиковом режиме. Для города Омска, цена энергосберегающего эффекта составляет не менее 800млн. рублей в год! Именно температура обратной сетевой воды от потребителя тепла к ТЭЦ является ключевым показателем «здоровья» энергосберегающей теплоэнергетики региона, города, предприятия. Пока, вместо форточки, на каждой квартирной батарее, получающей тепло от ТЭЦ, не появится индивидуальный регулятор температуры в помещении, мы не сможем реально экономить до 50% топлива на электроэнергию.

Cтраница 1


Снижение температуры обратной воды против графика не лимитируется.  

Таким образом, первой задачей является снижение температуры обратной воды из систем отопления в расчетной точке до 60 С.  

Очень большую экономию тепловой энергии и снижение температуры обратной воды дает эта схема при работе тепловой сети со срезкой графика для горячего водоснабжения, так как позволяет при постоянной температуре сетевой воды в подающей магистрали получать переменную температуру приточного воздуха в соответствии с температурой наружного воздуха.  

Многие тепловые сети успешно выдерживают этот предел и даже добиваются снижения температуры обратной воды ниже установленного графика, повышая - тем самым технико-экономические показателя работы всей системы в целом.  

Экономия электроэнергии на перекачку теплоносителя, экономия топлива на ТЭЦ и снижение температуры обратной воды при трехимпульсном изодромном регулировании окупает все затраты на автоматизацию вводов.  

Применение поверхностных конденсационных котлов и экономайзеров для отопления целесообразно, таким образом, при условии снижения температуры обратной воды отопительной системы. Соответственно снижаются и средняя температура воды и, как было показано выше, температура прямой воды, поступающей в систему. Поэтому применение поверхностных конденсационных котлов и экономайзеров для нагрева воды систем отопления неизбежно связано с определенным перерасходом металла на сооружение систем отопления. Тем не менее за рубежом конденсационные котлы и экономайзеры используют в основном именно для систем отопления.  

Среднесуточная температура обратной воды из тепловой сети ие должна превышать заданную более чем на 2 С Снижение температуры обратной воды против графика не лимитируется.  


При снижении температуры обратной воды до расчетной величины следует ожидать некоторого снижения температуры уходящих газов.  

Определим оптимальную температуру обратной воды, поступающей из системы отопления здания в контактно-поверхностный водонагреватель ФНКВ-1. По мере снижения температуры обратной воды tz экономичность использования газа в аппарате повышается за счет использования тепла, выделящегося при конденсации водяных паров, находящихся в продуктах сгорания газа. Поэтому определение величины пт практически необходимо.  

Сырую воду на химводоочистку берут из сбросного циркуляционного водовода при температуре 20 - 35 С, что дает утилизацию сбросного тепла. Существенное повышение удельной выработки на тепловом потреблении дает снижение температуры обратной воды, которое получается в результате смешения обратной и более холодной подпиточной воды.  

Сильфон является регулирующим органом. При повышении температуры воды, выходящей из калорифера, жидкость в сильфоне нагревается и расширяется, что приводит к уменьшению проходного сечения клапана и сокращению расхода сетевой воды, а следовательно, к снижению температуры обратной воды.  

Таким образом, для рассмотренной схемы пропорционального регулирования температуры в помещении следует всегда предусматривать автоматически действующую защиту от замораживания калориферов. По этой схеме манометрический датчик температуры устанавливается в трубопроводе обратной воды после калорифера и настраивается на температуру 25 - 30 С. При снижении температуры обратной воды до установленного значения датчик дает сигнал, и Двухпозиционный регулятор срабатывает, открывая с помощью соленоидного вентиля проход для воды через обводную ветку.  

Для получения равномерного температурного поля после калорифера, что особенно важно иметь в кондиционерах, в которых сразу же за первым подогревом ставится оросительная камера, желательно значительное снижение температуры подаваемой в калорифер воды с одновременным уменьшением перепада температур прямой и обратной воды. Некоторое увеличение требуемой поверхности нагрева калориферов компенсируется снижением температуры обратной воды.  

Для снижения температуры воды, выходящей из ЦТП, и уменьшения теплопотерь ночью целесообразно переключать на это время циркуляционную линию системы горячего водоснабжения в трубопровод холодной воды перед I ступенью водонагревателя. Одновременно следует снизить уставку регулятора температуры горячей воды с 60 на 50 С. Днем циркуляционная линия должна быть включена в трубопровод нагреваемой воды перед II ступенью или, что более рационально, в трубопровод между секциями II ступени водонагревателя, температура воды в котором равна принятой температуре воды в циркуляционном трубопроводе (примерно перед тремя последними секциями по ходу движения нагреваемой воды), как показано на рис. 3.19. Переключение выполняется автоматически: реле времени, например в 0 ч, закрывает клапан 5, направляя циркуляционный поток в I ступень, и через электрогидравлическое реле переключается импульс на регулятор температуры с датчика, настроенного на поддержание температуры горячей воды 60 С, на другой датчик с уставкой на 45 - 50 С. В 6 ч реле времени делает обратное переключение, при открытом клапане 5 через него будет поступать циркуляционная вода, так как давление воды перед I ступенью значительно выше, чем в месте включения трубопровода, на котором установлен клапан. При автоматическом регулировании подачи тепла на отопление, когда температура воды из системы отопления будет ниже 40 - 45 С, переключение циркуляционного трубопровода перед I ступенью водонагревателя при таких температурах делать нецелесообразно. В связи с этим на обратном трубопроводе системы отопления установлен датчик температуры, по сигналу которого при снижении температуры обратной воды менее 40 - - 45 С клапан 5 остается открытым и в ночное время.  

Страницы:      1

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

При организации теплоснабжения десятков тысяч потребителей от тепловых сетей, объединяющих различные виды источников тепла (ТЭЦ, котельные), необходим единый технологический документ, который увязывает интересы всех сторон теплоэнергетического процесса: покупателей, производителей тепловой энергии, наладчиков гидравлических и температурных режимов тепловых сетей, инспекторов Госэнергонадзора, проектировщиков систем отопления.

Температурный график – это «становой хребет», определяющий всю экономику теплоэнергетики крупного города. Как дирижер управляет оркестром, так и температурный график тепловых сетей управляет всеми элементами теплоэнергетической системы: производством, распределением и потреблением тепла, определяет возможные диапазоны комбинированного производства тепловой и электрической энергии. Само по себе применение того или иного температурного графика работы тепловых сетей непосредственной экономии или перерасхода для потребителя не несет. Однако затраты в обеспечение того или иного температурного графика тепловых сетей значительно отличаются как при строительстве, так и при эксплуатации тепловых сетей. Сравнительные характеристики температурных графиков приведены в таблице.

Результаты технико-экономического анализа показывают, что температурные графики 150‑70 °С и 170‑70 ºС являются самыми экономичными графиками:

а) по первоначальным капитальным затратам,
б) по металлоемкости в строительные конструкции и эксплуатационным затратам,
в) по снижению удельных потерь тепла через тепловую изоляцию,
г) по сокращению издержек на перекачку сетевой воды.

При этом:

Переход с графика 150‑70 °С на график 110‑70 ºС вызывает рост первоначальных капиталовложений в строительство тепловых сетей на 200 процентов;
переход с графика 150‑70 ºС на график 110‑70 ºС вызывает рост удельных нормативных потерь с 8,4 процента до 15,0 процента (при условии равной циркуляции и 100‑процентной загрузки трубопроводов в обоих случаях);
переход на фактический режим работы тепловых сетей по графику 110 ºС против проектного графика 150‑70 ºС требует одновременного роста циркуляции в два раза большего количества сетевой воды. Для обеспечения передачи равного количества тепла требуется рост перепада давления сетевой воды на ТЭЦ от 120 м.в.с. до 480 м.в.с. Так как это практически невозможно, то потребители будут, безусловно, ограничены по теплу в два раза;
если же тепловые сети были запроектированы на график 110‑70 ºС, то переход на температурный график 150‑70 °С позволит снизить располагаемый напор на ТЭЦ от 120 м.в.с. до 30 м.в.с.

Однако необходимо отметить, что вышеприведенные выводы полностью справедливы только при дешевом топливе, как у нас в России. При очень высокой стоимости топлива, как, например, в Дании, для максимальной выработки электроэнергии на тепловом потреблении на ТЭЦ стремятся снижать температуру прямой сетевой воды от ТЭЦ как можно ниже, вплоть до минимально возможного (80 °С). Эффективная ценовая политика на тепловую и электрическую энергию, массовое применение количественного регулирования отпуска тепла путем изменения расхода сетевой воды позволяют Дании проектировать магистральные тепловые сети с сечением труб в два-три раза больше, чем в России. Внутридомовые системы отопления также требуют применения радиаторов с в два-три раза большими поверхностями нагрева.

Для нового перспективного проектирования систем отопления от ТЭЦ при значительном росте стоимости топлива и в России необходимо переходить на энергоэффективный график 80‑35 °С. Но пока мы не поймем, что в системах отопления России вместо «модных» теплосчетчиков необходимо в первую очередь устанавливать действительно энергосберегающие приборы, такие, как батарейные регуляторы температуры типа «Данфосс», регуляторы расхода, давления, пока мы не построим достаточного количества теплотрасс от ТЭЦ, об энергосберегающем температурном графике 80‑35 °С для ТЭЦ остается только мечтать. Востребованными эти решения станут тогда, когда цена газа для российского потребителя с нынешних 128 долларов США за тысячу кубометров поднимется до уровня мировой цены газа – 400 долларов США и более за тысячу кубометров.

Соответствие фактической температуры сетевой воды нормативному значению по температурному графику является одним из главных показателей, характеризующих качество работы всей теплоэнергетической системы. По правилам технической эксплуатации (ПТЭ), недогрев «прямой» сетевой воды не должен быть больше ±2,1‑4,5 °С. Однако фактический недогрев прямой сетевой воды составляет 30‑60 °С, что в десятки раз больше допустимого по ПТЭ.

В свою очередь, потребитель также должен обеспечить полное использование тепла, а температура «обратки» к ТЭЦ не должна быть выше +1,2‑2,1 ºС от норматива. Фактическое недоиспользование тепла у потребителя составляет до 12‑30 °С, что также в десять раз больше допустимого по ПТЭ! О каком снижении тарифов здесь можно говорить, какие энергосберегающие технологии могут применяться в таких варварских условиях эксплуатации теплоэнергетических систем городов?

В современных экономических условиях выполнение температурного графика является не столько технической задачей, сколько экономической, связанной с неплатежами муниципалитетов за тепловую энергию. Из-за отсутствия у муниципалитетов необходимых средств для оплаты тепла в соответствии с проектным графиком 150‑70 °С и перевода тепловых сетей на фактическую температуру прямой сетевой воды не выше 95‑100 °С возникает невосполнимый технологический ущерб в виде полной разрегулировки гидравлического режима тепловых сетей и, в конечном итоге, экономический ущерб как для потребителей, так и для производителей тепла.

Из-за завышенного роста циркуляции сетевой воды, массового снижения перепадов давления у концевых потребителей тепла при температурах наружного воздуха ниже –20‑25 °С создается неуправляемая аварийная ситуация. Тонкой наладкой гидравлических режимов с установкой нужных диаметров регулирующих шайб и сопел специалисты тепловых сетей занимаются месяцами, но достаточно один раз не обеспечить необходимую температуру в течение двух-четырех дней, как вся тонкая наладочная работа разваливается. Но самое главное, что никакой реальной экономии топлива на теплоснабжении города при этом нет. Наоборот, имеется постоянный перерасход топлива из‑за «перегрева» выше +22 °С близлежащих потребителей тепла (около 60 процентов потребителей) и массового «недогрева» ниже +18 °С потребителей удаленных (это около 30 процентов потребителей) – то есть тепло по нормативам получают всего около 10 процентов потребителей! При снижении температуры наружного воздуха ниже –28 °С может произойти массовый неуправляемый «недогрев» населения с температурой ниже +18 °С уже для примерно 60 процентов потребителей, и в городских системах отопления может возникнуть неуправляемая аварийная ситуация, требующая вмешательства МЧС.

Так, для Омска цена ущерба из‑за отступления фактического температурного графика от нормативного температурного графика 150‑70 °С только по затратам на сверхнормативную перекачку сетевой воды составляет порядка 120 миллионов рублей в год. В последнее время в системах теплоснабжения установилась «модная» и эффективно лоббируемая тенденция по установке теплосчетчиков, якобы позволяющих экономить средства на теплоснабжении потребителей. Да, приборы учета тепла позволяют юридически показать фактически потребленное тепло. Но никакой реальной экономии топлива и энергетических ресурсов они не приносят. Вместо того чтобы в условиях ограниченного финансирования тратить огромные средства на доказательную сторону недостатков теплоснабжения в виде установки очень дорогих теплосчетчиков (30‑80 тысяч рублей), необходимо в системах отопления домов устанавливать «настоящих работяг» – регуляторы расхода, регуляторы температуры, регуляторы давления. Вот они действительно снижают энергетические затраты и позволяют работать строго по температурному графику тепловых сетей. А для проведения эффективной претензионной работы с любым поставщиком и потребителем тепловой энергии достаточно трех обыкновенных термометров стоимостью 100 рублей каждый и температурного графика на одной странице.

Но главный энергосберегающий эффект кроется не столько в сокращении затрат на перекачку сетевой воды, а прежде всего в возможности обеспечения совместной работы ТЭЦ в базовом режиме с максимальной выработкой электроэнергии на тепловом потреблении и котельных в пиковом режиме. Для города Омска цена энергосберегающего эффекта составляет не менее 2 миллиардов 400 миллионов рублей в год! Именно температура обратной сетевой воды от потребителя тепла к ТЭЦ служит ключевым показателем «здоровья» энергосберегающей теплоэнергетики региона, города, предприятия. Пока вместо форточки на каждой квартирной батарее, получающей тепло от ТЭЦ, не появится индивидуальный регулятор температуры в помещении, мы не сможем реально экономить до 50 процентов топлива на электроэнергию.

В этой статье я хочу рассказать каким образом и на основании чего производится регулирование температуры теплоносителя. Не думаю, что данная статья будет полезна или интересна работникам теплоэнергетики, так как ничего нового они из нее не почерпнут. А вот обычным гражданам она, надеюсь, окажется полезной.

4.11.1. Режим работы теплофикационной установки электростанции и районной котельной (давление в подающих и обратных трубопроводах и температура в подающих трубопроводах) должен быть организован в соответствии с заданием диспетчера тепловой сети.

Температура сетевой воды в подающих трубопроводах в соответствии с утвержденным для системы теплоснабжения температурным графиком должна быть задана по усредненной температуре наружного воздуха за промежуток времени в пределах 12 — 24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов.

Температурный график разрабатывается для каждого города, в зависимости от местных условий. В нем четко определено какая должна быть температура сетевой воды в тепловой сети при конкретной температуре наружного воздуха. Например, при -35° температура теплоносителя должна быть 130/70. Первая цифра определяет температуру в подающем трубопроводе, вторая — в обратном. Задает эту температуру диспетчер тепловых сетей для всех теплоисточников (ТЭЦ, котельные).

Правила допускают отклонения от заданных параметров:

4.11.1. Отклонения от заданного режима за головными задвижками электростанции (котельной) должны быть не более:

  • по температуре воды, поступающей в тепловую сеть, ±3%;
  • по давлению в подающих трубопроводах ±5%;
  • по давлению в обратных трубопроводах ±0,2 кгс/см2 (±20 кПа).

4.12.36. Для водяных систем теплоснабжения в основу режима отпуска тепла должен быть положен график центрального качественного регулирования. Допускается применение качественно-количественного и количественного графиков регулирования отпуска тепла при необходимом уровне оснащения источников тепловой энергии, тепловых сетей и систем теплопотребления средствами автоматического регулирования, разработке соответствующих гидравлических режимов.

Так что, дорогие граждане, не пытайтесь как-то воздействовать на тепловые сети, если вам стало очень жарко весной. Они ничего для вас не сделают, т. к. не имеют ни права ни возможности. Жалуйтесь в администрацию, тогда, возможно, они прикажут прекратить отопительный сезон раньше. Но помните, что весной температура на улице изменчива и, если сегодня тепло и вы добились отключения отопления, то завтра может стать очень холодно, а отключать оборудование гораздо быстрее, чем включать его в работу.

Теперь поговорим о том, как бывает холодно в квартире зимой, особенно когда основательно «подморозит». Если в квартире холодно , то кто обычно виноват? Правильно — тепловые сети! Так думают большинство граждан. Отчасти, они правы, но не все так просто.

Начнем с того, что в сильные морозы газоснабжающие организации могут ввести ограничение на поставки газа . Из-за этого котельным приходится поддерживать температуру теплоносителя «сколько получится». Как правило, градусов на 10 ниже, чем заложено в температурном графике. Электростанциям проще — они переходят на сжигание мазута, а котельным, которые зачастую стоят чуть ли не посреди жилых кварталов, жечь мазут разрешают только в аварийных случаях (например, полное прекращение газоснабжения), чтобы люди не замерзли совсем. Из-за ограничений поставок газа могут даже отключить горячую воду , чтобы снизить расходы теплоносителя и тем самым поддерживать температуру в системах отопления на нужном уровне. Так что не удивляйтесь в случае чего.

Также причиной того, что зимой в квартирах холодно, является высокая степень изношенности самих тепловых сетей, а в частности тепловой изоляции трубопроводов . В результате, в дома, которые находятся довольно далеко от теплоисточника теплоноситель «доходит» уже порядком остывший.

Ну и последняя причина, о которой я расскажу — это неудовлетворительная теплоизоляция самих квартир и домов. Щели в окнах, дверях, отсутствие теплоизоляции самого дома — все это приводит к тому, что тепло уходит в окружающую среду и нам холодно. Эту причину устранить можете вы сами. Установите новые окна, сделайте теплоизоляцию квартиры, поменяйте радиаторы отопления на новые, ведь со временем чугунные батареи забиваются и теплоотдача значительно снижается. Кстати, если покрасить батарею в черный цвет , то она будет греть лучше. Это не шутка, опыты подтверждают этот факт.

Ну вот, кажется, и все, что я хотел рассказать в этой статье. Так же хочу оговориться, что я писал статью, основываясь во многом на личном опыте. В разных регионах нашей страны ситуация может быть разной и в корне отличаться от того, что я тут понаписал. Но в целом, думаю, обстановка схожа. По крайней мере в крупных городах.

Что еще почитать