В состав ионизирующего излучения входят ультрафиолетовые лучи. Прохождение радиации и ионизирующих излучений через препятствия

Все излучения, используемые в медицинской радиологии, разделяют на две большие группы: неионизирующие и ионизирующие, Как показывает само наименование, первые в отличие от вторых при взаимодействии со средой не вызывают ионизации атомов, т.е. распада на противоположно заряженные частицы — ионы.

К числу неионизирующих излучений принадлежит тепловое (инфракрасное) излучение и резонансное, возникающее в объекте (тело человека), помещенного в стабильное магнитное поле, под действием высокочастотных импульсов. Кроме того, к неионизирующим излучениям условно относят ультразвуковые волны, представляющие собой упругие колебания среды.

Ионизирующие излучение

характеризуются способностью к ионизации атомов окружающей среды, в том числе атомы, входящие в состав тканей человека. Все эти излучения делят на квантовые и корпускулярные.

Это деление в значительной мере условно, так как любое излучение имеет двойственную природу и в определенных условиях проявляет то свойство волны, то свойство частицы.

К квантовым ионизирующим излучениям относят тормозное (рентгеновское) и гамма-излучение.

К корпускулярным излучениям относят пучки электронов, протонов, нейтронов, мезонов.

Для медицинских целей наиболее активно используют вид искусственного наружного излучения – рентгеновское.

Рентгеновская трубка

представляет собой вакуумный стеклянный сосуд, в концы которого впаяны два электрода – катод и анод.

Катод выполнен в виде тонкой вольфрамовой спирали. При его нагревании вокруг спирали образуется облако свободных электронов (термоэлектронная эмиссия). Под действием высокого напряжения, приложенного к полюсам рентгеновской трубки, они разгоняются и фокусируются на аноде. Последний вращается с огромной скоростью (до 10 тыс. оборотов в мин.), для равномерного распределения частиц и предупреждения расплавления анода. В результате торможения электронов на аноде часть их кинетической энергии превращается в электромагнитное излучение.

Другим источником ионизирующих излучений для медицинских целей являются радиоактивные нуклиды. Их получают в атомных реакторах на ускорителях заряженных частиц, или при помощи генераторов радионуклидов.

Ускорители заряженных частиц

— это установки для получения заряженных частиц высоких энергий с помощью электрического поля. Частицы движутся в вакуумной камере. Управление их движением осуществляется магнитным полем или электрическим.

По характеру ускоряемых частиц в них различают ускорители электронов (бетатрон, микротрон, линейный ускоритель) и тяжелых частиц – протонов и т.д. (циклотрон, синхрофазотрон).

В диагностике ускорители используют для получения радионуклидов, преимущественно с коротким и ультракоротким периодом полураспада.

В состав лучевой диагностики

входят рентгенодиагностика (рентгенология), радионуклидная диагностика, ультразвуковая диагностика, рентгеновская компьютерная томография, магнитно-резонансная томография, медицинская термография (тепловидение). Кроме того, к ней относится так называемая интервенционная радиология, в задачи которой входит выполнение лечебных вмешательств на базе лучевых диагностических процедур.

Перечисленные методы лучевой диагностики основаны на исследовании органов путем получения их изображений с помощью различных полей и излучений (Medical Imaging). Визуализация может быть получена обработкой пропускаемого, испускаемого или отраженного электромагнитного излучения либо механической вибрации (ультразвук).

В основу современной медицинской визуализации положены следующие физические явления:

— поглощение в тканях рентгеновского излучения (рентгенодиагностика);

— возникновение радиочастотного излучения при возбуждении непарных ядер атомов в магнитном поле (МРТ);

— испускание гамма-квантов радионуклидами, сконцентрированными в определенных органах (радионуклидная диагностика);

— отражение в сторону датчика высокочастотных лучей направленных ультразвуковых волн (УЗИ);

— самопроизвольное испускание тканями инфракрасных волн (инфракрасная визуализация, термография).

Все эти методы, за исключением ультразвукового, основаны на электромагнитном излучении в различных областях энергетического спектра. Ультразвуковая визуализация основана на улавливании колебаний, генерируемых пьезоэлектрическим кристаллом.

Методы визуализации

можно сгруппировать и по следующему признаку: получают изображение всего объема ткани или ее тонкого слоя. При обычном рентгеновском исследовании трехмерный объем отображается как двухмерное изображение. На пленке получают суммационное изображение различных органов. При аксиальной визуализации, например, КТ, излучение направляется только на тонкий слой тканей. Главным преимуществом данного метода является хорошее контрастное разрешение.

Взаимодействие ионизирующих излучений с веществом.

Проходя через любую среду, в том числе ткани человека, все ионизирующие излучения действуют практически одинаково: все они передают свою энергию атомам этих тканей, вызывая их возбуждение и ионизацию.

Протоны и особенно альфа-частицы имеют большую массу, заряд и энергию. Поэтому они движутся в тканях прямолинейно, образуя густые скопления ионов. Иначе говоря, у них большая линейная потеря энергии в тканях. Длинна же их пробега зависит от исходной энергии частицы и характера вещества, в котором она перемещается.

Электрон в тканях имеет извилистый пробег. Это связано с его малой массой и изменчивостью своего направления под действием электрических полей атомов. Но электрон способен вырывать орбитальный электрон из системы встречного атома – производить ионизацию вещества. Образующиеся пары ионов распределены по пути следования электрона менее густо, чем в случае протонного пучка или альфа-частиц.

Быстрые нейтроны теряют свою энергию главным образом в результате столкновений с ядрами водорода. Эти ядра вырываются из атомов и сами создают в тканях короткие густые скопления ионов. После замедления нейтроны захватываются атомными ядрами, что может сопровождаться выделением гамма-квантов высокой энергии или протонов высокой энергии, которые в свою очередь дают плотные скопления ионов. Часть ядер, в частности ядра атомов натрия, фосфора, хлора, вследствие взаимодействия с нейтронами становятся радиоактивными. Поэтому после облучения человека потоком нейтронов в его теле остаются радионуклиды, являющиеся источником излучения (это явление наведенной радиоактивности).

Ионизирующие излучения - потоки фотонов, а также заряженных или нейтральных частиц, взаимодействие которых с веществом среды приводит к его ионизации. Ионизация играет важную роль в развитии радиационно-индуцированных эффектов, особенно в живой ткани. Средний расход энергии на образование одной пары ионов сравнительно мало зависит от вида ионизирующих излучений , что позволяет судить по степени ионизации вещества о переданной ему энергии И. и. Для регистрации и анализа ионизирующих излучений инструментальными методами также используют ионизацию.

Источники ионизирующих излучений делят на естественные (природные) и искусственные. Естественными источниками ионизирующих излучений являются космос и распространенные в природе радиоактивные вещества (радионуклиды). В космосе формируется и достигает Земли космическое излучение - корпускулярные потоки ионизирующего излучения. Первичное космическое излучение состоит из заряженных частиц и фотонов, отличающихся высокой энергией. В атмосфере Земли первичное космическое излучение частично поглощается и инициирует ядерные реакции, в результате которых образуются радиоактивные атомы, сами испускающие И. и. , поэтому космическое излучение у поверхности Земли отличается от первичного космического излучения. Различают три основных вида космического излучения: галактическое космическое излучение, солнечное космическое излучение и радиационные пояса Земли. Галактическое космическое излучение является наиболее высокоэнергетической составляющей корпускулярного потока в межпланетном пространстве и представляет собой ядра химических элементов (преимущественно водорода и гелия), ускоренных до высоких энергий; по своей проникающей способности этот вид космического излучения превосходит все виды ионизирующих излучений , кроме нейтрино. Для полного поглощения галактического космического излучения потребовался бы свинцовый экран толщиной около 15 м . Солнечное космическое излучение представляет собой высокоэнергетическую часть корпускулярного излучения Солнца и возникает при хромосферных вспышках днем. В период интенсивных солнечных вспышек плотность потока солнечного космического излучения может в тысячи раз превысить обычный уровень плотности потока галактического космического излучения. Солнечное космическое излучение состоит из протонов, ядер гелия и более тяжелых ядер. Солнечные протоны высоких энергий представляют наибольшую опасность для человека в условиях космического полета (см. Космическая биология и медицина ). Радиационные пояса Земли сформировались в околоземном пространстве за счет первичного космического излучения и частичного захвата его заряженной компоненты магнитным полем Земли. Радиационные пояса Земли состоят из заряженных частиц: электронов - в электронном поясе и протонов - в протонном. В радиационных поясах устанавливается поле И. и. повышенной интенсивности, что учитывают при запуске пилотируемых космических кораблей.

Природные, или естественные, радионуклиды имеют различное происхождение; часть из них принадлежит к радиоактивным семействам, родоначальники которых (уран, торий) входят в состав пород, слагающих нашу планету, с периода ее образования; некоторая часть естественных радионуклидов является продуктом активации стабильных изотопов космическим излучением. Отличительным свойством радионуклидов является радиоактивность, т.е. самопроизвольное превращение (распад) атомных ядер, приводящее к изменению их атомного номера и (или) массового числа. Скорость радиоактивного распада, характеризующая активность радионуклида, равна числу радиоактивных превращений в единицу времени.

В качестве единицы радиоактивности Международной системой единиц (СИ) определен беккерель (Бк ); 1 Бк равен одному распаду в секунду. На практике применяется также внесистемная единица активности кюри (Ки ); 1 Ки равен 3,7× 10 10 распадов в секунду, т.е. 3,7× 10 10 Бк . В результате радиоактивных превращений возникают заряженные и нейтральные частицы, формирующие поле И. и.

По виду частиц, входящих в состав ионизирующих излучений , различают альфа-излучение, бета-излучение, гамма-излучение, рентгеновское излучение, нейтронное излучение, протонное излучение и др. Рентгеновское и гамма-излучение относят к фотонным, или электромагнитным, ионизирующим излучениям , а все остальные виды ионизирующих излучений - к корпускулярным. Фотоны - это «порции» (кванты) электромагнитных излучений. Их энергия выражается в электрон-вольтах. Она в десятки тысяч раз превосходит энергию кванта видимого света.

Альфа-излучение представляет собой поток альфа-частиц, или ядер атомов гелия, несущих положительный заряд, равный двум элементарным единицам заряда. Альфа-частицы относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с веществом. По этой причине альфа-излучение является слабопроникающим и в медицинской практике используется либо для облучения поверхности тела, либо альфа-излучающий радионуклид вводится непосредственно в патологический очаг при внутритканевой лучевой терапии.

Бета-излучение - поток отрицательно заряженных электронов или положительно заряженных позитронов, испускаемых при бета-распаде. Бета-частицы относятся к слабоионизирующим частицам; однако по сравнению с альфа-частицами при одинаковой энергии они имеют большую проникающую способность.

Нейтронное излучение - поток электрически нейтральных частиц (нейтронов), которые возникают в некоторых ядерных реакциях при взаимодействии высокоэнергетических элементарных частиц с веществом, а также при делении тяжелых ядер. Нейтроны передают часть своей энергии ядрам атомов вещества среды и инициируют ядерные реакции. В результате в облученном нейтронным потоком веществе возникают заряженные частицы различного вида, ионизирующие вещество среды, могут также образовываться радионуклиды. Свойства нейтронного излучения и характер его взаимодействия с живой тканью определяются энергией нейтронов.

Некоторые виды ионизирующих излучений возникают в ядерно-энергетических и ядерно-физических установках; ядерных реакторах, ускорителях заряженных частиц, рентгеновских аппаратах, в также созданных с помощью этих средств искусственных радионуклидов.

протонное излучение генерируется в специальных ускорителях. Око представляет собой поток протонов - частиц, несущих единичный положительный заряд и обладающих массой, близкой к массе нейтронов. Протоны относятся к сильно ионизирующим частицам; будучи ускоренными до высоких энергий, они способны сравнительно глубоко проникать в вещество среды. Это позволяет эффективно использовать протонное излучение в дистанционной лучевой терапии .

Электронное излучение генерируется специальными ускорителями электронов (например, бетатронами, линейными ускорителями), если пучок ускоренных электронов выводится наружу. Эти же ускорители могут быть источником тормозного излучения - разновидности фотонного излучения, возникающего при торможении ускоренных электронов в веществе специальной мишени ускорителя. Рентгеновское излучение, используемое в медицинской радиологии, представляет собой также тормозное излучение электронов, ускоренных в рентгеновской трубке.

Гамма-излучение - поток фотонов высоких энергий, испускаемых при распаде радионуклидов; широко применяется при лучевой терапии злокачественных новообразований. Различают направленное и ненаправленное И. и. Если все направления распространения ионизирующие излучения равноценны, то говорят о изотропном И. и. По характеру распространения во времени И. и. может быть непрерывным и импульсным.

Для описания поля И. и. используют физические величины, определяющие пространственно-временное распределение излучения в веществе среды. Важнейшими характеристиками поля И. и. являются плотность потока частиц и плотность потока энергии. В общем случае плотность потока частиц - это число частиц, проникающих в единицу времени в элементарную сферу, отнесенное к площади поперечного сечения этой сферы. Плотность потока энергии И. и. является синонимом распространенного на практике термина «интенсивность излучения». Она равна плотности потока частиц, умноженной на среднюю энергию одной частицы, и характеризует скорость переноса энергии И. и. Единицей измерений интенсивности И. и. в системе СИ является Дж/м 2 × с .

Биологическое действие ионизирующих излучении . Под биологическим действием И. и. понимают многообразные реакции, возникающие в облучаемом биологическом объекте, начиная от первичных процессов размена энергии излучения до эффектов, проявляющихся спустя длительное время после радиационного воздействия. Знание механизмов биологического действия ионизирующих излучений необходимо для экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности. Для ионизации большинства элементов, входящих в состав биологического субстрата, необходимо достаточно большое количество энергии - 10-15 эВ , называемое потенциалом ионизации. Поскольку частицы и фотоны ионизирующих излучений обладают энергией от десятков до миллионов эВ , что намного превышает энергию внутри- и межмолекулярных связей молекул и веществ, составляющих любой биологический субстрат, то поражающему радиационному воздействию подвержено все живое.

Максимально упрощенная схема начальных этапов лучевого поражения состоит в следующем. Вслед и по сути одновременно с передачей энергии И. и. атомам и молекулам облученной среды (физический этап биологического действия И. и. ) в ней развиваются первичные радиационно-химические процессы, в основе которых лежат два механизма: прямой, когда молекулы вещества испытывают изменения при непосредственном взаимодействии с ионизирующими излучениями , и косвенный, при котором изменяемые молекулы непосредственно не поглощают энергию ионизирующих излучений , а получают ее путем передачи от других молекул. В результате этих процессов образуются свободные радикалы и другие высокореакционные продукты, приводящие к изменению жизненно важных макромолекул, а в финале - к конечному биологическому эффекту. В присутствии кислорода радиационно-химические процессы интенсифицируются (кислородный эффект), что при прочих равных обстоятельствах способствует усилению биологического действия И. и. (см. Радиомодификация , Радиомодифицирующие агенты ). Следует иметь в виду, что изменения облучаемого субстрата не являются обязательно окончательными и необратимыми. Как правило, конечный результат в каждом конкретном случае не может быть предсказан, т. к наряду с лучевым повреждением может произойти и восстановление исходного состояния.

Воздействие ионизирующих излучений на живой организм принято называть облучением, хотя это не совсем точно, ибо облучение организма может осуществляться и любым другим видом неионизирующего излучения (видимым светом, инфракрасным, ультрафиолетовым, высокочастотным излучением и др.). Эффективность облучения зависит от фактора времени, под которым понимают распределение дозы ионизирующего излучения во времени. Наиболее эффективно однократное острое облучение при высокой мощности дозы И. и. Пролонгированное хроническое или прерывистое (фракционированное) облучение в заданной дозе оказывает меньшее биологическое действие, благодаря процессам пострадиационного восстановления .

Различают внешнее и внутреннее облучение. При внешнем облучении источник И. и. располагается вне организма, а при внутреннем (инкорпорированном) оно осуществляется радионуклидами, попавшими в организм через дыхательную систему, желудочно-кишечный тракт или через поврежденную кожу.

Биологическое действие ионизирующих излучений в значительной степени зависит от его качества, в основном определяемого линейной передачей энергии (ЛПЭ) - энергией, теряемой частицей на единице длины ее пробега в веществе среды. В зависимости от значения ЛПЭ все ионизирующие излучения делят на редкоионизирующие (ЛПЭ менее 10 кэВ/мкм ) и плотноионизирующие (ЛПЭ более 10 кэВ/мкм ). Воздействие разными видами ионизирующих излучений в равных поглощенных дозах приводит к разным по величине эффектам. Для количественной оценки качества излучения введено понятие относительной биологической эффективности (ОБЭ), которую обычно оценивают сравнением дозы изучаемого И. и. , вызывающей определенный биологический эффект, с дозой стандартного И. и. , обусловливающей такой же эффект. Условно можно считать, что ОБЭ зависит только от ЛПЭ и возрастает с увеличением последней.

На каком бы уровне - тканевом, органном, системном или организменном не рассматривалось биологическое действие И. и. , его эффект всегда определяется действием И. и. на уровне клетки. Детальное изучение реакций, инициируемых в клетке ионизирующими излучениями , составляет предмет фундаментальных исследований радиобиологии . Следует заметить, что большинство реакций, возбуждаемых ионизирующими излучениями , в том числе и такая универсальная реакция, как задержка клеточного деления, является временной, преходящей и не сказывается на жизнеспособности облученной клетки. К реакциям такого типа - обратимым реакциям - относятся также различные нарушения метаболизма, в т.ч. угнетение обмена нуклеиновых кислот и окислительного фосфорилирования, слипание хромосом и др. Обратимость этого типа лучевых реакций объясняется тем, что они являются следствием повреждения части множественных структур, утрата которой очень быстро восполняется или просто остается незамеченной. Отсюда и характерная особенность этих реакций: с увеличением дозы И. и. возрастает не доля реагирующих особей (клеток), а величина, степень реакции (например, продолжительность задержки деления) каждой облученной клетки.

Существенно иную природу имеют эффекты, приводящие облученную клетку к гибели, - летальные лучевые реакции. Под клеточной гибелью в радиобиологии понимают утрату клеткой способности к делению. Напротив, «выжившими» считаются те клетки, которые сохранили способность к размножению (клонированию).

Существуют две формы летальных реакций, которые гибельны для делящихся и малодифференцированных клеток: интерфазная, при ней клетка погибает вскоре после облучения, во всяком случае до наступления первого митоза, и репродуктивная, когда пораженная клетка гибнет не сразу после воздействия И. и. , а в процессе деления. Наиболее распространена репродуктивная форма летальных реакций. Основной причиной гибели клеток при ней являются возникающие под влиянием облучения структурные повреждения хромосом. Эти повреждения легко обнаруживаются при цитологическом исследовании клеток на разных стадиях митоза и имеют вид хромосомных перестроек, или хромосомных аберраций. Из-за неправильного соединения хромосом и просто утраты их концевых фрагментов при делении потомки такой поврежденной клетки несомненно погибнут сразу же после данного деления или в результате двух-трех последующих митозов (в зависимости от значимости утраченного генетического материала для жизнеспособности клетки). Возникновение структурных повреждений хромосом - процесс вероятности, в основном связанный с образованием двойных разрывов в молекуле ДНК, т.е. с нерепарируемыми повреждениями жизненно важных клеточных макромолекул. В связи с этим, в отличие от рассмотренных выше обратимых клеточных реакций, с увеличением дозы И. и. возрастает число (доля) клеток с летальным повреждением генома, строго описываемая для каждого вида клеток в координатах «доза - эффект». В настоящее время разработаны специальные методы выделения клоногенных клеток из различных тканей in vivo и их выращивания in vitro, с помощью чего после построения соответствующих дозовых кривых выживания количественно оценивают радиочувствительность изучаемых органов и возможности ее изменения в нужном направлении. Кроме того, подсчет числа клеток с хромосомными аберрациями на специальных препаратах используют в целях биологической дозиметрии для оценки радиационной обстановки, например на борту космического корабля, а также для определения степени тяжести и прогноза острой лучевой болезни.

Описанные лучевые реакции клеток лежат в основе непосредственных эффектов, проявляющихся в первые часы, дни, недели и месяцы после общего облучения организма или локального облучения отдельных сегментов тела. К ним относятся, например, эритема, лучевые дерматиты, различные проявления острой лучевой болезни (лейкопения, аплазия костного мозга, геморрагический синдром, поражения кишечника), стерильность (временная или постоянная, в зависимости от дозы ионизирующих излучений ).

Спустя длительное время (месяцы и годы) после облучения развиваются отдаленные последствия местного и общего радиационного воздействия. К ним относятся сокращение продолжительности жизни, возникновение злокачественных новообразований и радиационная катаракта. Патогенез отдаленных последствий облучения в большей степени связывают с повреждением тканей, характеризующихся низким уровнем пролиферативной активности, из которых состоит большинство органов животных и человека. Глубокое знание механизмов биологического действия ионизирующих излучений необходимо, с одной стороны, для разработки способов противолучевой защиты и патогенетического лечения радиационных поражений, а с другой - для изыскания путей направленного усиления лучевого воздействия при радиационно-генетических работах и других аспектах радиационной биотехнологии или при лучевой терапии злокачественных новообразований с помощью радиомодифицирующих агентов. Кроме того, понимание механизмов биологического действия ионизирующих излучений необходимо врачу на случай экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности.

Библиогр.: Гозенбук В.Л. и др. Дозовая нагрузка на человека в полях гамма-нейтронного излучения, М., 1978; Иванов В.И. Курс дозиметрии, М., 1988; Кеирим-Маркус И.Б. Эквидозиметрия, М., 1980; Комар В.Е. и Хансон К.П. Информационные макромолекулы при лучевом повреждении клеток, М., 1980; Моисеев А.А. и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984; Ярмоненко С.П. Радиобиология человека и животных, М., 1988.

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ , потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее или . Различают фотонное (электромагнитное) и корпускулярное ионизирующие излучения. К фотонному ионизирующему излучению относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. g -излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, . К корпускулярному ионизирующему излучению относят потоки a - и b -частиц, ускоренных и , осколков тяжелых ядер и др. Заряженные частицы ионизируют или среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом обладают достаточной кинетич. энергией, они также могут ионизировать или среды при столкновениях (вторичная ионизация); такие наз. d -электронами. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде (косвенная ионизация); вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки ионизируют среду лишь косвенно, преим. ядрами отдачи. Пространственно-временное распределение заряженных частиц или квантов, составляющих ионизирующее излучение, наз. его полем. Осн. характеристики ионизирующих излучений: поток ионизирующего излучения Ф n = dN/dt, где dN - число частиц, падающих на данную пов-сть за интервал времени dt; плотность потока j n = dФ n /dS, где dФ n - поток, приходящийся на площадь поперечного сечения dS поглощающего объема; поток энергии Ф = dE/dt, где dE - суммарная энергия излучения (за исключением энергии массы покоя); энергетический спектр ионизирующего излучения - распределение составляющих его частиц и фотонов по энергиям. Кол-во энергии, переданной ионизирующим излучением единице массы среды, наз. поглощенной излучения (см. ). Все виды ионизирующих излучений характеризуются т. наз. (ЛПЭ) - энергией, переданной среде ионизирующей частицей в заданной окрестности ее траектории на единицу длины. ЛПЭ может принимать значения от 0,2 (высокоэнергетич. фотоны и ) до 10 4 эВ/нм (осколки тяжелых ядер).
Взаимодействие излучения со средой. При прохождении ионизирующего излучения в среде возможны упругое рассеяние частиц, составляющих излучение, и неупругие процессы. При упругом рассеянии кинетич. энергия относит. движения частиц остается постоянной, но меняется направление их движения, т.е. поток ионизирующего излучения рассеивается; при неупругих процессах кинетич. энергия ионизирующего излучения расходуется на ионизацию и возбуждение частиц среды. Для потока характерны упругое рассеяние на ядрах среды и неупругие процессы -ионизация и возбуждение и при взаимод. с их электронными оболочками (ионизационные потери) и генерация тормозного излучения при взаимод. с (радиационные потери). Если энергия не превышает 10 МэВ, во всех средах преобладают ионизац. потери. Для потока ускоренных ионизац. потери доминируют при всех энергиях. Энергия, передаваемая заряженной частицей данному в-ву на единице длины ее пути, наз. тормозной способностью в-ва s m = dE/dl (dE - энергия, теряемая частицей при прохождении элементарного пути dl). Значение s m снижается с увеличением энергии заряженных частиц и растет с повышением ат. номера элемента, из к-рого состоит в-во среды. Глубина проникновения заряженных частиц в в-во характеризуется пробегом R; в для Не 2+ с энергией 5,3 МэВ R составляет 39 мкм, для с энергией 5 МэВ -2,5 см. Для фотонного ионизирующего излучения имеют место упругое рассеяние (классич. рассеяние) и неупругие процессы, основные из к-рых - фотоэффект, эффект Комптона и образование - . При фотоэффекте фотон поглощается среды с испусканием , причем энергия фотона за вычетом энергии связи в передается освобожденному . Вероятность фотоэффекта с К-оболочки пропорциональна Z 5 (Z - aт. номер элемента) и быстро убывает с ростом энергии фотона (кривая 1 на рис. 1). В случае эффекта Комптона происходит рассеяние фотона на одном из атомных ; при этом уменьшается энергия фотона, изменяется направление его движения и происходит ионизация среды. Вероятность комптоновского рассеяния пропорциональна Z и зависит от энергии фотонов (кривые 2 и 3 на рис. 1). При энергии фотона выше 1,022 МэВ вблизи ядра становится возможным образование - . Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом энергии фотона (кривая 4 на рис. 1). При энергии фотона до 0,1 МэВ преобладает классич. рассеяние и фотоэффект, при энергии от 0,1 до 10 МэВ - эффект Комптона, при энергии выше 20 МэВ - образование . Ослабление фотонного ионизирующего излучения слоем в-ва происходит по экспоненц. закону и характеризуется линейным коэф. ослабления m , к-рый показывает, на какой толщине слоя в-ва интенсивность падающего пучка ослабляется в е раз. Обычно измеряют ослабление потока излучения и вводят массовый коэф. ослабления m / r (r - плотность в-ва): Ф n = Ф 0 n е -(m/r) . r x , где х - толщина слоя в-вa, Ф 0 n и Ф n - падающий и прошедший потоки соответственно. При прохождении потока фотонов через среду часть их рассеивается, часть поглощается, поэтому различают массовые коэф. ослабления и поглощения; второй коэф. численно меньше первого. Каждый вид взаимод. излучения со средой характеризуется своими массовыми коэф., зависящими от энергии фотонов и ат. номера элемента, из к-рого состоит в-во среды. Нейтронное излучение взаимод. только с среды. По энергии (в сравнении со средней энергией теплового движения kT, где k - , Т - абс. т-ра) подразделяют на холодные (Е < kT), тепловые (Е ~ kT), медленные (kT < E < 10 3 эВ), промежуточные (10 3 . 10 5 эВ) и быстрые (E > 5 . 10 5 эВ). в в-ве испытывают упругое и неупругое рассеяние. При достаточной энергии могут выбивать частично ионизир. из среды (т. наз. ядра отдачи). При захвате могут происходить , последствием к-рых является испускание g -квантов, a - и b -частиц, осколков и др. Ослабление потока происходит по экспоненциальному закону Ф n = Ф 0 n е - N sa , где N - число данного вида в единице объема, s - т. наз. сечение захвата. Значение s убывает обратно пропорционально скорости , но на этой зависимости имеются максимумы (резонансные области захвата), в к-рых сечение характеристично для каждого и может принимать значения от 2 . 10 - 33 м 2 для 15 N до 3,6 . 10 - 22 м 2 для 135 Хе.

Рис. 1. Зависимость массового коэффициента ослабления m/r g -излучения в от энергии квантов: 1 - фотоэффект; 2 и 3 - ионизационная и рассеивательная составляющие эффекта Комптона соответственно; 4 - эффект рождения электрон-позитрон.

Глубину проникновения фотонного и нейтронного ионизирующих излучений в среду характеризуют слоем половинного ослабления D 1/2 , уменьшающим поток излучения вдвое. В случае D 1/2 = 9 см для направленного потока g -излучения 60 Со с энергией 1,25 МэВ и D 1/2 =8 см для направленного потока со средней энергией 6 МэВ. . взаимод. любого ионизирующего излучения с частицами среды продолжается не более 10 - 15 с. За это время возможна перестройка электронной подсистемы среды (ядерная подсистема остается неизменной). В среде появляются продукты взаимод.: однозарядные в основном и , разл. энергий, двухзарядные , синглетные и триплетные , т. наз. сверхвозбужденные состояния (), имеющие энергию выше первого I 1 частиц среды. В газовой фазе кол-во превышает кол-во образовавшихся , в конденсир. фазе - наоборот. Ионизация и возбуждение частиц среды могут происходить с любого электронного энергетич. уровня, но процесс тем вероятнее, чем меньше энергия связи в и среды. Эффективность взаимод. ионизирующего излучения со средой характеризуют средней энергией W - энергией, расходуемой на образование одной , причем W превышает I 1 в 1,5-2,5 раза. Осн. доля энергии ионизирующего излучения передается вторичными d -электронами. Мгновенное распределение первичных и вторичных по энергиям в среде - т. наз. спектр деградации излучения - позволяет рассчитать все процессы взаимод. по их сечениям в системе и найти состав и вероятность образования разл. ионизированных и . В случае взаимод. ионизирующего излучения с (напр., р-ром) распределение энергии излучения между компонентами происходит пропорционально электронной доле e этих компонентов - отношению числа , принадлежащих данному компоненту, к общему числу всех системы в единице массы (или объема). Переданная в-ву энергия ионизирующего излучения распределяется неравномерно вдоль траектории ионизирующих частиц, поэтому пространств. распределение продуктов взаимод. также неоднородно. Степень неоднородности тем выше, чем больше ЛПЭ излучения. Это приводит к неодинаковым конечным эффектам при взаимод. со средой ионизирующих излучений с различным ЛПЭ (см. Радиационно-химические ). Источники ионизирующих излучений различаются видом и энергетич. спектром излучения, конструкцией, геометрией расположения облучающих элементов, мощностью поглощенной и ее распределением в облучаемом объекте. Выделяют след. группы: изотопные источники, ядерные реакторы, ускорители заряженных частиц, рентгеновские установки. Среди изотопных источников наиб. распространены гамма-установки с долгоживущими 60 Со и l37 Cs.

Рис. 2. Схема гамма-изотопного источника для облучения : a - вид сверху, б - вид сбоку; 1 - камера для облучения; 2 - помещение для загрузки 5; 3 - источник излучения в рабочем положении; 4 - он же в положении хранения; 6 - транспортная линия для ; 7 - пульт управления; 8 - бетонная защита; 9 - зубцы защитного лабиринта; 10 - система подъема источников из хранилища 11; 12 - пультовая; 13 - система дозиметрич. контроля.

На рис. 2 представлена схема гамма-установки для облучения объектов большого размера. В рабочей камере 1 расположены излучающие элементы, к-рые могут находиться в рабочем положении 3 или в хранилище 4 (при таком положении помещение 1 доступно для людей). Объекты для облучения погружаются в 5 и по транспортной линии 6 доставляются дистанционно к облучателю 3. Все помещения находятся под дозиметрич. контролем 13. Ионизирующее излучение ядерных реакторов состоит из g -излучения, быстрых и тепловых , осколков . Ускорители заряженных частиц - устройства, ускоряющие или в электрич. поле (магн. поле м. б. использовано для управления потоком заряженных частиц). Различают два осн. конструкционных типа ускорителей: линейные, в к-рых заряженные частицы движутся прямолинейно, и циклические, в к-рых движение идет по круговой траектории. По типу ускоряющего электрич. поля ускорители делят на высоковольтные, в к-рых направление электрич. поля во время ускорения не меняется, и резонансные, в к-рых непрерывное ускорение достигается за счет того, что заряженная частица находится в ускоряющей фазе переменного высокочастотного электрич. поля. В циклич. ускорителях (циклотрон, синхротрон, синхрофазотрон и др.) требуемая энергия достигается при многократном прохождении ускоряемой частицы по окружности аппарата, в линейных (линейный индукц. ускоритель, линейный резонансный ускоритель и др.) - за счет приложения высокочастотного электрич. поля к линейной периодич. системе . Осн. элементы ускорителя - высоковольтный генератор, источник заряженных частиц (ионный источник) и система, в к-рой производится ускорение. В резонансных ускорителях процесс накопления частицей энергии происходит за определенное время, зависящее от требуемой энергии и типа ускоряемых частиц, поэтому они работают в импульсном режиме. Нек-рые типы высоковольтных ускорителей (напр., каскадный ускоритель) могут использоваться в режиме постоянного потока ускоренных частиц. Большинство типов ускорителей применяют для ускорения как

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 .10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 . 10 17 ...5 . 10 19 Гц) и гамма-излучением (более 5 . 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью . Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 .10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада (Т 1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т 1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А 0 — начальная активность, А — активность через период времени t .

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. , получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).

    Что еще почитать