Horizon Zero Dawn: как получить лучшую броню "Ткач Щита". Представляем устойчивые технологии: топливные элементы

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Схема гальванического элемента

Wikimedia commons

Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким - это может быть и полимерный, и керамический материал.

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.


Пальчиковые щелочные батарейки

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора - источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.


Автомобильный свинцово-кислотный аккумулятор

На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.


Литий-ионный аккумулятор для мобильного телефона

Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые образование взрывоопасных структур, и компоненты, возгорание на ранних стадиях.

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы - в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа - газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H 2 + O 2 → 2H 2 O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство - совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.


Принципиальная схема работы водородного топливного элемента

Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду - окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.


Водородный топливный элемент Toyota

Joseph Brent / flickr

Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O 2– , как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых , например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) - устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов - высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых .

* * *

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов - «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых - топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.


Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике . Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Александр Дубов

Ни кого уже не удивишь ни солнечными панелями, ни ветряками, которые во всех регионах мира вырабатывают электроэнергию. Но выработка от этих устройств не постоянна и приходится устанавливать резервные источники питания, либо подключаться к сети для получения электроэнергии в период, когда объекты ВИЭ не вырабатывают электроэнергию. Однако существуют установки, разработанные в 19 веке, которые используют «альтернативное» топливо для получения электроэнергии, т.е не сжигают газ или нефтепродукты. Такими установками являются топливные элементы.

ИСТОРИЯ СОЗДАНИЯ

Топливные элементы (ТЭ) или топливные ячейки были открыты еще в 1838-1839 году Уильямом Гроувом (Гроу, Грове), когда он изучал электролиз воды.

Справка: Электролиз воды - процесс разложения воды под действием электрического тока на молекулы водорода и кислорода

Отключив от электролитической ячейки батарею, он с удивлением обнаружил, что электроды начали поглощать выделившийся газ и вырабатывать ток. Открытие процесса электрохимического "холодного" горения водорода стало знаменательным событием в энергетике. В дальнейшем он создал аккумулятор Гроува. В этом устройстве был платиновый электрод, погруженный в азотную кислоту, и цинковый электрод в сульфате цинка. Он генерировал ток в 12 ампер и напряжение 8 вольт. Сам Гроу назвал эту конструкцию «мокрой батарейкой» . Затем он создал аккумулятор, используя два платиновых электрода. Один конец каждого электрода находился в серной кислоте, а другие концы запечатаны в контейнеры с водородом и кислородом. Между электродами был стабильный ток, внутри контейнеров увеличивалось количество воды. Гроу смог разложить и улучшить воду в этом устройстве.

«Аккумулятор Гроу»

(источник: Королевское сообщество Национального музея естественной истории)

Термин «топливный элемент» (англ. «Fuel Cell») появился лишь в 1889 году Л. Мондом и
Ч. Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

КАК ЭТО РАБОТАЕТ?

Топливный элемент — относительно простое устройство . В нем есть два электрода: анод (отрицательный электрод) и катод (положительный электрод). На электродах происходит химическая реакция. Чтобы ее ускорить, поверхность электродов покрывается катализатором. ТЭ оснащены еще одним элементом — мембраной. Превращение химической энергии топлива непосредственно в электричество, происходит благодаря работе именно мембраны. Она отделяет две камеры элемента, в которые подают топливо и окислитель. Мембрана позволяет проходить из одной камеры в другую только протонам, которые получаются в результате расщепления топлива, на электроде, покрытом катализатором (электроны при этом пробегают по внешней цепи). Во второй камере протоны воссоединяются с электронами (и атомами кислорода), образуя воду.

Принцип работы водородного топливного элемента

На химическом уровне процесс превращения энергии топлива в электрическую энергию схож с обычным процессом горения (окисления).

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива переходит в тепловую энергию. Посмотрим что происходи при окислении водорода кислородом в среде электролита и при наличии электродов.

Подавая водород к электроду, находящемуся в щелочной среде протекает химическая реакция:

2H 2 + 4OH - → 4H 2 O + 4e -

Как видно получим электроны, которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция:

4e- + O 2 + 2H 2 O → 4OH -

Видно, что результирующая реакция 2H 2 + O 2 → H 2 O - такая же, что и при обычном горении, но в топливном элементе получается электрический ток и частично тепло .

ВИДЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Классифицировать ТЭ принято по виду электролита использующемся для протекания реакции:

Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей - воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

КПД ТОПЛИВНОГО ЭЛЕМЕНТА

Особенностью топливных элементов является отсутствие жёсткого ограничения на КПД , как у тепловых машин.

Справка: КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами.

Поэтому КПД топливных элементов в теории может быть выше 100%. Многие улыбнулись и подумали «Вечный двигатель изобрели значит». Нет, тут стоит вернуться к школьному курсу химии. В основе топливного элемента лежит преобразование химической энергии в электрическую. Вот тут и возникают чудеса. Определённые химической реакции в процессе протекания могут поглощать теплоту из окружающей среды.

Справка: Эндотермические реакции — химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения (Δ H>0, Δ U>0), таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

Примером такой реакции может служить окисление водорода, которая и используется в большинстве топливных элементов. Поэтому теоретически КПД может больше 100%. Но сегодня топливные элементы в процессе работы нагреваются и не могут поглощать теплоту из окружающей среды.

Справка: Это ограничение накладывает второй закон термодинамики. Не возможен процесс передачи тепла от «холодного» тела к «горячему».

Плюс ко всему имеются потери, связанные с неравновесными процессами. Такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Поэтому топливные элементы не вечные двигатели и КПД их меньше 100%. Но их КПД больше, чем у остальных машин. Сегодня эффективность топливного элемента достигает 80% .

Справка: В сороковые годы английский инженер Т. Бэкон сконструировал и построил батарею топливных элементов общей мощностью 6 кВт и КПД 80 %, работающую на чистом водороде и кислороде, но отношение мощности к весу батареи оказалось слишком малым - такие элементы были непригодны для практического применения и слишком дорогими (источник: http://www.powerinfo.ru/).

ПРОБЛЕМЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Практически все топливные элементы в качестве топлива используют водород, так что возникает логичный вопрос: «Где его взять?»

Кажется, открыли топливный элемент в результате электролиза, вот и можно использовать водород выделившейся в результате электролиза. Но давайте разберем этот процесс подробнее.

Согласно закону Фарадея: количество вещества, которое окисляется на аноде или восстанавливается на катоде, пропорционально количеству электричества, прошедшего через электролит. Значит, чтобы получить больше водорода необходимо потратить больше электроэнергии. Существующие методы электролиза воды проходят с кпд меньше единицы. Затем полученный водород мы используем в ТЭ, где кпд также меньше единицы. Следовательно мы затратим энергии больше, чем сможем выработать.

Конечно, можно использовать водород, получаемый из природного газа. Этот способ получения водорода остается самым дешевым и популярным. В настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Но возникает проблема с хранением и транспортировкой водорода. Водород имеет маленькую плотность (один литр водорода весит 0,0846 гр ), поэтому чтобы транспортировать его на дальние расстояния его необходимо сжимать. А это дополнительные энергетические и денежные затраты. Так же не стоит забывать о безопасности.

Впрочем, тут тоже есть решение - в качестве источника водорода можно применять жидкое углеводородное топливо. Например, этиловый или метиловый спирт. Правда, тут уже требуется специальное дополнительное устройство - топливный преобразователь, при высокой температуре (для метанола это будет где-то 240°С) преобразующее спирты в смесь газообразных H 2 и CO 2 . Но в этом случае уже сложнее думать о портативности - такие устройства хорошо применять в качестве стационарных или автомобильных генераторов, а вот для компактной мобильной техники нужно что-нибудь менее громоздкое.

Катализатор

Для повышения протекания реакции в ТЭ поверхность анода обычно катализатором. До не давнего времени в качестве катализатора использовалась платина. Поэтому стоимость топливного элемента была высока. Во-вторых, платина относительно редкий металл. По мнению специалистов, при промышленном производстве топливных элементов разведанные запасы платины закончатся через 15-20 лет. Но ученые всего мира пытаются заменить платину на другие материалы. Кстати некоторые из них достигли неплохих результатов. Так китайские ученые заменили платину на окисел кальция (источник: www.cheburek.net).

ИСПОЛЬЗОВАНИЕ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Впервые топливный элемент в автотехники испытали в 1959 г. Трактор Элис-Чемберз, использовал для работы 1008 аккумуляторов. Топливом являлась смесь газов, в основном пропана и кислорода.

Источник: http://www.planetseed.com/

С середины 60-ых в разгар «космической гонки» топливными элементами заинтересовались создатели космических аппаратов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытаны в США на космическом корабле "Джемини-5", а в дальнейшем - на кораблях "Аполлон" для полетов на Луну и по программе "Шатл". В СССР топливные элементы разрабатывали в НПО "Квант", тоже для использования в космосе (источник: http://www.powerinfo.ru/).

Так как в топливном элементе конечным продуктом сгорания водорода является вода, то они считаются наиболее чистыми с точки зрения влияния на окружающую среду. Поэтому свою популярность ТЭ стали приобретать на фоне всеобщей заинтересованности в экологии.

Уже в настоящее время производители автомобилей, такие как «Honda», «Ford», «Nissan» и «Mercedes-Benz» создали автомобили работающие на водородных топливных элементах.

Mercedes-Benz - Ener-G-Force, работающий на водороде

При использовании автомобилей на водороде, решается проблема с хранением водорода. Строительство заправок с водородом позволит получить возможность заправки в любом месте. Тем более заправлять автомобиль водородом быстрее, чем заряжать электромобиль на заправке. Но при реализации подобных проектов столкнулись с проблемой как у электромобилей. Люди готовы «пересесть» на автомобиль на водороде, если будет инфраструктура для них. А строительство заправок начнется, если будет достаточное количество потребителей. Поэтому опять пришли к дилемме яйца и курицы.

Широкое применение топливные элементы нашли в мобильных телефонах и ноутбуках. Уже прошло то время когда телефон заряжали раз в неделю. Сейчас телефон заряжается, чуть ли не каждый день, а ноутбук без сети работает 3-4 часа. Поэтому производители мобильной техники решили синтезировать топливный элемент с телефонами и ноутбуками для зарядки и работы. Например, компания «Toshiba» в 2003г. продемонстрировала готовый прототип метанолового топливного элемента. Он дает мощность порядка 100мВт. Одной заправки в 2 кубика концентрированного (99,5%) метанола достаточно на 20 часов работы МРЗ-плеера. Опять же, та же «Toshiba» демонстрировала элемент для питания ноутбуков размером 275x75x40мм, дающий возможность компьютеру работать в течение 5 часов от одной заправки.

Но некоторые производители пошли дальше. Компания «PowerTrekk» выпустила зарядное устройство с одноименным названием. PowerTrekk - первое зарядное водяное устройство в мире. Использовать его очень легко. В PowerTrekk необходимо добавить воды, чтобы обеспечить мгновенную подачу электричества через шнур USB. Данный топливный элемент содержит кремниевый порошок и силицид натрия (NaSi) при смешивании с водой, данное сочетание генерирует водород. Водород смешивается с воздухом в самом топливном элементе, и он преобразует водород в электричество посредством его мембранно-протонного обмена, без вентиляторов или насосов. Купить такое портативное зарядное устройство можно за 149 € (

Квест Древний арсенал - одно из самых интересных и полезных побочных заданий в Horizon Zero Dawn. В качестве награды за его выполнение вы получите костюм Ткач щита. На наш вкус, это лучшая броня в игре. Она защищает Элой силовым полем, которое поглощает весь входящий урон, пока не кончится заряд. Вы получите этот квест, когда найдете первый топливный элемент или сам бункер с древней броней. Надо сказать, что получить его гораздо проще, чем выполнить.

Где найти все топливные элементы в Horizon Zero Dawn?

Всего в игре 5 топливных элементов, которые будут встречаться вам во время прохождения сюжетных миссий. Некоторые из них легко пропустить, но не волнуйтесь по этому поводу. Вы всегда сможете вернуться за ними позже. Если вы умрете, вам придется отправиться за топливным элементом еще раз. Он не сохраняется в вашем инвентаре мгновенно, нужно добраться до контрольной точки. Имейте это в виду. Все элементы отмечены ярким зеленым значком, так что вряд ли вы просмотрите их, оказавшись рядом. Первые два элемента используются, чтобы открыть дверь. Еще три нужны, чтобы разблокировать само устройство с броней.

Первый топливный элемент

Он находится в локации Великой матери и доступен во время прохождения миссии "Утроба горы". Очень важно не проморгать его во время этого квеста, так как после выхода из области ворота с доступом в эту локацию заблокируются и откроются в следующий раз только ближе к концу игры, после выполнения миссии "Сердце Норы".

Этот топливный элемент легко найти, если знаете где искать. Поэтому первым делом доберитесь до отметки Элой, показанной на скриншоте ниже. Прямо перед вами будет дверь с переключателем. Открываем ее и проходим вперед. Следующую дверь тоже открываем и оказываемся в большой комнате. Тут нам надо повернуть направо и упереться в дверь с замком, который мы открыть не сможем.

Тем не менее, если вы осмотритесь по сторонам, то заметите слева большую нишу со свечами внутри. Полезайте в нее и двигайтесь вперед по шахте, пока не упретесь в топливную ячейку.

Второй топливный элемент

Этот элемент можно найти в тех руинах, по которым Элой лазила еще ребенком. В детском возрасте забрать его не получится, так что придется вернуться попозже. Доберитесь до зеленого маркера и осмотритесь. Вход в руины представляет из себя отверстие в земле. Аккуратно спуститесь вниз.

Пусть через руины достаточно прост, так что маловероятно, что вы заблудитесь. По сути вам нужно добраться до отметки, показанной на скриншоте ниже. Там вы увидите перед собой комнату, вход в которую блокируют заостренные скальные образования. Разломайте их своим копьем и найдете второй топливный элемент.

Третий топливный элемент

Чтобы найти следующий топливный элемент в Horizon Zero Dawn, придется попроходить сюжет. Нам нужна миссия Предел мастера. Не забудьте вернуться к этому гайду, когда до нее доберетесь. В ходе этой миссии вам придется забраться на очень высокое здание. В какой-то момент игра скажет вам что-то вроде: "Найдите кабинет Фаро, чтобы получить больше информации о докторе Собек".

В этот момент вам нужно обернуться и найти у себя за спиной стену, по которой можно забраться наверх. Пройдите весь путь и топливный элемент будет ждать вас на земле прямо на самом верху башни (12 этаж).

Четвертый топливный элемент

Этот элемент можно найти во время прохождения миссии "Клад смерти" в катакомбах.

Для начала доберитесь до отметки на третьем уровне, показанной на скриншоте ниже. Перед вами будет запертая дверь. Чтобы ее разблокировать, нужно пройти налево и спрыгнуть вниз. Там вы найдете три головоломки с поворотными замками. Возле каждой есть шкаф, в котором спрятано решение задачки. Просто просканируйте его. Две головоломки расположены на уровень ниже двери, еще одна - на том же уровне. Когда решите все три, дверь сверху откроется и вы получите свой топливный элемент.

Пятый топливный элемент

Последний топливный элемент в Horizon Zero Dawn вы найдете во время выполнения миссии "Упавшая гора" в локации ГАЙЯ Прайм.

Доберитесь до места на третьем уровне, отмеченного на скриншоте ниже. Перед вами будет место, с которого нужно спуститься вниз по веревке. Вместо этого, повернитесь налево и аккуратно спуститесь вниз по склону горы. Там вы увидите вход в пещеру. В самом конце вас будет ждать последний элемент.

Экология познания.Наука и техника: Водородная энергетика является одной из самых высокоэффективных отраслей, а топливные элементы позволяют ей оставаться на передовой инновационных технологий.

Топливный элемент – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Опять же, подобно батарее, топливный элементвключает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха. Правильный термин для описания работающего топливного элемента – это система элементов, так как для полноценной работы требуется наличие некоторых вспомогательных систем.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр.,топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. Топливные элементы вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе топливных элементов являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы собираются в сборки, а затем в отдельные функциональные модули.

Принцип работы топливных элементов

Топливные элементы вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода. На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2 + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы топливных элементов

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения. Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород.

Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ).

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO32-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO32- + H2 => H2O + CO2 + 2e-
Реакция на катоде: CO2 + 1/2O2 + 2e- => CO32-
Общая реакция элемента: H2(g) + 1/2O2(g) + CO2(катод) => H2O(g) + CO2(анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, "отравлению", и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ).

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2(g) + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы "Джемини". Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция элемента: 2H2 + O2 => 2H2O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О2-). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O2- => 2H2O + 4e-
Реакция на катоде: O2 + 4e- => 2O2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H+ + 6e-
Реакция на катоде: 3/2O2 + 6H+ + 6e- => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН-), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O+ (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO42-позволяет протонам (красный) перемещаться так, как показано на рисунке.

Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.опубликовано

Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Присоединяйтесь к нам в

Вскоре после начала своего путешествия Элой наткнется на бункер Предтеч, расположенный совсем недалеко от земель племени Нора. Внутри бункера за мощной дверью скрывается некая броня, издалека выглядящая очень привлекательно.

Телеграфировать

Твитнуть

Вскоре после начала своего путешествия Элой наткнется на бункер Предтеч, расположенный совсем недалеко от земель племени Нора. Внутри бункера за мощной дверью скрывается некая броня, издалека выглядящая очень привлекательно.

Это Ткач щита, фактически - самое лучшее снаряжение в игре. Как до него добраться? Чтобы открыть герметичную дверь бункера и получить Ткач щита вам понадобится найти пять топливных элементов, разбросанных по всему игровому миру.

Ниже мы расскажем, где нужно искать топливные элементы и как решать головоломки во время поисков и в Древнем арсенале.

Топливный элемент №1 - Сердце Матери (задание Утроба Матери)

Самый первый топливный элемент Элой найдет еще до выхода в полностью открытый мир. После Инициации наша героиня окажется в Сердце Матери, священном месте племени Нора и обители Матриархов.

Встав с кровати, Элой последовательно пройдет через несколько комнат и в одной из них наткнется на герметичную дверь, которую нельзя открыть. Посмотрите вокруг - рядом будет вентиляционная шахта, декорированная горящими свечами. Вам туда.

Пройдя по шахте, вы окажетесь позади запертой двери. Посмотрите на пол рядом со свечами и настенным блоком загадочного назначения - здесь лежит топливный элемент.

Важно : если вы не подберете этот топливный элемент сейчас, то вторично сможете попасть в эту локацию только на поздних этапах игры, после выполнения задания "Сердце Нора".

Топливный элемент №2 - Руины

В этих руинах Элой уже бывала - она провалилась сюда еще ребенком. После прохождения Инициации стоит вспомнить детство и вернуться сюда еще раз - забрать второй топливный элемент.

Вход в руины выглядит вот так, прыгайте смело.

Вам нужен первый уровень руин, правая нижняя область, подсвеченная фиолетовым на карте. Здесь есть дверь, которую Элой откроет с помощью своего копья.

Пройдя через дверь, поднимитесь по лестнице и сверните направо - через эти сталактиты Элой не смогла пролезть в юности, но теперь у нее есть аргумент. Вновь доставайте копье и ломайте сталактиты - путь свободен, осталось взять топливный элемент, лежащий на столе.

Топливный элемент №3 - Предел Мастера (задание Предел Мастера)

Отправляемся на север. Во время выполнения сюжетного задания Предел Мастера Элой исследует гигантские руины Предтеч. На двенадцатом уровне руин спрятан еще один топливный элемент.

Вам нужно не только подняться на верхний уровень руин, но и залезть еще чуть выше. Поднимайтесь по уцелевшей части постройки, пока не окажетесь на небольшой площадке, открытой всем ветрам.

Здесь и лежит третий топливный элемент. Осталось спуститься вниз.

Топливный элемент №4 - Клад Смерти (задание Клад Смерти)

Этот топливный элемент тоже спрятан в северной части карты, но он намного ближе к землям племени Нора. Сюда Элой тоже попадет во время прохождения сюжетного задания.

Чтобы добраться до элемента, Элой нужно восстановить энергоснабжение герметичной двери, расположенной на третьем уровне локации.

Для этого нужно решить небольшую головоломку - на уровень ниже двери есть два блока по четыре регулятора.

Сначала разберемся с левым блоком регуляторов. Первый регулятор должен "смотреть" вверх, второй "вправо", третий "влево", четвертый "вниз".

Переходим к правому блоку. Первые два регулятора вы не трогаете, третий и четвертый регуляторы должен смотреть "вниз".

Поднимаемся на один уровень вверх - здесь находится последний блок регуляторов. Правильный порядок таков: вверх, вниз, влево, вправо.

Если вы все сделаете правильно, то все регуляторы сменят цвет на бирюзовый, энергоснабжение восстановлено. Поднимайтесь обратно к двери и открывайте ее - вот и очередной топливный элемент.

Топливный элемент №5 - ГЕЯ Прайм (задание Павшая Гора)

Наконец-то, последний топливный элемент - и снова по сюжетному заданию. Элой отправляется в руины ГЕЯ Прайм.

Будьте особенно внимательны, когда доберетесь до третьего уровня. В какой-то момент перед Элой окажется притягательная пропасть, в которую можно спуститься на веревке - вам туда не надо .

Лучше поверните налево и исследуйте скрытую пещерку, в нее можно попасть, если аккуратно спуститься по склону горы.

Заходите внутрь и идите вперед до самого конца. В последней комнате справа будет стеллаж, на котором лежит последний топливный элемент. Вы это сделали!

Пробираемся в Древний арсенал

Осталось вернуться в Древний арсенал и получить заслуженную награду. Вы же помните координаты арсенала? Если нет - вот карта.

Спускайтесь вниз и вставляйте топливные элементы в пустующие ячейки. Регуляторы загорелись, теперь нужно решить головоломку, чтобы открыть дверь.

Первый регулятор должен смотреть вверх, второй вправо, третий вниз, четвертый влево, пятый вверх. Готово, дверь открыта - но это еще не конец.

Теперь вам нужно разблокировать крепления доспехов - еще одна головоломка с регуляторами, в которой пригодятся оставшиеся топливные элементы. Здесь первый регулятор должен смотреть вправо, второй влево, третий вверх, четвертый вправо, пятый влево.

Наконец-то, после всех этих мучений вы завладели древней броней. Это Ткач щита, очень крутое снаряжение, на какое-то время делающее Элой фактически неуязвимой.

Главное внимательно следить за цветом брони: если она мерцает белым, то все в порядке. Если красным - защиты больше нет.

Что еще почитать