Виды аварий на магистральном газопроводе. Самые крупные аварии на трубопроводах и газопроводах америки

Cтраница 1


Аварии трубопроводов в условиях эксплуатации происходят в основном из-за коррозии металла (33 - 50 %), дефектов строительного происхождения (механические повреждения, дефекты кольцевого шва), дефектов заводского шва, нарушение правил эксплуатации, неисправности оборудования и других. Статистические данные по разрушениям газопроводов и нефтепроводов, представленные в табл. 3.2 за десятилетний период (1967 - 1977 годы), свидетельствуют о достаточно большом числе отказов. Ежегодно происходило более 220 разрушений трубопроводов.  

Анализ аварий трубопроводов, проработавших более 20 лет, показывает, что их старение влияет на увеличение числа отказов. Это прежде всего связано со снижением защитных свойств изоляционных покрытий, с накоплением и развитием дефектов в трубах и сварных соединениях, процессами усталости металла. Снижаются пластические и вязкостные свойства металла и сварных соединений.  

Основными-причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

При авариях трубопроводов из-за дефектов тройников (отводов) следует вырезать тройниковый узел целиком и заменить его новым.  

Чаще всего аварии трубопроводов происходят из-за неисправности в месте соединения труб.  

Для предотвращения аварий трубопроводов, проложенных в сложных инженерно-геологических условиях, необходимо установить влияние изменения условий и параметров эксплуатации на прочность и устойчивость трубопровода, а также найти потенциально опасные участки. Отказам и авариям трубопроводов, проложенных в этих условиях, наряду с другими факторами способствует их чрезмерный изгиб, который сопровождается неравномерной осадкой и нестабильным положением системы грунт-труба-жидкость или газ.  

Основными причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

Когда ликвидация аварии трубопровода производится с помощью подводной сварки в кессоне, а для получения качественного шва трубу предварительно нагревают до высоких температур, водолаз-сварщик подвергается двойному воздействию: с одной стороны - высокой температуры газов сварочной дуги, с другой стороны - высокой радиационной температуры, выделяемой трубой. Работа в жаркой, влажной среде кессона, обильное потоотделение, наклоны тела могут вызвать обморочное состояние. Чтобы этого не случилось, нужно обеспечить активное охлаждение работающего, запас воды для питья.  

При ликвидации аварии трубопроводов для сжи - женных газов требуются некоторые дополнительные меры, предосторожности, связанные со спецификой свойств про дуктов.  

Отмечены случаи аварий трубопроводов, вызванных ошибками в выборе труб и арматуры по нормалям, дефектами, допущенными при изготовлении. При монтаже и ремонтных работах необходимо строго контролировать соответствие материалов указанным в проектах, ГОСТах, нормалях и технических условиях. Размещение и способы прокладки газопроводов должны обеспечивать возможность наблюдения за их техническим состоянием. На трубопроводах, транспортирующих сжиженные газы, необходимо устанавливать предохранительные клапаны для сброса газа. На газопроводах, подающих сжиженные газы в емкости, должны быть установлены обратные клапаны между источником давления и запорной арматурой. На всех газопроводах сжиженных газов перед их входом в парк емкостей необходимо установить задвижки, отключающие емкости от внутризаводской сети при аварии или каких-либо неисправностях. На вводах газопроводов горючих газов в производственные цехи и установки должна быть установлена отключающая запорная арматура с дистанционным управлением вне здания.  


Во избежание аварии трубопроводов их прокладывают таким образом, чтобы происходила самокомпенсация тепловых удлинений трубопроводов. Однако достичь-самокомпенсации удается не всегда. В большинстве случаев применяют специальные устройства, называемые компенсаторами.  

Данные о наиболее значительных авариях трубопроводов с полным разрывом стыков показывают, что такие стыки также имели значительный непровар по всей длине шва, достигавший 40 % и даже 60 % толщины стенок, и другие дефекты.  

Тяжесть последствий от аварии трубопровода определяется соотношением размера водоема и количества нефти, попавшего в него. Однако, каковы бы ни были эти соотношения, воздействия такого рода молено считать очень опасными для живой природы.  


ООО «Городской центр экспертиз». Руководитель департамента экспертизы промышленной безопасности Зинаида Арсентьева ООО «ГЦЭ-Энерго». Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)


ООО «Городской центр экспертиз». Руководитель департамента анализа риска

Антон Чугунов
ООО «Городской центр экспертиз». Эксперт департамента экспертизы промышленной безопасности


ООО «Городской центр экспертиз». Эксперт департамента анализа рисков

Аннотация

На сегодняшний день общая протяженность линейной части магистральных трубопроводов в Российской Федерации составляет более 242 тыс. км, из которых: магистральные газопроводы - 166 тыс. км; магистральные нефтепроводы - 52,5 тыс. км; магистральные продуктопроводы - 21,836 тыс. км. В настоящее время в системе магистрального трубопроводного транспорта эксплуатируется более 7000 поднадзорных Ростехнадзору объектов. Специфика эксплуатации трубопроводного транспорта напрямую связана с риском каскадного развития аварий. Поэтому обеспечение безопасности магистральных нефтегазопродуктопроводов имеет огромное значение для энергетической безопасности страны.

Одной из важнейших проблем трубопроводного транспорта является сохранение работоспособного состояния линейной части промысловых и магистральных трубопроводов. Многочисленные обследования показывают, что подземные газопроводы, работающие при нормальных режимах, находятся в удовлетворительном состоянии в течение нескольких десятков лет. Этому способствует то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных газопроводов и своевременная ликвидация появляющихся дефектов.

Известно, что основная часть газотранспортной системы России была построена в 70–80-е годы прошлого века. К настоящему времени износ основных фондов по линейной части магистральных газопроводов составляет более половины, а точнее - 5 7,2 %.

Большая часть магистральных газопроводов имеет под земную конструктивную схему прокладки. На подземные трубопроводы воздействуют коррозионно-активные грунты. Под воздействием коррозионного износа металла уменьшается толщина стенки труб, что в свою очередь может привести к возникновению аварийных ситуаций на МГ.

Безопасность объектов трубопроводного транспорта должна быть максимально высокой для обеспечения надежных бесперебойных поставок углеводородного сырья, а угроза возникновения аварий - минимизирована.

Как правило, появляется в результате коррозионных и механических повреждений, определение места и характера которых связано с рядом трудностей и большими материальными затратами. Совершенно очевидно, что вскрытие газопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность объекта. Поэтому в течение последних лет в нашей стране и за рубежом усилия специализированных научно-и сследовательских и проектных организаций направлены на решение проблемы определения состояния подземных и надземных промысловых, магистральных нефтепродуктопроводов без их вскрытия. Эта проблема связана с большими техническими трудностями, однако при использовании современных методов и средств измерительной техники она успешно решается.

Основные сценарии возможных аварий на газопроводах связаны с разрывом труб на полное сечение и истечением газа в атмосферу в критическом режиме (со скоростью звука) из двух концов газопровода (вверх и вниз по потоку). Протяженность разрыва и вероятность загорания газа имеют определенную связь как с технологическими параметрами трубопровода (его энергетическим потенциалом), так и с характеристиками грунта (плотность, наличие каменистых включений). Для трубопроводов большого диаметра (1200–1400 мм) характерны протяженные разрывы (50–70 м и более) и высокая вероятность загорания газа (0,6–0,7).

Горение газа может протекать в двух основных режимах. Первый из них предстает, как правило, в виде двух независимых (слабо взаимодействующих) настильных струй пламени с ориентацией, близкой к оси газопровода. Это характерно в основном для трубопроводов большого диаметра (режим «струйного» пламени). Ко второму следует отнести результирующий (по расходу газа) столб огня с близкой к вертикальной ориентацией (горение «в котловане»). Данный режим горения газа более характерен для трубопроводов относительно малого диаметра.

Рис. 1. Суммарное распределение причин аварий на магистральных газопроводах по данным Ростехнадзора за 2005–2013 гг.

Количество природного газа, способного участвовать в аварии, зависит от диаметра газопровода, рабочего давления, места разрыва, времени идентификации разрыва, особенностей расстановки и надежности срабатывания линейной арматуры. Согласно статистике, средние потери газа на одну аварию варьируются в диапазоне от двух с половиной до трех миллионов кубометров.


Рис. 2. Распределение аварий на линейной части газопроводов разных диаметров по причинам их возникновения

Для анализа причин и прогнозирования на ближайшую перспективу ожидае мой интенсивности аварий были использованы данные и обобщения, публикуемые в официальных источниках, в том числе в ежегодных отчетах Ростехнадзора. Результаты анализа сведений, содержащихся в ежегодных отчетах о деятельности Федеральной службы по экологическому, технологическому и атомному надзору (http://www.gosnadzor. ru/public/annual_reports/) приведены в табл. 1.


Обобщенные сведения об аварийности и дефектности на газопроводах ОАО «Газпром» за период с 1991 по 2002 г. приведены табл. 2.


Из вышеприведенных данных видно, что наибольшее число аварий на линейной части МГ происходило вследствие наружной и внутренней коррозии (26 %), брака строительно-монтажных работ (25,8 %) и механических повреждений (21 %).

Отдельно можно выделить аварии, происходившие на участках переходов через водные преграды как наиболее сложные в инженерном отношении участки линейной части МГ.


Таблица 3. Изменение интенсивности аварий (кол. аварий / 1000 км в год) на газопроводах РФ различных диаметров, 2000–2010 гг. Таблица 4. Влияние продолжительности эксплуатации на относительные показатели аварийности газопроводов

Необходимо отметить четко прослеживаемую зависимость частоты возникновения аварий на линейной части газопровода от срока его эксплуатации. Данная зависимость представлена в табл. 4. В том числе с разбивкой по различным диаметрам (табл. 5).


Таблица 5. Распределение аварий (в % от общего их числа) для газопроводов разных диаметров в зависимости от срока их эксплуатации

Анализ статистических данных показал, что интенсивность аварий на магистральных трубопроводах имеет выраженный региональный характер, т. е. определяется не только общими показателями научно-т ехнического прогресса в отрасли, но и целым рядом локальных факторов климатического, инженерно-г еологического и геодинамического характера, особенностями сооружения и эксплуатации конкретного участка, развитостью промышленной и транспортной инфраструктуры, общей хозяйственной активностью в регионе. Основную опасность аварийной разгерметизации газопроводов представляют:

  1. Участки газопроводов после компрессорных станций (до 5 км) - вследствие нестационарных динамических нагрузок;
  2. Участки газопроводов на узлах подключения;
  3. Участки подводных переходов;
  4. Участки, проходящие вблизи населенных пунктов и районов с высоким уровнем антропогенной активности (районы строительства, пересечения с автомобильными и железными дорогами).

Важно отметить, что после 1990 года на газопроводах России не было аварий типа лавинного разрушения. Это явилось результатом повышения уровня технических требований к трубам и сварным соединениям. Кроме того, улучшилось качество проектных работ, вырос уровень технического обслуживания газопроводов.

Имеющиеся статистические данные свидетельствуют о том, что соблюдение установленных нормативных расстояний при укладке в одном коридоре различных веток магистральных газопроводов является мерой, достаточной для предотвращения вариантов цепного развития аварий (т.е. происходящих по принципу «домино»).

Проявление аварийности на магистральных газопроводах, представляющих , носит ярко выраженный территориальный характер. Региональное проявление аварийности связано с различием в разных регионах инженерно-геологических особенностей трасс, состоянием сети дорог, общим уровнем промышленного и сельскохозяйственного развития и проч.

Проведенный анализ показал, что скорость коррозии севернее 60-й параллели в естественных почвенных условиях вследствие относительно низких температур в 15–20 раз выше, чем, например, в районах Средней Азии. Вследствие влияния климатических факторов в совокупности с региональными характеристиками коррозионной активности грунтов интенсивность отказов в северной зоне в 1,4 раза, а в южной – в 16 раз превышает значение λср для средней полосы.

Особое значение имеют показатели региональной сельскохозяйственной и промышленной активности, влияющей на механическую и . Региональный характер проявления аварийности, помимо общих технологических причин и антропогенного влияния, определяется сложными геодинамическими процессами в верхнем слое земной коры.

Анализ показал существенные различия (до 40 раз) в интенсивности аварий в разных областях Российской Федерации. Это необходимо учитывать при анализе риска путем соответствующей коррекции λср по данным аварийности конкретного региона (области) или предприятия. В ряде районов, помимо этого, необходимо производить более детальные уточнения с учетом конкретной местной специфики трассы трубопровода. Из-за отсутствия инженерных методик такие уточнения рекомендуется выполнять введением специального коэффициента, определяемого методом экспертных оценок.

Также нередко причинами отказов являются плановые и глубинные деформации русла рек в створе перехода, размывы берегов, механические повреждения судовыми якорями, волокушами, льдом, потеря устойчивости трубопровода, коррозия и брак труб, а также дефекты строительно-монтажных работ.

Результаты выполненного ООО «ВНИИГАЗ» обобщения данных фирмы «Подводгазэнергосервис» и ИЦ «ВНИИСТ-Поиск» по основным причинам повреждений на подводных переходах приведены в табл. 6.


Аварии в русловой части чаще всего происходят в период весеннего паводка. Благодаря созданной в ОАО «Газпром» системе периодического контроля и профилактического ремонта аварии на этой части переходов сейчас довольно редки. По оценкам специалистов, интенсивность аварий в русловой части переходов примерно в 5–7 раз выше аналогичного показателя для смежных «сухопутных» участков.

В пойменной части подводных переходов разрывы трубопроводов возникают в основном в зимнее время. Это объясняется тем, что из-за нарушения изоляционного покрытия отдельных участков газопроводов на них может возникнуть коррозия, связанная с повышенной увлажненностью почв и интенсивными геохимическими процессами. Ослабленные коррозией участки труб могут быть легко разрушены под воздействием интенсивных сжимающих нагрузок со стороны обводненных грунтов при их промерзании.

Следует выделить основные проблемы, решение которых позволит в некоторой степени уменьшить аварийность объектов газового профиля.

Во-первых, основной упор делается на противодействие видимым (актуальным на сегодня) опасностям в ущерб деятельности по профилактике опасностей на стадии проектирования и ранних стадиях жизненного цикла объекта.
Во-вторых, происходит многократное повторение однотипных чрезвычайных ситуаций по причине отсутствия механизмов учета опыта расследования инцидентов, отказов и аварий в профилактике ЧС на стадиях проектирования, строительства, реконструкции и эксплуатации объекта.

Кроме того, можно отметить недостаточную эффективность действующих служб мониторинга. Службы отслеживания фактической обстановки на предприятиях, как правило, ограничиваются фиксацией «физических» явлений и процессов. Они не встроены в системы, обеспечивающие синтез и анализ наблюдений, принятие управленческих решений и корректировку собственной деятельности.

Литература

  1. Материалы ежегодных отчетов о деятельности Федеральной службы по экологическому, технологическому и атомному надзору за 2004-2014 года (http://www.gosnadzor.ru/public/annual_reports/).
  2. Промышленная безопасность и надежность магистральных трубопроводов / Под ред. А.И. Владимирова, В.Я. Кершенбаума. – М.: Национальный институт нефти и газа, 2009. 696 с.
  3. Башкин В.Н., Галиулин Р.В., Галиулина Р.А. Аварийные выбросы природного газа: проблемы и пути их решения // Защита окружающей среды в нефтегазовом комплексе. 2010. № 8. С. 4-11.
  4. Лисанов М.В., Савина А.В., Дегтярев Д.В. и др. Анализ Российских и зарубежных данных по аварийности на объектах трубопроводного транспорта //Безопасность труда в промышленности. 2010. № 7 С. 16-22.
  5. Лисанов М.В., Сумской С.И., Савина А.В. и др. Анализ риска магистральных нефтепроводов при обосновании проектных решений, компенсирующих отступления от действующих требований безопасности // Безопасность труда в промышленности. 2010. №3. С. 58-66.
  6. Мокроусов С.Н. Проблемы обеспечения безопасности магистральных и межпромысловых нефтегазопродуктопроводов. Организационные аспекты предупреждения несанкционированных врезок // Безопасность труда в промышленности. 2006. № 9. С. 16-19.
  7. Ревазов А.М. Анализ чрезвычайных и аварийных ситуаций на объектах магистрального газопроводного транспорта и меры по предупреждению их возникновения и снижению последствий // Управление качеством в нефтегазовом комплексе. 2010. № 1. С. 68-70.
  8. Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)

Аварийные работы на газопроводах относят к огне- и газо­опасным, поэтому здесь большое внимание уделяют обеспече­нию безопасности выполнения ремонтных работ.

При ликвидации аварий на газопроводе выполняют следую­щие работы: отключение аварийного участка газопровода н освобождение его от газа; отключение средств активной за­щиты трубопровода от коррозии; земляные работы; вырезание отверстий в газопроводе для установки резиновых шаров; уста­новка шаров для изоляции полости трубопровода на ремон-



тируемом участке; сварочные работы; проверка качества швов физическими методами контроля; извлечение запорных рези­новых шаров; заварка отверстий; вытеснение воздуха из ава­рийного участка; испытание швов отремонтированного участка под давлением 1 МПа; нанесение изоляционного покрытия; испытание трубопровода под рабочим давлением; включение средств активной защиты от коррозии.

Сварочные работы на газопроводе выполняют при избыточ­ном давлении газа, равном 200-500 Па. При меньшем дав­лении возможны быстрое опорожнение газопровода и поступ­ление в него воздуха, в результате чего образуется взрыво­опасная смесь. При больших давлениях во время проведения огневых работ образуется большое пламя.

Свищи, образовавшиеся в газопроводе, ликвидируют путем заварки, для чего края свища тщательно подготавливают под сварку.

Если на газопроводе появились трещины в сварных стыках или по целому металлу, то дефектные участки удаляют, а на их место вваривают патрубки. При этом по обе стороны от де­фекта вырезают отверстия для установки резиновых запорных шаров. В последние закачивают воздух, создавая давление 4-5 кПа, а затем приступают к вырезке аварийного участка. При проведении огневых работ внимательно следят за давле­нием газа в газопроводе. Для этого в нем сверлят отверстие диаметром 3-4 мм, в которое вставляют штуцер для подсое­динения 11-образного манометра. Сварочные работы выполняют аналогично описанным ранее.

Если в газопроводе имеется конденсат, то его перед нача­лом огневых работ удаляют.

По окончании сварочных работ новые швы проверяют фи­зическими методами контроля, а затем извлекают резиновые шары. Отверстия для шаров заваривают. Из газопровода вы­тесняют воздух, для чего отключенный участок продувают в одном направлении. Газ выпускают через свечу. При про­дувке давление газа должно быть не более 0,1 МПа. Продувку газопровода заканчивают, если количество кислорода в вы­тесняемой через свечи газовой смеси составляет не более 2 % по объему. Отремонтированный участок испытывают под ра­бочим давлением. После наложения на приваренный патрубок изоляционного покрытия отремонтированный участок засы­пают, уплотняя грунт под трубопроводом.


Огневые работы на действующих газопроводах, транспорти­рующих сырье с высоким содержанием сероводорода, реко­мендуется проводить в следующем порядке. Участок ремонти­руемого газопровода 2 (рис. 90) отключают линейными кра­нами 1. В нем давление газа снижают до 200 - 500 Па,. Избыточное давление газа контролируют жидкостными маномет­рами. При выполнении плановых огневых работ на газопро­водах, транспортирующих сырье, в котором содержание серо--246


водорода превышает й,02 г/м 3 , участок между линейными кранами предварительно заполняют очищенным газом.

На заменяемом участке 5 трубопровода, который размечен в котловане, вырезают технологическое отверстие 6 диаметром около 160 мм для ввода в трубопровод резиновых запорных оболочек. Если в трубопроводе содержится большое количество жидкости (воды, конденсата), то заменяемый участок предва­рительно продувают газом до полного ее удаления. Небольшое количество жидких веществ откачивают в специальные сбор­ные емкости для последующей утилизации.

После освобождения трубопровода от жидкости через тех­нологическое отверстие 6 в трубу, по обе стороны от него, вво­дят резиновые оболочки 4, которые заполняют воздухом до перекрытия проходного сечения трубопровода. Степень запол­нения запорных оболочек воздухом контролируют визуально и путем проверки их способности к перемещению по трубопро­воду под воздействием усилий в 50-60 Н.

Технологическое отверстие 6 герметизируют эластичной конической пробкой 9, в центральном отверстии которой гер­метично закреплен конец рукава 10 для подачи инертной среды, а через боковые отверстия пропущены гибкие трубки 11 дли­ной 10 м для заполнения оболочек воздухом. Затем в прост­ранство между оболочками под давлением подается газомеха-ническая пена, под действием которой резиновые оболочки 4 перемещают на безопасное расстояние от места проведения огневых работ (в положение 3), а потом их заполняют возду­хом до рабочего давления.

Для предотвращения повреждения запорных оболочек о внутреннюю поверхность трубопровода в качестве защитных чехлов рекомендуется использовать резиновые оболочки ана­логичных размеров, поврежденные или с истекшим сроком хра­нения. В этом случае установленные в положение 3 оболочки заполняют воздухом до давления 5-6 кПа.

Если в заменяемом участке трубопровода имеется сквозное повреждение, то его на период перемещения оболочек герме­тизируют с помощью пластыря. Запорные оболочки легко пе­ремещаются по трубопроводу при избыточном давлении среды в пространстве между ними не более 0,5 кПа. При выполнении утой операции газомеханическую пену получают с помощью




специальных технических средств путем орошения пакета сеток в пеногенераторе 8 распыленным в потоке выхлопных газов пенообразующим раствором, подаваемым из емкости 12 с по­мощью распылителя 7.

После установки запорных оболочек в рабочее положение гибкие трубки 11 укладывают в полость трубопровода так, чтобы не повредить их при огневой резке трубы. Заменяемый участок вырезают. На его место устанавливают новый элемент. После вварки этого элемента приступают к заключительным операциям. По завершении работ в котловане участок газо­провода между линейными кранами с целью вытеснения из него атмосферного воздуха продувают газом через продувоч­ные свечи до остаточной объемной доли кислорода в газе не более 2 %. При выполнении этой операции запорные оболочки извлекают из трубопровода через узлы приема поршней или продувочные свечи.

ОРГАНИЗАЦИЯ И ПРОВЕДЕНИЕ РАБОТ ПРИ ВРЕЗКЕ ОТВОДОВ В ДЕЙСТВУЮЩИЕ ТРУБОПРОВОДЫ

В процессе эксплуатации часто приходится выполнять врезку для подключения новых линий к действующему трубо­проводу, устройства камер приема и пуска скребка, обводных, линий, подключения лупингов. Врезка - процесс трудоемкий и пожароопасный. Применяющиеся в настоящее время безог­невые (холодные) способы врезки позволяют уменьшить сте­пень пожароопасности, сокращают объем и время проведения 1 работ, которые осуществляют без остановки перекачки нефти: или газа и практически без потерь транспортируемого про­дукта.

Для врезки отводов в магистральные нефте- и нефтепродукто-проводы сконструировано устройство, позволяющее проводить, работы без остановки перекачки при рабочем давлении в тру­бопроводе до 6,4 МПа.

Установка для врезки отводов в действующие трубопроводы состоит из электродвигателя 16, редуктора 4, торцовой фрезы. 3 и корпуса 14 (рис. 91).

Червячное колесо редуктора разрезано по средней плоско­сти на две части. Нижняя половина 13 червячного колеса об­разует со шпинделем 8 пару «винт - гайка», а верхняя поло­вина 12 посажена свободно на ступицу нижней половины и-имеет кулачки, взаимодействующие с кулачковой муфтой //,. которая вместе со шпинделем образует подвижное шпоночное соединение. С помощью механизма переключения 5 кулачковая муфта сцепляется то с кулачками верхней половины 12 червяч­ного колеса, то с кулачками полумуфты 6, жестко закреплен­ной на редукторе 4. В результате этого осуществляется соот­ветственно рабочая и ускоренная подача режущего инстру­мента.


На редукторе для ограждения шпинделя 8 закреплен кожух 10 с конечным выключателем 9, служащим для отключения электродвигателя при достижении режущим инструментом крайнего положения, и кулачком 7, контролирующим подачу режущего инструмента.

В качестве " режущего инструмента применена то|рцовая кольцевая фреза 3, "закрепленная вместе со сверлом 15 на конце шпинделя 8. Установка оснащена сменными корпусами 14 и фрезами для вырезки отверстий различного диаметра. Все корпуса имеют патрубок 1 с фланцем 2. Через патрубок осу­ществляется подача "охлаждающей жидкости. К нему крепится насос, с помощью которого проводится огарессовка корпуса установки, задвижки и приваренного к действующему трубо­проводу патрубка.

Работу по врезке отвода осуществляют следующим обра­зом. После вскрытия трубопровода в месте врезки с его по­верхности очищают изоляционное покрытие. В месте врезки к трубопроводу приваривают патрубок того же диаметра, что и будущий отвод.

При проведении сварочных работ давление в трубопроводе, по которому ведется перекачка продукта, не должно превышать 2 МПа. По окончании сварочных работ оно может быть уве­личено до рабочего. К приваренному патрубку с фланцем кре­пят задвижку, под которой устанавливают временную опору. К ответному" фланцу задвижки крепят установку. Перед фре­зерованием отверстия всю полость от трубопровода до уста­новки заполняют эмульсией для охлаждения и смазки режу-


щего инструмента и с помощью насоса опрсссовывают корпус установки, задвижки и приваренный к трубопроводу патрубок (давление равно 1,5 рабочего давления в трубопроводе). Дав­ление опрессовки сохраняют в течение 5 мин. Подтекания в местах соединения и потение сварных швов не допускаются.

После этого режущий инструмент через открытую задвижку подводят к поверхности трубы и фрезеруют отверстие. По окончании операции режущий инструмент вместе с вырезанным «пятаком» отводят в исходное положение. Задвижку закры­вают, а установку демонтируют. К задвижке присоединяют отвод. На этом работа по врезке отвода заканчивается. При врезке отвода установку обслуживает один человек. Макси­мальное время вырезки отверстия составляет 25 мин. Масса установки 306 кг.

Разработана технология безогневого метода врезки отводов в действующие газопроводы под высоким давлением. Она пол­ностью исключает сварочные работы на действующем газопро­воде за счет применения стыковочного узла, присоединяемого к газопроводу с помощью специального герметика, и фрезерной установки для вырезки отверстий.

Стыковочный узел состоит из двух половин с продольными фланцами. Одна половина его имеет патрубок с запорным устройством, диаметр которого соответствует диаметру под­соединяемого газопровода. Обе половины соединяются шпиль­ками после их установки на поверхности трубопровода.

Стыковочный узел изготавливают на специальной оснастке индивидуально для каждого диаметра и герметизируют с по­верхностью трубопровода посредством уплотнительного кольца и герметика, обеспечивающих абсолютную герметизацию на давления 5,6-7,5 МПа. Герметик рассчитан на период работы газопровода 20-30 лет при температурах от +80 до -40°С.

Отверстия для отвода на действующем газопроводе выре­зают специальной фрезерной установкой. Режущий инструмент представляет собой набор коронных фрез со специальным про­филем зуба и сверла.

После определения точки подключения будущего отвода к трубопроводу отрывают котлован, наружную поверхность трубопровода очищают от изолирующих покрытий и продуктов коррозии. На зачищенную поверхность трубопровода и внут­реннюю поверхность обеих половин стыковочного узла тонким слоем наносят герметик, приготавливаемый на базе эпоксид­ных смол с добавлением необходимых наполнителей и пласти­фикаторов, которые обеспечивают надежную эксплуатацию стыковочного узла в течение всего периода работы трубопро­вода. В момент затяжки шпилечного соединения герметик за­полняет раковины и микротрещины. Надежность всего узла проверяют гидравлическим испытанием на прочность и гер­метичность. После этого к фланцу запорного устройства сты­ковочного узла монтируют фрезерную установку.


Фрезерную установку подключают к передвижной электро­станции. Электропривод через редуктор передает вращатель­ное движение режущему инструменту, который подводят к телу трубы через открытое запорное устройство. Для предотвра­щения гидроудара при врезке под давлением тело трубы сна­чала просверливают сверлом. После сверления в течение 30- 40 с выравнивают давление в трубопроводе и полости патрубка отвода, затем начинается фрезерование. Режим фрезерования регулируют штурвалом привода подачи.

Конструкция режущего инструмента обеспечивает своевре­менное изъятие стружки и вырезаемого элемента тела трубы кз рабочей зоны и исключает попадание их в газопровод. По окончании фрезерования режущий инструмент выводят в край­нее правое положение, а запорное устройство на патрубке отвода переводят в закрытое положение. Через продувочный штуцер установки газ сбрасывают из полости между рабочим органом запорного устройства и присоединительным фланцем установки до достижения атмосферного давления. К запор­ному устройству патрубка присоединяют газопровод-отвод или технологическую линию.

– это опасное происшествие на трубопроводе, связанное с выбросом и (или) выливом под давлением опасных химических пожаровзрывоопасных или нейтральных веществ (жидких, газообразных или многофазных), приводящее к возникновению техногенной чрезвычайной ситуации и наносящее ущерб человеку, объектам техносферы и окружающей среде. Аварийное предельное состояние трубопроводов соответствует полному отказу трубопровода из-за чрезмерных нагрузок и (или) локального повреждения с обязательной потерей целостности трубопровода (течь/разрыв).

Развитие энергетики, в т.ч. атомной, ракетно-космической и авиационной техники, химической промышленности, связано с широким использованием трубопроводов высокого (до 10 Мпа) и сверхвысокого (до 500 Мпа) давления. Непрерывный рост масштабов производства и переработки углеводородного сырья обусловливает увеличение единичных мощностей и концентрации технологических и магистральных трубопроводов общей протяженностью до 400 тыс. км и давлением до 25 Мпа на производственных площадях и магистралях горючих и взрывоопасных продуктов и прежде всего сжиженных углеводородных газов, нефти, широких фракций углеводородов. Это, в свою очередь, ведет к увеличению масштабов, числа и тяжести пожаров, мощности аварийных взрывов и осложнению оперативной обстановки при аварии.

Причинами А. на т. могут быть: механические повреждения из-за усталости, химическая и электрохимическая коррозия, технологические дефекты, внешние электромагнитные воздействия, ошибочные действия операторов и персонала, террористические акты. Крупные аварии и взрывы на трубопроводах, как правило, сопровождаются утечкой радиоактивных теплоносителей, легковоспламеняющихся и химически опасных жидкостей и газов, сжиженных углеводородных газов. Особую опасность представляют большие залповые выбросы этих веществ, при которых создаются значительные трудности локализации аварий и защиты людей.

В последние годы значительно возросло производство, транспортирование и потребление жидкого аммиака на производящих (до 70 тыс. т), перерабатывающих предприятиях, транспортирующих базах (на припортовых базах – до 130 тыс. т). На химических предприятиях в больших объемах производят, хранят и транспортируют жидкий хлор. Быстрый рост его производства обусловливает увеличение объемов складов, а следовательно, и увеличение потенциальной опасности А. на т.

На стартовых ракетных комплексах, использующих жидко-реактивные двигатели, широко применяются специальные трубопроводные системы (с давлением до 60 Мпа и температурами до 1200 °С) для жидких топлив и окислителей, создающих опасность пожаров, взрывов и заражений. В объектах ядерной энергетики по трубопроводам прокачиваются со скоростями до 50 м/с водяной и паровой теплоносители, жидкие металлы (натрий, свинец, висмут) с давлениями до 20 Мпа и температурами до 650 °С. При авариях на таких трубопроводах возникают: опасные струйные течи, разрушающие инженерные сооружения, мощные реактивные силы, перемещающие трубопроводы на десятки и сотни метров; большие осколочные эффекты.

Особо опасны аварии на главных циркуляционных трубопроводах и трубных пучках парогенераторов ядерных энергетических установок с потерей радиоактивного теплоносителя.

Аварии с образованием течи или полным разрушением на технологических и магистральных трубопроводах создают опасность пожаров и загрязнений почв и акваторий. Трубопроводы, транспортирующие широкие фракции углеводородов, при образовании течей создают исключительно высокую опасность взрывов и пожаров вследствие скопления больших масс этих веществ в низинах в связи с большей плотностью, чем плотность воздуха.

Для предотвращения А. на т. используются современные методы расчетов и испытаний на прочность и ресурс, методы штатной и оперативной диагностики (в т.ч. внутритрубной), методы обнаружения и локации течей, специальные системы крепления трубопроводов, их прокладки в каналах и туннелях. Высокую эффективность показывают плакирование трубопроводов и системы коррозионной защиты, системы гашения пульсаций давления и вибраций. Новые технологии ремонтно-восстановительных работ на аварийных трубопроводах (с применением композиционных материалов и материалов с памятью формы) позволяют не останавливать их эксплуатацию. При обнаружении опасных утечек из аварийных трубопроводов используются системы оповещения персонала и населения и достаточно сложные технологии ликвидации последствий аварийных ситуаций.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Аварии на трубопроводах

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности




«Аварии на трубопроводах».


Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович


Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:


По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.

Общие сведения о состоянии системы трубопроводов в РФ на 2008


В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

Крупная авария произошла на 326 км магистрального нефтепровода Узень - Атырау - Самара на юго-западе Казахстана. Как сообщает ИТАР-ТАСС, на месте происшествия начаты аварийно-восстановительные работы. Между тем пока ничего неизвестно о масштабах и причине аварии, площади загрязнения нефтью и объеме рекультивационных работ. За последнюю неделю это уже второе крупное происшествие на нефтепроводах Казахстана. 29 января в результате разрыва металла из-за гидроудара на 156 км магистрального трубопровода Каламкас - Каражанбас - Актау на землю вылилось около 200 тонн нефти.

Поэтому полное устранение или существенное уменьшение интенсивности волновых и вибрационных процессов в трубопроводных системах позволяет не только в несколько раз уменьшить количество аварий с разрывами трубопроводов и выходом из строя трубопроводной арматуры и оборудования, повысить надежность их работы, но также значительно увеличить срок их эксплуатации.

В настоящее время для борьбы с пульсациями и колебаниями давления и расхода в трубопроводных системах используют воздушные колпаки, аккумуляторы давления, гасители различных типов, ресиверы, дроссельные шайбы, клапаны сброса и т.п. Они морально устарели, не соответствуют современному развитию науки и техники, малоэффективны, особенно в случае гидроударов и динамики переходных процессов, не отвечают требованиям экологической безопасности, о чем свидетельствует статистика аварийности. На данный момент в России существуют новые технологии, противоаварийной защиты трубопроводов, которые позволяют гасить все внутрисистемные возмущения: гидроудары, колебания давления и вибрации. Принципиально новым высокоэффективным энергонезависимым техническим средством гашения колебаний давления, вибрации и гидроударов - являются стабилизаторы давления (СД).

При этом неизбежно происходят потери нефти, среднестатистический уровень которых оценивается в 0,15-0,2 т/сут. на один порыв. Кроме того, в окружающую среду попадают высокоагрессивные смеси, нанося ей значительный ущерб.

Согласно Государственному докладу «О состоянии промышленной безопасности опасных производственных объектов, рационального использования и охраны недр РФ в 2006 г.» основными причинами аварий на магистральных трубопроводах в течение 2001 –2006 гг. стали:

внешние воздействия – 34,3 %, (их общего количества),

брак при строительстве – 23,2 %,

наружная коррозия – 22,5 %,

брак при изготовлении труб и оборудования на заводах – 14,1 %,

ошибочные действия персонала – 3 %.

Основная причина аварий на внутрипромысловых трубопроводах – разрывы труб, вызванные внутренней коррозией. Износ внутрипромысловых трубопроводов достигает 80%, поэтому частота их разрывов на два порядка выше, чем на магистральных, и составляет 1,5 – 2,0 разрыва на 1 км. Так, на территории Нижневартовского района Ханты-Мансийского АО с начала эксплуатации месторождений построено 21 093 км внутрипромысловых и магистральных нефтегазопроводов, большая часть из которых уже пришла в аварийное состояние, но продолжает эксплуатироваться.

Доминирующей причиной аварий на действующих газопроводах России является коррозия под напряжением. За период с 1991 г. по 2001 г. из общего числа аварий по причине стресс-коррозии было 22,5%. В 2000 г. на ее долю приходится уже 37,4% от всех аварий. К тому же расширяется география проявления коррозии под напряжением.

Основные фонды трубопроводного транспорта, как и вся техносфера стареют, магистрали деградируют с всевозрастающей скоростью. Неизбежно приближаются кризисные явления. Например, износ основных фондов газотранспортной системы ОАО «Газпром» составляет около 65%. Таким образом, продление срока безопасной службы трубопроводных систем является важнейшей задачей транспортников нефти и газа.

В настоящее время внутритрубное обследование проведено в отношении магистральных нефтепроводов, а также 65 тыс. км газопроводов из 153 тыс. км общей протяженности. При этом ремонтируется около 1,5% опасных дефектов от общего количества обнаруженных дефектов. По данным АК «Транснефть» плотность распределения дефектов коррозии составляет 14,6 деф./км. Скорость коррозии на значительной части – 0,2 – 0,5 мм/год, но имеет место и значительно большая скорость - от 0,8 до 1,16 мм/год.

Наиболее уязвимыми на сегодня являются магистральные газопроводы Северного коридора. Северный коридор представляет собой многониточную систему газопроводов, проложенных из районов северных месторождений (Уренгойское, Заполярное, Медвежье и др.) до границ Белоруссии с одной стороны и до границы с Финляндией – с другой. В том же коридоре проходит трасса строящегося магистрального газопровода Ямал – Европа. Общая протяженность действующих газопроводов Северного коридора в однониточном исчислении около 10 тыс. км. Суммарная производительность газопроводов в головной части составляет 150 млрд. м? газа в год. В районах прохождения газопровода Ухта – Торжок (1 – 4-я нитки) производительность газопровода составляет 80 млрд. м2 в год.

В последние годы выделяется высокая доля аварий именно этого участка магистральных трубопроводов по причине стресс-коррозии (71,0%). В 2003 г. 66,7% аварий также имели стресс-коррозионные характер. Возраст газопроводов, потерпевших стресс-коррозионные аварии, непрерывно растет. По коридорам Северного коридора за 2001 – 2003 гг. этот средний возраст составил 24,2 года, максимальный – 28 лет. Примерно 10 лет назад средний возраст газопроводов, потерпевших стресс-коррозионные аварии, составлял 13 – 15 лет.


2. Аварии на нефтепроводах


Аварии на трубопроводе происходят не только по техническим причинам: существует и ряд других, основным из которых является так называемый человеческий фактор. Огромное число катастроф происходит в результате халатности, как работников, так и начальства. Именно это и подчёркивается в ряде дальнейших примеров.

5 июня в Витебской области завершен ремонт более чем 40-километрового участка российского магистрального нефтепродуктопровода "Унеча - Вентспилс". Одновременно был официально объявлен виновник крупнейшей аварии на этой транспортной линии.

Как сообщили БелаПАН в дирекции российского унитарного предприятия "Запад-Транснефтепродукт" (Мозырь), нефтепродукты по трубопроводу "Унеча - Вентспилс" перекачиваются уже сорок лет. При проведении в 2005 году диагностики трубопровода специалисты обнаружили множество дефектов. Их виновником собственник нефтепровода считает предприятие-изготовителя - Челябинский металлургический завод (Россия), на базе которого сейчас действуют четыре предприятия. После двух аварий на нефтепроводе в Бешенковичском районе Витебской области (в марте и мае 2007 года) специалисты "Запад-Транснефтепродукта" провели повторное исследование магистрали и собственными силами приступили к замене потенциально опасных участков. Транспортировка дизельного топлива из России в Латвию через Беларусь была приостановлена на 60 часов. За это время пять белорусских ремонтных бригад "Запад-Транснефтепродукта" из Мозыря и Речицы (Гомельская область), Сенно и Дисны (Витебская область), Кричева (Могилевская область) заменили 14 фрагментов нефтепровода.

Виновником его порывов на территории Бешенковичского района прокуратура определила Челябинский металлургический завод, который изготовил дефектные трубы в 1963 году.

Напомним, 23 марта 2007 года в Бешенковичском районе Витебской области произошел порыв нефтепродуктопровода "Унеча - Вентспилс". В результате аварии дизельное топливо по мелиоративному каналу и реке Улла попало в Западную Двину и добралось до Латвии. "Запад-Транснефтепродукт" компенсировал Министерству по чрезвычайным ситуациям Беларуси убытки по устранению последствий аварии 23 марта. Министерство природных ресурсов и охраны окружающей среды Беларуси подсчитало ущерб, нанесенный экологии от первого разрыва нефтепровода. Предполагается, что до 15 июня сумма ущерба будет согласована с владельцем трубопровода и представлена общественности.

Второй прорыв трубы на нефтепродуктопроводе Унеча-Вентспилс произошел 5 мая. "Прорыв является локальным. Из нефтепровода вытекло небольшое количество нефтепродуктов", - сказал тогда БелаПАН министр по чрезвычайным ситуациям Беларуси Энвер Бариев.

Он заверил, что авария не принесет тяжелых последствий для окружающей среды. "В реки нефтепродукты не попадут", - сказал министр.

Симптоматично, что второй прорыв произошел возле деревни Бабоедово Бешенковичского района, вблизи того места, где в марте произошел первый крупный прорыв трубы.

Как говорится, где тонко, там и рвется.

27 февраля 2007 г. в Оренбургской области, в 22 км от г. Бугуруслан из внутрипромыслового трубопровода НГДУ "Бугурусланнефть" (подразделение входящего в "ТНК-ВР" ОАО "Оренбургнефть") произошла утечка нефти.

К счастью, или к несчастью, но разлив, объем которого по предварительным оценкам МЧС составил около 5 т, попал на лед реки Большая Кинель. К несчастью - труба прохудилась как раз в районе реки. К счастью - вроде бы нефть вылилась не прямо в воду, а на лед толщиной 40 см.

В Махачкале из-за порыва на нефтепроводе произошла утечка нефти. Утечка произошла в Ленинском районе города на участке нефтепровода диаметром 120 миллиметров.

В результате порыва нефтепровода вылилось около 250-300 литров нефти, пятно составляет около десяти квадратных метров. Для ликвидации аварии перекрыли поступление нефти на данном участке.

"Пятно обваловано (загрязнение локализовано)", - сообщили в МЧС. По его словам информации о пострадавших не поступала.

На месте работала оперативная группа МЧС Республики Дагестан. На данный момент ликвидацией аварии занимаются специалисты ОАО Дагнефтегаз.

Нефтепровод Омск -- Ангарск -- наиболее крупный (2 нитки диаметром 700 и 1000 мм) тянется от западной границы области и практически до восточной. Перекачивается сырая нефть. Нефтепровод принадлежит ОАО “Транссибнефть” АК “Транснефть” Министерства топлива и энергетики РФ. По Иркутской области нефтепровод эксплуатирует Иркутское районное нефтепроводное управление (ИРНПУ). В 2001 г. ИРНПУ разработан “План по предупреждению и ликвидации аварийных разливов нефти Иркутского районного нефтепроводного управления ОАО “Транссибнефть” -- находится на согласовании. Количество аварий на нефтепроводе за период с 1993 г по 2001 г.:

1. Март 1993 г. На 840 км магистрального нефтепровода Красноярск -- Иркутск (поврежден трубопровод бульдозером) вылилось на рельеф 8 тыс. тонн нефти. Своевременно принятые меры по локализации места пролива позволили свести к минимуму последствия этой аварии. Пролитая нефть в основном была откачена в хранилища. Загрязненный грунт был собран и вывезен на утилизацию.

2. Март 1993 г. На 643 км магистрального нефтепровода Красноярск -- Иркутск (разрыв нефтепровода из-за дефекта сварного шва, момент аварии не был своевременно зафиксирован) на поверхность излилось более 32,4 тыс. тонн нефти. Принятые срочные меры по ликвидации последствий этой аварии позволили быстро нейтрализовать негативные явления. Однако около 1 тыс. тонн нефти проникло в недра и локализовалось в 150-300 м от действующего Тыретского хозяйственного водозабора подземных вод. Около 40% 2-го и 3-го поясов зоны санитарной охраны водозабора оказались загрязненными нефтью. Еще около 1 тыс. тонн нефти проникло в грунты на участке заболоченной поймы р. Унги и постепенно мигрировала ниже по течению в хозяйственно-ценный водоносный горизонт. Для сохранения Тыретского хозяйственного водозабора подземных вод от загрязнения нефтью был сооружен и задействован специальный защитный водозабор, который уже в течение 9 лет “отсекает” загрязненную нефтью воду от хозяйственного водозабора. Эколого-гидрогеологическая ситуация остается сложной в части загрязнения нефтью извлекаемой воды хозяйственным водозабором. На протяжении всех лет, после аварии осуществлялся государственный природоохранный контроль за ведением эколого-гидрогеологических работ в районе аварии. Каждый год проводятся совместные совещания лиц и служб, заинтересованных в очищении от загрязненных нефтью земель и подземных горизонтов (землепользователей, природоохранных органов, санэпиднадзора, гидрометеослужбы, гидрогеологов, нефтепроводного управления) -- подводятся итоги мониторинга за прошедший год и определяется дальнейшая программа работ. Обслуживание систем мониторинга и контроля геологической среды в районе Тыретского водозабора до 1999 г. проводило по договору ГФГУП “Иркутскгеология”. С 1999 г -- ИРНПУ

3. Март 1995 г. На 464 км магистрального нефтепровода Красноярск -- Иркутск (трещина серповидная на трубопроводе Ду 1000 мм, длина 0,565 м, ширина 0,006 м) на поверхность излилось 1683 м3 нефти. Нефть по руслу ручья (300 м) достигла реки Курзанки и растеклась по льду реки на расстояние 1150 м. При ликвидационных работах 1424 м3 нефти было собрано и откачено в резервный трубопровод Ду 700 мм. Река Курзанка до наступления весеннего паводка была полностью очищена от загрязнения. Безвозвратные потери нефти составили 259 м3, из которых 218.3 м3 было сожжено. Загрязненный нефтью грунт из русла ручья был снят и заскладирован в карьере, где организована его обработка биоприном.

4. Январь 1998 г. На 373 км магистрального нефтепровода Красноярск -- Иркутск (трещина длиною 380 мм на трубопроводе Ду 1000 мм) выход нефти на поверхность около 25 м3, собрано около 20 м3. Вывоз загрязненного снега произведен в нефтеловушки Нижнеудинской НПС.

5. Ноябрь 1999 г. На 565 км магистрального нефтепровода Красноярск -- Иркутск (разгерметизация трубопровода Ду 700, в результате повреждения задвижки во время ремонтных работ, с последующим возгоранием разлившейся нефти). Площадь загрязнения 120 м2, сгорело 48 тонн нефти.

6. Декабрь 2001 г. на 393,4 км магистрального нефтепровода Красноярск -- Иркутск (при опорожнении резервной нитки Ду 700мм, с перекачкой нефти ПНУ в трубопровод Ду 1000 мм), произошла разгерметизация всасывающей нитки насоса. На поверхность вылилось около 134 м3 нефти. Нефть локализовалась в пониженной части рельефа -- естественный овраг, расположенный от места аварии на расстоянии 80 м. После устранения повреждения нефть из оврага -- 115 м3 -- откачана в действующий нефтепровод. Остатки нефти собраны спецмашиной. Объем безвозвратных потерь нефти составил 4 м3. Поверхность земли, загрязненная нефтью, обработана сорбентом “Эконафт” с последующей вывозкой загрязненного грунта на Нижнеудинскую НПС. По Предписанию КПР по Иркутской области организован мониторинг земель и поверхностных вод р. Уды


2. Аварии на газопроводах.


В результате аварии на магистральном газопроводе «Аксай-Гудермес-Грозный» три района Чечни и часть города Грозного остались без газа. Сейчас на месте аварии ведутся ремонтно-восстановительные работы, сообщает информационный портал «Кавказский узел».

«Авария произошла вечером 26 января, между 19 и 20 часами, – сообщили в МЧС Чечни. – Утечка газа на магистральном газопроводе была зафиксирована примерно в полутора километрах от города Гудермес, в районе поселка Белоречье. Здесь по дну реки Белка идет линия газопровода «Аксай-Гудермес-Грозный».

По мнению специалистов, причины разрыва газовой трубы, диаметр которой составляет 50 сантиметров, носят «техногенный характер».

С раннего утра на месте аварии ведутся масштабные ремонтно-восстановительные работы. В ликвидации аварии принимают участие аварийные службы, работники республиканского МЧС и военные.

В результате аварии на магистральном газопроводе без газа остаются три района Чечни: Курчалойский, Шалинский и Грозненский. Нет газа и в северной части чеченской столицы.

На Ставрополье из-за аварии на газопроводе без газа остались три села.

В Таращанском районе Киевской области на границе с Богуславским районом на газопроводе Уренгой-Помары-Ужгород, принадлежащем "Укртрансгазу", произошел взрыв.

Транспортировка природного газа из России в Европу по магистральному газопроводу была приостановлена. В МЧС Украины "Интерфаксу" сообщили, что газ в Европу подается по обводной ветке. Это подтвердили в компании "Нафтогаз Украины" и "Газпроме", а позднее и в ЕС.

Авария, по уточненным данным, произошла около 15:15 по киевскому времени (16:15 мск) около компрессорной станции "Ставище" вблизи села Лука. Взрывной волной 30-метровый кусок трубы диаметром 1420 мм отбросило на 150 м. Газ подавался под давлением 74 атмосферы. Пожар на месте взрыва ликвидирован. На площади 1,5 гектар выгорели зеленые насаждения, включая 100 деревьев, сообщили в МЧС Украины.

Остались без газоснабжения 22 населенных пунктах в Таращанском районе Киевской области, включая и сам райцентр, 4 населенных пункта в Богуславском районе и 6 в Черкасской области.

Жертв и пострадавших нет. На месте происшествия работает руководство главного управления МЧС в Киевской области, а также сотрудники Черкассытрансгаза, милиции, районной прокуратуры. Ведется следствие, уголовное дело пока не заводилось.

Министр транспорта и связи Украины Николай Рудьковский не исключил, что авария могла стать следствием диверсии. "Ситуация, которую мы имели на железной дороге под Киевом с 168-м поездом, и эта сегодняшняя авария - не исключено, могут быть звеном запланированных акций по дестабилизации ситуации в стране", - заявил министр в эфире украинского "5-го канала" в понедельник вечером.

В компании "Укртрансгаз", которая обслуживает этот газопровод, утверждали, что разрыва трубы нет. О возможных сроках ликвидации последствий взрыва и возобновлении транспортировки газа по трубопроводу в компании не сообщают.

"Газпровод, на котором произошла авария, сейчас перекрыт и пустили газ по другим веткам", - сказали в "Укртрансгазе", добавив при этом, что опасности для окружающих в настоящее время нет. В пресс-службе подчеркнули, что пострадавший участок проходит в болотистой местности, а "болотистая среда негативно влияет на газопровод".

Взрыв не повлияет на транзит российского природного газа по территории Украины в страны Европы, сообщили в пресс-центре НАК "Нафтогаз Украины". "Обязательства Украины по транзиту природного газа европейским потребителям полностью выполняются путем увеличения подачи газа по другим газопроводам, а также за счет отбора газа из подземных хранилищ", -заявил руководитель управления по связям с общественностью "Нафтогаза Украины" Алексей Федоров.

В "Газпроме" заверили, что компания полностью обеспечивает выполнение своих обязательств по поставкам газа европейским потребителям в направлении Украины. Никаких ограничений поставок газа европейским потребителям не произошло, сообщили ПРАЙМ-ТАСС в пресс-службе компании.

Газопровод Уренгой-Помары-Ужгород построен в 1983 году. Длина газопровода - 4451 км. Проектная мощность - 32 млрд кубов в год. Протяженность магистрального газопровода Уренгой-Помары-Ужгород по территории Украины составляет 1160 км, его мощность - 27,9 млрд кубометров газа в год. На трассе газопровода находятся девять компрессорных станций.

24 октября 2007 года в Ставропольском крае восстановлено газоснабжение после аварии в селе Бурлацком Благодарненского района.

Как сообщили ИА «Росбалт-Юг» в пресс-службе Южного регионального центра МЧС РФ, «накануне в 11.20 при вспашке полей произошло повреждение на 75-ом км распределительного щита газопровода местного значения «Каменная Балка - Мирное - Журавское» диаметром 514 мм».

В пресс-службе сообщили, что взрыва и возгорания не произошло, пострадавших нет. Ремонтно-оперативная бригада «Ставрополькрайгаз» 15.00 восстановила газоснабжение населенного пункта, в котором проживают 3,5 тыс. человек, более 1 тыс. из которых - дети.


3. Аварии на водопроводе.


По факту аварии на магистральном водопроводе в Петровском районе Ставропольского края возбуждено уголовное дело по ч. 1 ст. 293 УК РФ (халатность). Как сообщили корреспонденту ИА REGNUM в пресс-службе краевой прокуратуры, расследованием дела занимается прокуратура Петровского района. Проверка, проведенной прокуратурой, установила, что магистральный водопровод длительное время находился в аварийном состоянии, Ремонт и реконструкция магистральных сетей водопровода подответственны Светлоградскому филиалу "Ставрополькрайводоканала". Однако должностные лица не приняли мер к устранению дефектов и нарушений в работе водопровода и не предотвратили замерзания его отдельных участков.

Порыв на магистральном водопроводе и замерзание его участков стали возможными ввиду ненадлежащего исполнения должностными лицами Светлоградского филиала государственного унитарного предприятия Ставропольского края "Ставрополькрайводоканал" своих служебных обязанностей из-за недобросовестного отношения к службе.

23 января 2006 года в 21 час 25 минут в районе села Мартыновка Петровского района Ставропольского края произошел порыв магистрального водопровода, находящегося на балансе Светлоградского филиала государственного унитарного предприятия "Ставрополькрайводоканал". Вследствие аварии в ряде микрорайонов города Светлограда и близлежащих сел с общим количеством жителей свыше 41 тысячи человек была прекращена подача воды, В полном объеме подача воды возобновлена в 16 часов 31 января 2006 года. Сумма ущерба государственного унитарного предприятия "Ставрополькрайводоканал" составила 1 026 тысяч рублей.

Центр Асино в течение 5 дней остается без воды. Причина отключения воды - порыв водопровода на ул. Гончарова. Восстановлением поврежденного участка водопровода занимаются бригады ОАО "Асиновские коммунальные системы". Как сообщили "Авторадио-Томск" в диспетчерской "Асиновских коммунальных систем", на отопление жилых домов и образовательных учреждений эта авария никак не повлияла и в ближайшее время водоснабжение будет восстановлено.

Из-за аварии на водопроводе парализовано движение в районе Земляного Вала в Москве

В столице в районе Земляного Вала из-за аварии на водопроводе затоплена автотрасса, передает РИА «Новости» со ссылкой на столичное управление ГИБДД. Движение автомобилей в связи с затоплением трех полос дороги парализовано.

Авария на водопроводе холодного водоснабжения воды диаметром 100 миллиметров произошла около 17.00. В настоящее время поврежденный участок перекрыт, на месте происшествия работают восстановительные бригады.

Двадцать гаражей затопило сегодня в результате аварии на водопроводе возле четырнадцатой школы в Октябрьском районе Иркутска. Вода била фонтаном из колодца, протекала через школьный стадион и гаражный кооператив, после чего уходила в канализацию. В этом районе проходит много водопроводных веток, и специалистам было сложно определить место аварии. Фонтан бил с двух часов дня и только в пять его удалось ликвидировать. Без воды остались школа и несколько жилых домов.

Что еще почитать