Снижение потерь электроэнергии в электрических сетях. Фактические потери: общий показатель

В прошлом номере журнала мы опубликовали материал Юрия Железко, посвященный нормированию технологических потерь электроэнергии в сетях низкого и среднего напряжения. Автор изложил свою методику определения норматива. Сегодня мы представляем иной взгляд на ту же тему Валерия Эдуардовича Воротницкого.

Анализ зарубежного опыта показывает , что рост потерь электроэнергии в сетях – это объективный процесс для стран с кризисной экономикой и реформируемой энергетикой, признак имеющихся разрывов между платежеспособностью потребителей и тарифами на электроэнергию, показатель недостаточности инвестиций в сетевую инфраструктуру и систему учета электроэнергии, отсутствия полномасштабных автоматизированных информационных систем по сбору и передаче данных о полезном отпуске электроэнергии, структуре потоков электроэнергии по ступеням напряжения, балансам электроэнергии в электрических сетях.
В странах, где перечисленные факторы имеют место, потери электроэнергии в электрических сетях, как правило, высоки и имеют тенденцию к росту. Динамика потерь в отечественных электрических сетях за последние 10-12 лет показывает, что Россия в этом смысле не является исключением.
Стоимость потерь – это часть затрат на передачу и распределение электроэнергии по электрическим сетям. Чем больше потери, тем выше эти затраты и соответственно тарифы на электроэнергию для конечных потребителей. Известно, что часть потерь является технологическим расходом электроэнергии, необходимым для преодоления сопротивления сети и доставки потребителям выработанной на электростанциях электроэнергии. Этот технологически необходимый расход электроэнергии должен оплачиваться потребителем. Он-то, по существу, и является нормативом потерь.
Потери, обусловленные неоптимальными режимами работы электрической сети, погрешностями системы учета электроэнергии, недостатками в энергосбытовой деятельности, являются прямыми убытками энергоснабжающих организаций и, безусловно, должны снижаться. Вот почему Федеральная энергетическая комиссия России как главный государственный орган исполнительной власти, призванный сдерживать рост тарифов на электроэнергию, устанавливает нормативы потерь электроэнергии в электрических сетях и методы их расчета. Вокруг этих методов в настоящее время ведутся достаточно острые дискуссии как научного, так и чисто практического плана. Имеются, в частности, предложения по методике учета некоторых дополнительных составляющих норматива потерь .
Цель настоящей статьи – изложить один из подходов к нормированию потерь, который был озвучен автором в ноябре 2002 г. на Международном научно-техническом семинаре «Нормирование, анализ и снижение потерь электроэнергии в электрических сетях – 2002» и получил поддержку как на самом семинаре, так и в некоторых публикациях специалистов по потерям электроэнергии, в частности в .

Структура норматива потерь
В основе норматива потерь лежат технические потери электроэнергии в электрических сетях, обусловленные физическими процессами передачи и распределения электроэнергии, определяемые расчетным путем и включающие «переменные» и условно-постоянные потери, а также нормативный расход электроэнергии на собственные нужды подстанций .
В соответствии со статьями 247, 252, 253 и 254 главы 25 Налогового кодекса РФ, норматив потерь электроэнергии в электрических сетях можно определить как экономически обоснованный и документально подтвержденный технологический расход электроэнергии при ее транспортировке при условии, что этот расход произведен для осуществления деятельности, направленной на получение дохода.
Согласно п. 58 и таблице п.1.3 Постановления ФЭК РФ N 37-Э/1 от 14.05.2003 , в норматив потерь должны включаться:

  • потери холостого хода в трансформаторах, батареях статических конденсаторов и статических компенсаторов, шунтирующих реакторах, синхронных компенсаторах (СК) и генераторах, работающих в режиме СК;
  • потери на корону в линиях;
  • расход электроэнергии на собственные нужды подстанций;
  • прочие обоснованные и документально подтвержденные условно-постоянные потери;
  • нагрузочные переменные потери в электрических сетях;
  • потери в связи с погрешностями приборов учета электроэнергии.

Какие потери имеем?
К настоящему времени разработано достаточно большое количество методов расчета технических потерь электроэнергии. Эти методы – результат многолетней работы большой армии специалистов, которые в различные годы посвятили себя уточнению расчетов потерь в сетях. Защищено большое количество кандидатских и докторских диссертаций по этой тематике, а вопрос и поныне остается актуальным и до конца не изученным. Это связано с тем, что отсутствует полная и достоверная информация о нагрузках электрических сетей всех ступеней напряжения. Причем, чем ниже номинальное напряжение сети, тем менее полная и достоверная информация о нагрузках имеется в наличии.
Различия методов, предложенных отдельными специалистами, в основном заключаются в попытках или восполнить недостающую информацию, или повысить ее точность за счет обобщения, использования статистических данных за аналогичные прошедшие периоды и т.п. Начало унификации методов расчета технических потерь и установления нормативов потерь совпадает примерно с началом активного внедрения вычислительной техники в практику расчетов режимов электрических сетей в середине 60-х годов XX века.
Первые нормативы потерь были установлены во Временных нормативах по эксплуатации городских и сельских электрических сетей, утвержденных приказом Министерства коммунального хозяйства РСФСР N 334 от 30.11.1964.
За последние тридцать лет был выпущен ряд отраслевых инструкций по методам расчета потерь электроэнергии в электрических сетях всех ступеней напряжения. Так, в 1976 г. была введена в действие Временная инструкция по расчету и анализу потерь электроэнергии в электрических сетях энергосистем, разработанная «Уралтехэнерго», в 1987 г. – Инструкция по расчету и анализу технологического расхода электрической энергии на передачу по электрическим сетям энергосистем и энергообъединений , разработанная ВНИИЭ и «Уралтехэнерго», и в 2001 г. – Методические рекомендации по определению потерь электрической энергии в городских электрических сетях напряжением 10(6) – 0,4 кВ, разработанные «Роскоммунэнерго» и ЗАО «АСУ Мособлэлектро».
Перечисленные нормативные документы сыграли свою положительную роль. В соответствии с этими документами было разработано достаточно большое количество вычислительных программ для ЭВМ. В основе программ лежат практически одни и те же методы расчетов потерь. Отличия программ состоят в основном в их сервисных возможностях, в количестве учитываемых составляющих потерь, объеме и количестве решаемых задач.
Большинство энергосистем и коммунальных электрических сетей, используя ту или иную программу расчета, могут в настоящее время сравнительно точно рассчитать переменные и условно-постоянные потери электроэнергии в электрических сетях 6 – 750 кВ. Значительную трудность представляет пока расчет потерь в сетях 0,38 кВ в связи с большими объемами этих сетей и малым количеством информации или ее отсутствием о нагрузках этих сетей и об их параметрах (схемах, марках проводов и т.п.). Результаты расчетов по этим программам почти повсеместно показывают, что суммарные технические потери в сетях 0,38-750 кВ не превышают 10-12% от отпуска электроэнергии в сеть. При этом, чем выше ступень напряжения сети, тем, очевидно, ниже относительные потери электроэнергии в ней. Уровень 10-12% считается максимально возможным для потерь электроэнергии в электрических сетях большинства стран с развитой экономикой . Оптимальные же потери находятся в диапазоне 4-6%. Эти цифры подтверждаются докризисным уровнем потерь в электрических сетях энергосистем бывшего СССР в середине – конце 80-х годов прошлого века.
Что же делать в таком случае энергосистемам, у которых фактические потери достигли значений 20-25%? Как правило, в таких энергосистемах значительную долю суммарного полезного отпуска (до 40%) составляют бытовые и мелкомоторные потребители. Здесь наметились два основных пути. Первый путь тяжелый, но правильный – разработка, согласование с региональными энергетическими комиссиями, утверждение и практическая реализация программ снижения технических и коммерческих потерь электроэнергии. Обеспечение за счет этих программ сначала замедления роста, а затем снижения потерь в сетях.
Второй, более легкий путь – поиск объективных причин роста потерь, обоснование и лоббирование в РЭК повышенного до уровня фактических норматива потерь. Сказанное иллюстрируется таблицей по нормативам потерь в сетях некоторых энергосистем по данным ОАО «Инженерный центр ЕЭС филиала «Фирма ОРГРЭС».
Эти два пути полностью соответствуют известному выражению: «Тот, кто хочет работать, ищет способы, как работу выполнить, тот, кто не хочет или не может, – ищет причины, почему работу сделать нельзя».
Очевидно, что первый путь выгоден абсолютно всем: энергоснабжающим организациям, потребителям, местным администрациям. В этом заинтересованы также РЭК и Госэнергонадзор, так как, снижая потери в сетях, энергоснабжающие организации повышают рентабельность своей работы, а потребители за счет уменьшения стоимости услуг на передачу и распределение электроэнергии получают соответствующее снижение тарифов на электроэнергию. Вместе с тем понятно, что практическая реализация этого пути требует значительных организационных, технических, физических и финансовых усилий. Наши расчеты показывают, что для снижения потерь в сетях на 1 млн. кВт.ч в год нужно затратить около 1 млн. руб. на внедрение соответствующих мероприятий. Второй путь – тупиковый, так как, чем больше потерь будет включено в тариф, тем выше будет тариф на электроэнергию для конечного потребителя, тем больше будет стимулов у этого потребителя к хищению электроэнергии и тем больше вероятность роста потерь и следующего увеличения норматива и т.д.
Задача же, как известно, перед всеми стоит прямо противоположная – остановить рост потерь и добиться их снижения. При этом, как показывают энергетические обследования энергосистем, резервы снижения потерь есть как в сетях с уровнем потерь 20-25%, так и в сетях с потерями 6-8%. Для того, чтобы это сделать практически, необходимо:

  1. провести достаточно глубокий расчет и анализ потерь, их структуры и динамики;
  2. определить обоснованные уровни нормативных потерь;
  3. разработать, согласовать, утвердить, обеспечить финансовыми, материальными, людскими ресурсами и внедрить мероприятия по снижению потерь.

Обоснованный норматив потерь
Превышение фактических потерь в сетях над техническими в два раза и более вынуждают, как уже было сказано выше, и разработчиков методов нормирования потерь, и сами энергосистемы искать дополнительные составляющие норматива потерь.
По общему мнению, такой составляющей, которая, кроме технических потерь, может быть учтена в нормативе, является составляющая, обусловленная погрешностями приборов учета электроэнергии. Это нашло отражение в Постановлении ФЭК РФ от 14.05.03 N37-Э/1 . Однако там не сказано, о каких погрешностях идет речь. А таких как минимум три:

  1. допускаемая погрешность измерительного комплекса (ИК), в общем случае состоящего из трансформатора тока, трансформатора напряжения и счетчика при нормальных условиях их эксплуатации;
  2. систематическая погрешность ИК (как отрицательная, так и положительная), обусловленная ненормированными рабочими условиями применения ИК;
  3. систематическая отрицательная погрешность старых индукционных счетчиков, отработавших свой ресурс, и счетчиков с просроченными сроками поверки.
С учетом приведенного выше определения норматива потерь, вытекающего из требований НК РФ, и основываясь на Постановлении ФЭК РФ N 37-Э/1 от 14.05.2003, под нормативом потерь электроэнергии в электрических сетях мы понимаем алгебраическую сумму технических потерь электроэнергии (DWт) , норматив расхода электроэнергии на собственные нужды подстанций и модуль значения допустимого небаланса электроэнергии в электрической сети (НБД), определяемого в соответствии с по формуле:
D W норм = D W т + |НБ Д |,
Восьмилетний опыт использования в эксплуатации электрических станций и сетей подтвердил стимулирующую направленность основных методических положений Типовой инструкции по повышению достоверности систем учета электроэнергии. При этом допустимый небаланс электроэнергии в и в вышеприведенной формуле рассматривается в практике работы электрических станций и сетей не как нулевое математическое ожидание, а как значение, которое не должен превышать фактический небаланс. Считаем, что электрическая сеть в данном случае не является исключением. Легитимный способ определения систематических погрешностей ИК – инструментальные обследования в соответствии с аттестованными в установленном порядке методиками выполнения измерений. Попытки усреднить погрешности ИК для страны в целом , да еще без учета весьма существенных факторов, могут привести к явным ошибкам. В частности, принятие «типового значения cosj =0,85» может приводить к завышенным или заниженным значениям отрицательных систематических погрешностей. Известно, что в ночные часы в электрических сетях 6-10 кВ cosj часто снижается до 0,4-0,6 из-за их низкой загрузки и преобладающего характера реактивного тока холостого хода распределительных трансформаторов. При низких cosj отрицательная систематическая погрешность трансформаторов, связанная с их недогрузкой по току, может быть скомпенсирована положительной угловой погрешностью. Таким образом, «новая методология» расчета допустимого недоучета электроэнергии как минимум требует уточнения, а по существу, может нанести вред работе по снижению потерь в сетях, так как искусственно увеличивает норматив потерь.
По нашему мнению, недоучет электроэнергии, связанный с ненормированными рабочими условиями применения ИК, с физическим износом индукционных счетчиков, не может быть допустимым и рассматриваться как норматив. В этом случае все потребители за этот «норматив» будут платить и ситуация, как было отмечено выше, будет лишь усугубляться, так как владельцы систем учета не будут заинтересованы в ее совершенствовании. Но поскольку существующая в России система учета электроэнергии не соответствует современным требованиям и недоучет электроэнергии имеет место, задачу по его уменьшению следует решать по-другому.
Уточненный с учетом различных влияющих факторов недоучет электроэнергии в денежном выражении должен быть основой для включения в инвестиционную составляющую тарифа на электроэнергию затрат на совершенствование учета электроэнергии. В этом случае в РЭК одновременно с оценкой ущерба энергоснабжающей организации от несовершенства системы учета электроэнергии (отрицательных систематических погрешностей) должна представляться развернутая обоснованная программа снижения потерь в сетях за счет уменьшения недоучета электроэнергии.
Потребители при этом не просто платят за завышенный «технологически обоснованный расход электроэнергии», а как бы кредитуют работу энергоснабжающих организаций по доведению системы учета электроэнергии до нормативных требований.

Мероприятия по выполнению норматива
Для энергосистем, в сетях которых фактические потери электроэнергии составляют 20-25%, дискуссия о том, какие погрешности приборов учета электроэнергии будут включены в норматив, допустимые или систематические, носит схоластический характер. От того, будут ли к расчетным техническим потерям 8-12% прибавлены 0,5 или 2,5%, проблема не станет менее острой. Всё равно разница между нормативом и фактом потерь будет от 10 до 12%, что в денежном выражении может составить десятки и сотни миллионов рублей прямых убытков в месяц.
Для снижения этих убытков и доведения фактических потерь до нормативного уровня необходима согласованная с РЭК долговременная программа снижения потерь, так как за один-два года снизить фактические потери в 2 раза практически невозможно. 90-95% этого снижения необходимо будет обеспечить за счет уменьшения коммерческой составляющей потерь. Структура коммерческих потерь и мероприятия по их снижению рассмотрены в .
Стратегический путь снижения коммерческих потерь – внедрение АСКУЭ не только на энергообъектах и у энергоемких потребителей, но и у бытовых потребителей, совершенствование энергосбытовой деятельности и системы учета электроэнергии в целом. Очень важен в деле снижения потерь учет «человеческого фактора» . Опыт передовых энергосистем показывает, что инвестиции в обучение персонала, его оснащение соответствующими приборами обнаружения хищений электроэнергии, транспортными средствами, вычислительной техникой и современными средствами связи окупаются за счет снижения потерь, как правило, быстрее, чем инвестиции в счетчики или установку компенсирующих устройств в сетях.
Очень большую опасность для эффективной работы по снижению потерь представляет разделение электросетевого и энергосбытового бизнесов в условиях реструктуризации энергетики. Планируемое и уже кое-где ведущееся выделение из АО-энерго независимых сбытовых компаний (НСК) может нарушить многолетние связи энергосбытов и предприятий электрических сетей, если одновременно не обеспечить взаимную ответственность за потери между будущими распределительными сетевыми компаниями (РСК) и НСК. Возложение всей ответственности за технические и коммерческие потери на РСК без выделения на это соответствующих материальных, финансовых и людских ресурсов может резко увеличить убытки РСК и привести к еще большему росту потерь в сетях. Но это тема уже другой статьи.

Литература

  1. Бохмат И.С., Воротницкий В.Э., Татаринов Е.П. Снижение коммерческих потерь электроэнергии в электроэнергетических системах // Электрические станции. –1998. – N 9. – С.53-59.
  2. Постановление ФЭК РФ от 17.03.2000 N 14/10 «Об утверждении нормативов технологического расхода электрической энергии (мощности) на ее передачу, принимаемых для целей расчета и регулирования тарифов на электрическую энергию (размера платы за услуги по ее передаче)» // Экономика и финансы электроэнергетики. – 2000. – N 8. – С.132-143.
  3. Методические указания по расчету регулируемых тарифов и цен на электрическую (тепловую) энергию на розничном (потребительском) рынке. Утв. Постановлением ФЭК РФ от 31.07.02 N 49-Э/8.
  4. Постановление ФЭК РФ от 14.05.03 N 37-Э/1 «О внесении изменений и дополнений в Методические указания по расчету регулируемых тарифов и цен на электрическую (тепловую) энергию на розничном (потребительском) рынке, утвержденные постановлением ФЭК РФ от 31.07.02 N 49-Э/8».
  5. Железко Ю. Нормирование технологических потерь электроэнергии в сетях. Новая методология расчета // Новости электротехники. – 2003. – N 5 (23). – С. 23-27.
  6. Воротницкий В.Э. Измерение, нормирование и снижение потерь электроэнергии в электрических сетях. Проблемы и пути решения // Сборник информационных материалов международного научно-технического семинара «Нормирование, анализ и снижение потерь электроэнергии в электрических сетях – 2002». – М.: Изд-во НЦ ЭНАС, 2002.
  7. Броерская Н.А., Штейнбух Г.Л. О нормировании потерь электроэнергии в электрических сетях // Электрические станции. – 2003. – N 4.
  8. И 34-70-030-87. Инструкция по расчету и анализу технологического расхода электрической энергии на передачу по электрическим сетям энергосистем и энергообъединений. – М.: СПО «Союзтехэнерго», 1987.
  9. Инструкция по нормированию расхода электроэнергии на собственные нужды подстанций 35-500 кВ. – М.: СПО Союзтехэнерго, 1981.
  10. РД 34.09.101-94. Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении. – М: СПО ОРГРЭС, 1995.
  11. Воротницкий В., Апряткин В. Коммерческие потери электроэнергии в электрических сетях. Структура и мероприятия по снижению// Новости ЭлектроТехники. – 2002. – N 4 (16).

Под понятием потеря в электросетях подразумевают разницу между переданной энергией от энергоисточника и учтенной потребленной электроэнергией самого потребителя. Причин потерь электроэнергии множество: плохая изоляция проводников, очень большие нагрузки, кража неучтенного электричества. Наша статья расскажет вам о видах и причинах потерь электроэнергии, какие методы можно принять для предотвращения этого.

Дальность расстояния от энергоисточника к потребителям

Как определить потери в электросетях, а также возместить материальный ущерб, поможет законодательный акт, который регламентирует учет и оплату всех видов потерь. Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 04.02.2017) "Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг…» п. VI.

Потеря электроэнергии чаще всего происходит при передаче электроэнергии на большие расстояния, одна из причин – это напряжение, потребляемое самим потребителем, т.е. 220В или же 380В. Для того чтобы провести электроэнергию такого напряжения от электростанций напрямую, то понадобятся провода с большим диаметром сечения, такие провода очень сложно подвесить на линиях электропередач из-за их веса. Прокладка таких проводов в земле тоже будет затратной. Чтобы этого избежать, используют высоковольтные ЛЭП. Для расчетов используют следующую формулу: P=I*U, где P – мощность тока, I – сила тока,U – напряжение в цепи.

Если повысить напряжение при передаче электроэнергии, то ток снизится, и провода с большим диаметром не понадобятся. Но в тоже время, в трансформаторах образуются потери и их нужно оплачивать. При передаче энергии с таким напряжением, происходят большие потери еще из-за износа поверхностей проводников, т.к. сопротивление увеличивается. Такие же потери несут погодные условия (влажность воздуха), утечка тогда происходит на изоляторах и на корону.

Когда электроэнергия поступает в конечный пункт, потребители должны конвертировать электроэнергию в напряжение 6-10 кВ. Оттуда она распределяется по кабелям в разные точки потребления, после чего опять необходимо преобразовать напряжение в 0.4кВ. А это снова потери. В жилые помещения электроэнергия поставляется с напряжением 220В или 380В. Нужно учитывать, что трансформаторы имеют свой КПД, работают под определенной нагрузкой. Если мощность электропотребителей больше или меньше заявленной, то потери будут расти в любом случае.

Другой фактор потерь электроэнергии – это неправильно выбранный трансформатор. Каждый трансформатор имеет заявленную паспортную мощность и если потребляется больше, то он выдает или меньшее напряжение или вовсе может сломаться. Так как напряжение в таких случаях снижается, электроприборы увеличивают потребление электроэнергии.

Потери в бытовых условиях

После полученного необходимого напряжения 220В или 380В, за потери электроэнергии несет потребитель. Потери в домашних условиях происходят по следующим причинам:

  1. Превышение потребления заявленной электроэнергии
  2. Емкостный тип нагрузки
  3. Индуктивный тип нагрузки
  4. Помехи в работе приборов (выключатели, вилки, розетки и т.д
  5. Использование старых электрооборудований и предметов освещения.

Как же снизить потери электроэнергии в домах и квартирах? Первое, проверьте, что сечение кабелей и проводов достаточное для передаваемой нагрузки. Обычно для линий освещения используют кабель , для розеточных линий - кабель сечением 2,5 кв.мм., а для особо "прожорливых" электроприборов - 4 кв.мм. Если ничего сделать нельзя, то энергия будет теряться на нагрев проводов, значит, может повредиться их изоляция, увеличивается шанс возгорания.

Второе, плохой контакт. Рубильники, пускатели и выключатели помогают избежать потери электроэнергии, если сделаны из материалов стойких к окислениям и коррозии металла. Малейшие следы окиси увеличивают сопротивление. Для хорошего контакта, один полюс должен плотно прилегать к другому.

Третье – реактивная нагрузка. Реактивную нагрузку несут все электроприборы, исключения лампы накаливания, старые электрические плиты. Возникающая магнитная индукция приводит к сопротивляемости прохождению тока по индукции. В тоже время эта электромагнитная индукция помогает со временем пройти току и добавляет в сеть часть энергии, которая образует вихревые токи. Такие токи дают неверные данные электросчетчиков, а также снижают качество поставленной энергии. При емкостной нагрузке, вихревые потоки тоже искажают данные, с которыми можно бороться с помощью специальных компенсаторов реактивной энергии.

Четвертый пункт – использование ламп накаливания для освещения. Большая часть энергии идет на нагревание нитей накала, окружающей среды, и только 3.5% тратится на освещение. Современные светодиодные лампы получили широкое использование, их КПД гораздо выше, у светодиодных достигает 20%. Срок службы современных ламп в разы отличается от ламп накаливания, которые могут прослужить всего тысячу часов.

Все вышеперечисленные способы уменьшения нагрузки на электропроводку в жилых помещениях, способствуют уменьшению потерь в электросети. Все методы детально раскрыты, чтобы помочь бытовым потребителям, которые не знают о возможных потерях. В тоже время на электростанциях, подстанциях работают профессионалы, которые также изучают и решают проблемы с потерями электроэнергии.

Глава 2 Проблема снижения коммерческих потерь электроэнергии в электрических сетях

Потери электроэнергии в электрических сетях принято условно разделять на технические и коммерческие.

К техническим относятся потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сети. Технические потери не могут быть измерены. Их значения получают расчетным путем на основании известных законов электротехники. Величина технических потерь в системах электроснабжения включается в тарифную стоимость электроэнергии. Без технических потерь электроэнергию транспортировать нельзя – их можно только снизить с помощью соответствующих технических и режимных мероприятий.

В энергосистемах существуют удельные нормативы технических потерь электрической энергии в электрических сетях, определяемые на основании постановления Федеральной энергетической комиссии (ФЭК) РФ от 17.03.2000 г. № 14/10 «Об утверждении нормативов технологического расхода электрической энергии (мощности) на ее передачу (потерь), принимаемых для расчета и регулирования тарифов на электрическую энергию (размера платы за услуги по ее передаче)».

Укрупненные нормативы таких потерь разработаны по уровням напряжения и разделены на условно–постоянные и переменные.

Условно–постоянные потери электроэнергии определены в зависимости от паспортных данных оборудования электрических сетей и продолжительности работы в течение расчетного периода. Условно–постоянные потери в натуральном выражении учитываются при расчете тарифных ставок платы за услуги по передаче электрической энергии для потребителей, подключенных к сетям соответствующего уровня (диапазона) напряжения.

Переменные потери электрической энергии определяются в абсолютных единицах и в процентах к отпуску электрической энергии в сеть соответствующей ступени напряжения и учитываются при расчете размера платы за услуги по передаче электрической энергии для потребителей, подключенных к сетям соответствующего уровня (диапазона) напряжения.

Например, удельный норматив потерь электрической энергии в организациях электроэнергетики ОАО «Самараэнерго» составляет 6,0 тыс. кВт–ч в год/км электрических сетей с уровнем напряжения 0,4 кВ, на среднем напряжении – 6,43 и на высоком напряжении 4,05 тыс. кВт–ч в год/км электрических сетей.

К коммерческим относятся потери электроэнергии, обусловленные:

хищениями электроэнергии;

несоответствием показаний счетчиков оплате электроэнергии потребителями и другими причинами в сфере организации контроля потребления электроэнергии (например, недостоверный учет из–за неисправности приборов учета, неправильного подключения измерительных ТН и ТТ, несанкционированного подключения токоприемников или их подключения помимо счетчиков и т. п.);

ошибками в начислениях за отпущенную электроэнергию из–за неточных или недостоверных сведений о потребителе, из–за расчета по приборам учета не на границе балансовой принадлежности и т. п.;

неоплатой электроэнергии потребителями, находящимися на «самооплате».

Наличие недопустимо большого числа неплательщиков уже стало для энергосбытовых организаций обычным явлением.

Рост коммерческих потерь приводит к повышению тарифов на электроэнергию.

Снижение коммерческих потерь электроэнергии в электрических сетях представляет собой один из существенных потенциалов энергосбережения и увеличения пропускной способности электросетей.

Одной из наиболее весомых составляющих коммерческих потерь являются хищения электроэнергии, приобретающие в последние годы угрожающие масштабы.

Наибольшее число хищений и наибольшие объемы похищаемой электроэнергии имеют место в бытовом секторе. Причинами этого являются, с одной стороны, постоянный рост тарифов на электроэнергию при одновременном возрастании объема ее потребления и снижении платежеспособности населения, а с другой стороны – относительная доступность и простота осуществления того или иного способа хищения электроэнергии, несовершенство конструкций приборов учета, первичных и вторичных схем их коммутации, неудовлетворительное техническое состояние измерительных ТТ и ТН, отсутствие конкретной правовой базы для привлечения к ответственности расхитителей электроэнергии, непомерно высокая (во многих случаях недоступная для малоэнергоемких организаций) плата за присоединение к электросетям и т. д.

Сдержать рост цен на электроэнергию в ближайшем будущем по ряду объективных причин не представляется возможным. В силу особенностей структуры отечественной электроэнергетики потребители не могут влиять на стоимость электроэнергии ни на оптовом, ни на розничном рынках. При этом в связи со спадом объемов промышленного производства возросла (в процентном отношении) доля потребления электрической энергии в бытовом и мелкомоторном секторах.

Существенный рост электропотребления в бытовом секторе вызывают значительные перегрузки в питающих районных магистралях и трансформаторных подстанциях, что, в свою очередь, способствует возникновению (угрозе возникновения) аварийных ситуаций в электроустановках и чревато нежелательными последствиями (пожарами, электротравмами, недовыпуском и браком продукции и т. д.).

При хищениях электроэнергии часть мощности оказывается неучтенной, что приводит к превышению максимально допустимой нагрузки и, как следствие, к сетевым перегрузкам и отключению потребителей автоматическими защитными устройствами.

Многие предприятия и организации, особенно в сфере малого и среднего бизнеса, также не справляются с ростом тарифов и переходят в разряд неплательщиков, а некоторые из них встают на путь хищения электроэнергии.

Например, стоимость похищенной одной из хлебопекарен на Дальнем Востоке электроэнергии составляет около 1,4 млн руб. при месячном электропотреблении всего региона (в денежном выражении) 7,5 млн руб., т. е. примерно пятую часть суммарного потребления местной энергокомпании. В другом сибирском городе были обнаружены сразу три небольших предприятия–неплательщика, принесшие местной энергосистеме убытки на сумму более 1,5 млн руб. В Нижнем Новгороде одну из платных автостоянок за самовольное подключение к электросети отключали четыре раза, а общая сумма убытков от хищения электроэнергии в Нижнем Новгороде, по сообщению директора Энергосбыта ОАО «Нижновэнерго», исчисляется миллионами рублей (по информации Регионального информационного агентства «Кремль» от 07.04.2005 г.).

Таким образом, имеют место массовые неплатежи энергоснабжающим организациям как в коммунальном, так и в промышленном секторах.

При этом руководство энергоснабжающих организаций считает (по–своему справедливо), что тарифы на электроэнергию, например в бытовом секторе, являются заниженными (льготными). В связи с этим отпадают всякие сомнения в дальнейшем росте тарифов на электроэнергию, что вызовет соответствующее увеличение объемов ее хищения.

Такая ситуация не согласуется с основными целями Закона РФ «О государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации», принятого Государственной Думой РФ 10.03.1995 г., в котором указано, что одной из основных целей государственного регулирования тарифов является «защита экономических интересов потребителей от монопольного повышения тарифов».

В настоящее время возник еще один существенный фактор, побуждающий потребителей электрической энергии самовольно подключаться к электрическим сетям без получения разрешения на присоединение мощности и, следовательно, без оформления договора технологического присоединения к электрическим сетям и договора энергоснабжения: значительное увеличение размера платы за присоединение мощности.

В соответствии с Федеральным законом «Об электроэнергетике» (ст. 26) за технологическое присоединение к электрическим сетям плата взимается однократно. Размер указанной платы устанавливается федеральным органом исполнительной власти. При этом включение в состав платы услуги по передаче электрической энергии не допускается.

Согласно Правилам технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям, утвержденным постановлением Правительства РФ от 27.12.2004 г. № 861, для получения разрешения на присоединение мощности потребителям электроэнергии необходимо заключить с энергоснабжающими организациями договор технологического присоединения к электросетям и в соответствии с этим договором произвести однократную плату за присоединение мощности к электрическим сетям.

Размер платы за присоединение мощности к электросетям энергоснабжающих организаций регламентирован приказом Федеральной службы по тарифам (ФСТ) РФ от 15.02.2005 г. № 22–э/5 «Об утверждении Методических указаний по определению размера платы за технологическое присоединение к электрическим сетям». В последнее время он резко повысился.

Наиболее высокая плата за присоединение к электросетям (из–за сравнительно более высокой стоимости строительства энергоблоков, кабельных коммуникаций и дефицита свободной земли, а также из–за того, что в Москве к 2006 г. все резервы генерирующих источников были уже исчерпаны) имеет место в Москве, где 1 кВт присоединяемой мощности оплачивается в размере 53 216 руб. (с учетом НДС).

Для сравнения: в ОАО «Мосэнерго» размер платы за присоединение мощности на основании постановления Правительства Москвы от 12.05.1992 г. № 261 длительное время составлял 143 руб. 96 коп. (включая НДС) за 1 кВт присоединяемой мощности.

Очевидно, что далеко не каждый потребитель электроэнергии в состоянии платить такую огромную сумму, и остается только гадать, какое их количество вынуждено будет подключаться к электрическим сетям самовольно без разрешения энергоснабжающей организации на присоединение мощности и без заключения с ней договора технологического присоединения и договора энергоснабжения.

В условиях непрекращающегося дефицита генерирующих мощностей и нарастания в связи с этим проблем в системе энергоснабжающих организаций можно ожидать дальнейшего роста платы за присоединение к электрическим сетям. Это тем более вероятно, что плата за технологическое присоединение устанавливается государственными регулирующими органами и, как все тарифы, будет ежегодно пересматриваться.

Плата за присоединение мощности используется энергоснабжающей организацией фактически как последний источник финансирования.

У энергоснабжающих организаций существует еще одна существенная причина, ограничивающая возможность подключения потребителей к электросетям: наличие технической возможности технологического присоединения.

Критерии наличия технической возможности установлены Правилами технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц, утвержденными постановлением Правительства РФ № 861 от 27.12.2004 г.

Действуют два критерия наличия технической возможности технологического присоединения:

нахождение энергопринимающего устройства, в отношении которого подана заявка на технологическое присоединение, в пределах территориальных границ обслуживания соответствующей сетевой организации;

отсутствие ограничений на присоединенную мощность в сетевом узле, к которому надлежит произвести технологическое присоединение.

В целях проверки обоснованности установления электросетевой компанией факта отсутствия технической возможности потребитель вправе обратиться в Ростехнадзор для получения заключения о наличии (отсутствии) технической возможности технологического присоединения.

Непрерывный рост тарифов на электроэнергию приводит к снижению результативности мероприятий по энергосбережению, увеличению числа неплательщиков и к массовым хищениям электроэнергии. В то время как РАО «ЕЭС России» приводит доводы и обоснования целесообразности введения как можно более высоких тарифов на электроэнергию, оно само по этой причине несет немалые убытки из–за коммерческих потерь в электрических сетях, в т. ч. по причине хищения электроэнергии.

Существует и обратная сторона проблемы: рост масштабов хищения электроэнергии, в свою очередь, влияет на повышение тарифов.

При этом способы хищения электроэнергии постоянно совершенствуются. По мере их выявления появляются новые, более изощренные и скрытые способы, часто не поддающиеся обнаружению и предотвращению.

Проблема снижения коммерческих потерь стала настолько важной, что оказалась под контролем Правительства РФ, которое в указанном выше постановлении от 27.12.2004 г. № 861 поручило Министерству промышленности и энергетики РФ в трехмесячный срок разработать и утвердить методику определения нормативных и фактических потерь электрической энергии в электрических сетях. Нормативы потерь должны устанавливаться уполномоченным федеральным органом исполнительной власти в соответствии с указанной методикой.

ОАО «Роскоммунэнерго» и ЗАО «АСУ Мособлэлектро» при участии Российской ассоциации «Коммунальная энергетика» были разработаны Методические рекомендации по определению потерь электрической энергии в городских электрических сетях напряжением 10(6)-0,4 кВ, согласованные Госэнергонадзором 09.11.2000 г.

Согласно этим Методическим рекомендациям расчеты потерь и оптимизация режимов электрических сетей должны осуществляться с применением соответствующих программных комплексов. Специальный раздел посвящен мероприятиям по снижению потерь электроэнергии.

В Концепции стратегии РАО «ЕЭС России» на 2003–2008 гг. «5+5» говорится, что основными мерами по снижению коммерческих потерь являются:

своевременная ревизионная работа;

контрольные проверки конечных потребителей;

совершенствование системы коммерческого и технологического учета на базе автоматизированных систем контроля, учета и управления электропотреблением (АСКУЭ) и автоматизированных систем технологического управления электропотреблением (АСТУЭ);

автоматизация и внедрение информационных технологий.

В принципы применения средств учета заложена необходимость определения коммерческих потерь электроэнергии, а также составление и мониторинг баланса мощности и электроэнергии по отдельным узлам электрических сетей.

Проблемой снижения коммерческих потерь электроэнергии активно занимаются специалисты в данной области. Следует отметить работы д. т. н. В. Воротницкого (ОАО «ВНИИЭ»). Например, в совместном исследовании с В. Апряткиным (ОАО «Электрические сети», г. Клин) был определен ущерб от коммерческих потерь в электрических сетях. Абсолютное значение коммерческих потерь электроэнергии с 1994 по 2001 гг. увеличилось с 78,1 до 103,55 млрд кВт–ч, а относительные потери электроэнергии возросли с 10,09 до 13,1 %, причем в некоторых регионах они достигли 15–20 %, а в отдельных распределительных электросетях – 30–50 % (по данным информационно–справочного издания «Новости электротехники». 2002. № 4).

По результатам указанных исследований были определены перечисленные выше основные составляющие коммерческих потерь. При этом доля хищений электроэнергии в коммерческих потерях достаточно высока.

Масштабные хищения электроэнергии имеют место практически в каждом регионе страны. Приведем несколько примеров.

За 6 месяцев 2004 г. энергосбытовая компания «Дальэнерго» (Приморский край) выявила более 700 фактов хищения электрической энергии юридическими лицами на сумму 11 млн 736 руб.

По информации «Независимого политического Вестника», Счетная палата РФ выявила на Сахалине хищения электроэнергии на 443 млн руб.; при этом текущие потери электроэнергии составляют до 30 %.

Рязановский рыборазводный завод в Хасанском районе был отключен от электроснабжения в связи с тем, что руководство завода отказалось оплатить 883 тыс. руб. безучетно потребленной электроэнергии (предприятие самовольно подключилось помимо приборов учета электроэнергии).

По данным газеты «Волга», в г. Астрахани потери энергетиков только за 1 квартал 2005 г. составили 16 млн руб. Во время проведения федеральной компании «Честный киловатт» рейдовые бригады выявили 700 случаев хищения электроэнергии жителями области.

По данным информационно–справочного издания «Новости электротехники» (2002. № 4), убытки от хищений электроэнергии в сетях напряжением до 1000 В в системе ОАО «Ленэнерго» составляют около 400 млн кВт–ч в год.

По информации Пресс–центра ОАО «Читаэнерго», только за 6 месяцев 2004 г. в Чите зафиксировано 869 фактов хищений электроэнергии на сумму более 2,5 млн руб.;

По сообщению Пресс–службы ОАО «Красноярскэнерго», за 2004 г. ущерб энергокомпании от хищений электроэнергии составил около 4 млн руб.

По сообщению Информационного сервера «БАНКО–ФАКС», за 2004 г. из–за хищений электроэнергии в электросетях ОАО «Алтайэнерго» энергокомпания понесла убыток в 125 млн кВт–ч на сумму почти 155 млн руб.

Подробное перечисление эпизодов хищений электроэнергии не входит в задачи настоящей книги; огромное количество таких примеров можно найти в различных открытых источниках.

Благоприятные условия для хищений электроэнергии создают следующие факторы:

отсутствие должного государственного контроля коммерческого сбыта электроэнергии;

постоянный рост тарифов на электроэнергию;

доступность и простота технического исполнения способов хищения электроэнергии (установка коммутационных аппаратов перед приборами учета электроэнергии, возможность умышленного занижения расчетных потерь активной мощности при установке коммерческих счетчиков на стороне низшего напряжения абонентских трансформаторов, доступность схем первичной и вторичной коммутации приборов учета и др.);

отсутствие эффективной правовой базы для привлечения к дисциплинарной, административной и уголовной ответственности похитителей электроэнергии.

В результате для энергоснабжающих организаций в настоящее время резко обострились две проблемы: неплатежи за потребленную электроэнергию и ее хищения.

Если для решения первой проблемы сбытовые и сетевые организации принимают энергичные меры (см. прил. 1), используя соответствующие правовые нормативные документы, в т. ч. и ведомственные (например, «Положение об основах организации энергосбытовой работы с потребителями энергии», утвержденное РАО «ЕЭС России» 14.02.2000 г.), то в отношении расхитителей электроэнергии такая нормативная документация отсутствует и, соответственно, должные меры по выявлению фактов хищения и привлечению расхитителей к ответственности не принимаются.

Правомочность привлечения виновников хищений электроэнергии к административной или уголовной ответственности в установленном законодательством порядке определяется тем, что электроэнергия стала представлять собой товар (продукцию) конкретного собственника, за хищение которого предусмотрены конкретные меры наказания.

До сих пор остается неясным и до конца не решенным вопрос о том, какой из органов – Государственный энергетический надзор (Ростехнадзор) или энергоснабжающие организации – должен осуществлять контроль наличия хищений электроэнергии, выявлять факты хищения, оформлять соответствующие юридические документы и направлять их в суд. Неясность в данном вопросе усугубляется тем, что в общих чертах проблема рационального использования и учета электроэнергии отражена в руководящих материалах обеих контролирующих структур.

Так, для Ростехнадзора эта проблема отражена в следующих документах:

Положение о Государственном энергетическом надзоре в Российской Федерации, утвержденное постановлением Правительства РФ от 12.08.1998 г. № 938, где, в частности, сказано, что «основной задачей Госэнергонадзора является осуществление контроля за… рациональным и эффективным использованием электроэнергии»;

Правила технической эксплуатации электроустановок потребителей (ПТЭЭП), гл. 2.11 «Средства контроля, измерений и учета»;

ПУЭ, гл. 1.5 «Учет электроэнергии»;

Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (МПБЭЭ), гл. 8 «Устройства релейной защиты и электроавтоматики, средства измерений и приборы учета электроэнергии, вторичные цепи»;

ряд ведомственных документов, например, информационное письмо Госэнергонадзора от 21.08.2000 г. № 32–11–05/11 «Об участии Госэнергонадзора в работе РАО «ЕЭС России» по совершенствованию учета электроэнергии у бытовых и мелкомоторных потребителей» и т. д.

Энергосбытовые и электросетевые компании в данной области руководствуются постановлениями Правительства РФ (в частности, постановлениями от 27.12.2004 г. № 861 и от 31.08.2006 г. № 530), договорами технологического присоединения к электросетям и договорами энергоснабжения, а также рядом других документов (например, техническими условиями на установку приборов учета).

Кроме того, обе эти контролирующие структуры участвуют в общих комиссиях по ревизии, проверке исправности и работы средств учета, например, при оформлении акта о проведении калибровки электрических счетчиков, акта о проведении ревизии и маркировки средств учета электрической энергии (см. прил. 2), акта о составлении баланса электроэнергии и др.

Ситуация осложняется еще и тем обстоятельством, что договор энергоснабжения заключается между потребителем электрической энергии (абонентом) и энергосбытовой компанией, а указания и рекомендации по его оформлению даются третьей стороной – Ростехнадзором.

Согласование проекта электроснабжения в части учета электроэнергии возложено на энергоснабжающую организацию, а в полном объеме – на Ростехнадзор.

С одной стороны, решением Правительства РФ от 23.01.2001 г. № 83–р реализация государственной политики в области энергосбережения возложена на Государственный энергетический надзор (Ростехнадзор), а с другой стороны, в функции инспекторского состава Ростехнадзора (например, при проведении плановых мероприятий по осуществлению государственного контроля потребителей электрической энергии, при осмотре вновь вводимых и реконструированных электроустановок на предмет допуска их в эксплуатацию и др.) не включены меры по выявлению и предотвращению хищений электроэнергии.

Подобная неясность и не вполне конкретная формулировка проблемы, отсутствие во всех указанных выше нормативных документах даже конкретного термина «хищение электроэнергии» и, кроме того, сама система самообслуживания при снятии показаний с приборов учета и расчетах потребителей с энергосбытовыми организациями создает благоприятную почву для ее хищения и порождает безнаказанность.

Напрашивается неутешительный вывод, что только рыночные механизмы в электроэнергетике сами по себе, при отсутствии государственного контроля, не позволят обеспечить эффективного решения проблемы энергосбережения.

На фоне бездействия энергоснабжающих организаций в борьбе с расхитителями электроэнергии деятельность руководства и специалистов Ростехнадзора приобретает огромное значение и создает предпосылки для успешного решения проблемы хищения электроэнергии.

Нетрудно убедиться, что размер ущерба от хищений электроэнергии только в сбытовой системе АО–энерго чрезвычайно велик.

В приказе РАО «ЕЭС России» от 07.08.2000 г. «О создании современных систем учета и контроля электропотребления» указано, что на балансе АО–энерго имеется примерно 21 млн низкоамперных однофазных счетчиков, в основном для бытовых потребителей электроэнергии.

Если предположить заведомо заниженную цифру хищений электроэнергии на уровне 1 %, то получается, что 210 тыс. однофазных счетчиков находятся в режиме учета похищенной электроэнергии. Если для обычной двухкомнатной квартиры потребление составляет примерно 150 кВт–ч в месяц на один счетчик, то в итоге величина похищенной электроэнергии будет равна 31,5 млн кВт–ч или, в денежном исчислении (при одноставочном тарифе для бытовых потребителей в среднем 2 руб. за 1 кВт–ч), – 63 млн руб. в месяц. В годовом исчислении это значение составит как минимум около 760 млн руб. Реальность такого огромного ущерба подтверждается проверками по фактам выявления хищений электроэнергии, а также данными, приведенными в упомянутом выше приказе РАО «ЕЭС России», где указано, что АО–энерго теряют в среднем 12–15 % платежей по данной группе потребителей.

Фактический ущерб для АО–энерго гораздо выше полученной оценки, поскольку в приведенный прикидочный и заведомо заниженный подсчет не вошли, например, хищения электроэнергии промышленных и бытовых потребителей в трехфазных сетях.

Финансовые потери АО–энерго из–за отсутствия и (или) несовершенства средств учета электроэнергии ежегодно составляют более 15 млрд руб. И это при объеме инвестиций в формирование необходимой системы учета порядка 34 млрд руб.

Следует учитывать еще один неблагоприятный фактор: при несанкционированном самовольном подключении нагрузки к электрическим сетям снижается уровень напряжения, могут ухудшаться и другие показатели качества электроэнергии. Это приводит к дополнительному ущербу, связанному со снижением производительности оборудования, ухудшением качества продукции, ее браком, а в ряде случаев – с отказами некоторых приборов, чувствительных к отклонениям показателей качества электроэнергии от нормируемых значений.

Кроме того, хищение электроэнергии искажает статистику энергосбережения и приводит к росту небаланса между выработанной и отпущенной электроэнергией. В настоящее время все большее число энергоснабжающих организаций сталкивается с проблемой значительных небалансов, превышающих допустимые значения.

Расчет, анализ и сопоставление допустимых небалансов с фактическими способствуют реальной количественной оценке коммерческих потерь в электрических сетях и позволяют осуществлять контроль достоверности учета электроэнергии во всех звеньях системы электроснабжения. Все составляющие баланса, кроме потерь электроэнергии в силовых трансформаторах, должны быть измерены счетчиками расчетного и технического учета.

В соответствии с Типовой инструкцией по учету электроэнергии при ее производстве, передаче и распределении значение фактического небаланса НБф в электрических сетях следует определять по формуле

где Wп – поступление электроэнергии на шины подстанции;

Wо – отпуск электроэнергии;

W с.н. – расход электроэнергии на собственные нужды;

W х.н. – расход электроэнергии на хозяйственные нужды подстанции;

Wп.н. – расход электроэнергии на производственные нужды;

Wтр– потери электроэнергии в силовых трансформаторах подстанции.

К дополнительному и неучтенному росту фактического небаланса приводит увеличение составляющей Wo в формуле (1) за счет хищения отпущенной электроэнергии, а отчетные данные по энергосбережению в этих случаях оказываются заниженными соответственно неучтенной доле коммерческих потерь.

Определение фактического небаланса электроэнергии по районным электрическим сетям, предприятиям электрических сетей или по АО–энерго в целом возможно в том случае, если производится расчет технических потерь в сетях всех классов напряжения, включая и сети напряжением 0,38 кВ.

В соответствии с требованиями указанной Типовой инструкции значение фактического небаланса не должно превышать значение допустимого небаланса НБд (НБф? НБд), которое определяется по следующей формуле

где m – суммарное количество точек учета, фиксирующих поступление наибольших потоков электроэнергии и отдачу электроэнергии особо крупным потребителям (применительно к соответствующему структурному подразделению);

?pi – погрешность измерительного комплекса i– й точки учета электроэнергии;

d oi – доля электроэнергии, учтенной i –й точкой учета;

?p 3 – погрешность измерительного комплекса (типопредставителя) трехфазного потребителя (мощностью менее 750 кВ–А);

?pl – погрешность измерительного комплекса (типопредставителя) однофазного потребителя;

n 3 – число точек учета трехфазных потребителей (кроме учтенных в числе m ), по которым суммарный относительный пропуск электроэнергии составляет d 3 ;

n 1 – число точек учета однофазных потребителей (кроме учтенных в числе m), по которым суммарный относительный пропуск электроэнергии составляет d 1 .

При отсутствии методики оценки экономического ущерба от хищения электроэнергии, которую нет возможности разработать из–за отсутствия репрезентативных (полных и достоверных) статистических данных по фактам ее хищения, нет надежной основы даже для приблизительной оценки реального ущерба от хищения электроэнергии. А одного лишь качественного анализа даже значительного количества случаев хищений электроэнергии (которое неизвестно до сих пор и вряд ли будет точно известно и в дальнейшем), для решения этой проблемы, разумеется, недостаточно.

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Глава 19 ПРОБЛЕМА ТЯГИ Дальние межпланетные экспедиции и проблема тяги Общеизвестно, что на сегодняшний день основой космической экспансии человечества по-прежнему являются ракеты на жидком топливе. Однако имеющиеся в наличии и перспективные ракеты на жидком топливе, к

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ Область применения, общие требования Вопрос. На какие электрические аппараты и проводники распространяется настоящая глава Правил?Ответ. Распространяется на методы выбора электрических аппаратов и проводников

Из книги Потребители электрической энергии, энергоснабжающие организации и органы Ростехнадзора. Правовые основы взаимоотношений автора Красник Валентин Викторович

Глава 1.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ Область применения Вопрос. На какие методы проверки электрических аппаратов и проводников распространяется настоящая глава Правил?Ответ. Распространяется на методы проверки

Из книги Операторы коммерческого учета на рынках электроэнергии. Технология и организация деятельности автора Осика Лев Константинович

Глава 1.5. УЧЕТ ЭЛЕКТРОЭНЕРГИИ Общие требования Вопрос. С какой целью осуществляется учет активной электроэнергии?Ответ. Осуществляется для определения количества электроэнергии:выработанной генераторами электростанций;потребленной на собственные, хозяйственные и

Из книги 102 способа хищения электроэнергии автора Красник Валентин Викторович

Глава 1.6. ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИИ Область применения, общие требования Вопрос. Какова область распространения настоящей главы Правил?Ответ. Распространяется на измерения электрических величин, выполняемые с помощью средств измерений (стационарных

Из книги Воздушно-реактивные двигатели автора Гильзин Карл Александрович

Глава 3.1. ЗАЩИТА В ЭЛЕКТРИЧЕСКИХ СЕТЯХ НАПРЯЖЕНИЕМ до 1 кВ Область применения. Определения Вопрос. На защиту каких электрических сетей распространяются требования настоящей главы Правил?Ответ. Распространяются на защиту электрических сетей напряжением до 1 кВ,

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

Автоматическое ограничение снижения напряжения (АОСН) Вопрос. Для каких целей предназначены устройства АОСН?Ответ. Предназначены для предотвращения снижения напряжения в узлах энергосистемы в послеаварийных режимах до значения, опасного по условиям устойчивости

Из книги автора

1.7. Пути снижения оплаты потребляемой электроэнергии Рациональная оплата за потребляемую электроэнергию зависит не только от правильного и экономного ее расходования, но и, в определенной степени, от условий договоров между ее потребителями и энергоснабжающими

Из книги автора

Глава 4. ПОРЯДОК ЛИЦЕНЗИРОВАНИЯ ДЕЯТЕЛЬНОСТИ ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ При взаимоотношениях потребителей электрической энергии с энергоснабжающими организациями, органами государственного надзора, а также с проектными, монтажными, наладочными и другими

Из книги автора

Глава 11 ПРИНЦИПЫ ОРГАНИЗАЦИИ ЕДИНОГО ОКУ ОПТОВОГО РЫНКА ЭЛЕКТРОЭНЕРГИИ Необходимость создания общенационального ОКУШироко известно, что, начиная с подготовительного периода, предшествовавшего запуску оптового рынка в ноябре 2003 г., специалисты и широкая

Из книги автора

Глава 1 Проблема хищения электроэнергии Одним из видов так называемых коммерческих потерь электроэнергии являются ее хищения; масштабы этого явления приобретают в последние годы катастрофический характер.В условиях рыночной экономики электроэнергия представляет

Глава седьмая Проблема, которую еще нужно решить Сжатие воздуха - важнейший, но не единственный процесс, происходящий в прямоточном воздушно-реактивном двигателе. После того как воздух сжат, его необходимо нагреть - без этого двигатель не может развивать тягу. А для

Из книги автора

1.5. Общие выводы из анализа коммерческих инноваций в области биотехнологий Развитие инновационных технологий всегда требует творческого подхода и решительных действий. Конечно, ключевым моментом выступает само научное открытие или изобретение, однако его

Потерями в электросетях считают разность между переданной электроэнергией от производителя до учтенной потребленной электроэнергией потребителя. Потери происходят на ЛЭП, в силовых трансформаторах, за счет вихревых токов при потреблении приборов с реактивной нагрузкой, а также из-за плохой изоляции проводников и хищения неучтенного электричества. В этой статье мы постараемся подробно рассказать о том, какие бывают потери электроэнергии в электрических сетях, а также рассмотрим мероприятия по их снижению.

Расстояние от электростанции к поставляющим организациям

Учет и оплата всех видов потерь регулируется законодательным актом: «Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 22.02.2016) «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг…» п. VI. Порядок определения потерь в электрических сетях и оплаты этих потерь. Если вы хотите разобраться с тем, кто должен оплачивать часть утраченной энергии, рекомендуем изучить данный акт.

При передаче электроэнергии на большие расстояния от производителя до поставщика ее к потребителю теряется часть энергии по многим причинам, одна из которых — напряжение, потребляемое обычными потребителями (оно составляет 220 или 380 В). Если производить транспортировку такого напряжения от генераторов электростанций напрямую, то необходимо проложить электросети с диаметром провода, который обеспечит всех необходимым током при указанных параметрах. Провода будут очень толстыми. Их невозможно будет подвесить на линиях электропередач, из-за большого веса, прокладка в земле тоже обойдется недешево.

Более подробно узнать о том, вы можете в нашей статье!

Для исключения этого фактора в распределительных сетях применяют высоковольтные линии электропередач. Простая формула расчета такова: P=I*U. Мощность равна произведению тока на напряжение.

Мощность потребления, Вт Напряжение, В Ток, А
100 000 220 454,55
100 000 10 000 10

Повышая напряжение при передаче электроэнергии в электрических сетях можно существенно снизить ток, что позволит обойтись проводами с намного меньшим диаметром. Подводный камень данного преобразования заключается в том, что в трансформаторах есть потери, которые кто-то должен оплатить. Передавая электроэнергию с таким напряжением, она существенно теряется и от плохого контакта проводников, которые со временем увеличивают свое сопротивление. Возрастают потери при повышении влажности воздуха – увеличивается ток утечки на изоляторах и на корону. Также увеличиваются потери в кабельных линиях при снижении параметров изоляции проводов.

Передал поставщик энергию в поставляющую организацию. Та в свою очередь должна привести параметры в нужные показатели: преобразовать полученную продукцию в напряжение 6-10 кВ, развести кабельными линиями по пунктам, после чего снова преобразовать в напряжение 0,4 кВ. Снова возникают потери на трансформацию при работе трансформаторов 6-10 кВ и 0,4 кВ. Бытовому потребителю доставляется электроэнергия в нужном напряжении – 380 В или 220В. Любой трансформатор имеет свой КПД и рассчитан на определенную нагрузку. Если мощность потребления больше или меньше расчетной мощности, потери в электрических сетях возрастают независимо от желания поставщика.

Следующим подводным камнем всплывает несоответствие мощности трансформатора, преобразующего 6-10 кВ в 220В. Если потребители берут энергии больше паспортной мощности трансформатора, он или выходит из строя, или не сможет обеспечить необходимые параметры на выходе. В результате снижения напряжения сети электроприборы работают с нарушением паспортного режима и, как следствие, увеличивают потребление.

Мероприятия по снижению технических потерь электроэнергии в системах электроснабжения подробно рассмотрены на видео:

Домашние условия

Потребитель получил свои 220/380 В на счетчике. Теперь потерянная после счетчика электрическая энергия ложится на конечного потребителя.

Она складывается из:

  1. Потерь на при превышении расчетных параметров потребления.
  2. Плохой контакт в приборах коммутации (рубильники, пускатели, выключатели, патроны для ламп, вилки, розетки).
  3. Емкостной характер нагрузки.
  4. Индуктивный характер нагрузки.
  5. Использование устаревших систем освещения, холодильников и другой старой техники.

Рассмотрим мероприятия по снижению потерь электроэнергии в домах и квартирах.

П.1 - борьба с таким видом потерь одна: применение проводников соответствующих нагрузке. В существующих сетях необходимо следить за соответствием параметров проводов и потребляемой мощностью. В случае невозможности откорректировать эти параметры и ввести в норму, следует мириться с тем, что энергия теряется на нагрев проводов, в результате чего изменяются параметры их изоляции и повышается вероятность возникновения пожара в помещении. О том, мы рассказывали в соответствующей статье.

П.2 - плохой контакт: в рубильниках - это использование современных конструкций с хорошими неокисляющимися контактами. Любой окисел увеличивает сопротивление. В пускателях - тот же способ. Выключатели - система включения-выключения должна использовать металл, хорошо выдерживающий действие влаги, повышенных температур. Контакт должен быть обеспечен хорошим прижатием одного полюса к другому.

П.3, П.4 - реактивная нагрузка. Все электроприборы, которые не относятся к лампам накаливания, электроплитам старого образца имеют реактивную составляющую потребления электроэнергии. Любая индуктивность при подаче на нее напряжения сопротивляется прохождению по ней тока за счет возникающей магнитной индукции. Через время электромагнитная индукция, которая препятствовала прохождению тока, помогает его прохождению и добавляет в сеть часть энергии, которая является вредной для общих сетей. Возникают так называемые вихревые токи, которые искажают истинные показания электросчетчиков и вносят отрицательные изменения в параметры поставляемой электроэнергии. То же происходит и при емкостной нагрузке. Возникающие вихревые токи портят параметры поставленной потребителю электроэнергии. Борьба - использование специальных компенсаторов реактивной энергии, в зависимости от параметров нагрузки.

П.5. Использование устаревших систем освещения (лампочки накаливания). Их КПД имеет максимальное значение - 3-5%, а может быть и меньше. Остальные 95% идут на нагревание нити накала и как следствие на нагревание окружающей среды и на излучение не воспринимаемое человеческим глазом. Поэтому совершенствовать данный вид освещения стало нецелесообразным. Появились другие виды освещения - люминесцентные лампы, которые стали широко применяться в последнее время. КПД люминесцентных ламп достигает 7%, а светодиодных до 20%. Использование последних даст экономию электроэнергии прямо сейчас и в процессе эксплуатации за счет большого срока службы - до 50 000 часов (лампа накаливания - 1 000 часов).

Отдельно хотелось бы отметить, что сократить потери электрической энергии в доме можно с помощью . Помимо этого, как мы уже сказали, электроэнергия теряется при ее хищении. Если вы заметили, что , нужно сразу же предпринимать соответствующие меры. Куда звонить за помощью, мы рассказали в соответствующей статье, на которую сослались!

Рассмотренные выше способы уменьшения мощности потребления дают снижение нагрузки на электропроводку в доме и, как следствие, сокращение потерь в электросети. Как вы уже поняли, методы борьбы наиболее широко раскрыты для бытовых потребителей потому что не каждый хозяин квартиры или дома знает о возможных потерях электроэнергии, а поставляющие организации в своем штате держат специально обученных по этой теме работников, которые в состоянии бороться с такими проблемами.

Введение

Обзор литературы

1.2 Нагрузочные потери электроэнергии

1.3 Потери холостого хода

1.4 Климатические потери электроэнергии

2. Методы расчета потерь электроэнергии

2.1 Методы расчета потерь электроэнергии для различных сетей

2.2 Методы расчета потерь электроэнергии в распределительных сетях 0,38-6-10 кВ

3. Программы расчета потерь электроэнергии в распределительных электрических сетях

3.1 Необходимость расчета технических потерь электроэнергии

3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

4. Нормирование потерь электроэнергии

4.1 Понятие норматива потерь. Методы установления нормативов на практике

4.2 Нормативные характеристики потерь

4.3 Порядок расчета нормативов потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

5. Пример расчета потерь электроэнергии в распределительных сетях 10 кВ

Заключение

Список литературы

Введение

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения .

В течение всего периода с 1991 г. по 2003 г. суммарные потери в энергосистемах России росли и в абсолютном значении, и в процентах отпуска электроэнергии в сеть.

Рост потерь энергии в электрических сетях определен действием вполне объективных закономерностей в развитии всей энергетики в целом. Основными из них являются: тенденция к концентрации производства электроэнергии на крупных электростанциях; непрерывный рост нагрузок электрических сетей, связанный с естественным ростом нагрузок потребителей и отставанием темпов прироста пропускной способности сети от темпов прироста потребления электроэнергии и генерирующих мощностей.

В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Разработка методов расчета, анализа потерь электроэнергии и выбора экономически обоснованных мероприятий по их снижению ведется во ВНИИЭ уже более 30 лет. Для расчета всех составляющих потерь электроэнергии в сетях всех классов напряжения АО-энерго и в оборудовании сетей и подстанций и их нормативных характеристик разработан программный комплекс, имеющий сертификат соответствия, утвержденный ЦДУ ЕЭС России, Главгосэнергонадзором России и Департаментом электрических сетей РАО "ЕЭС России".

В связи со сложностью расчета потерь и наличием существенных погрешностей, в последнее время особое внимание уделяется разработке методик нормирования потерь электроэнергии.

Методология определения нормативов потерь еще не установилась. Не определены даже принципы нормирования. Мнения о подходе к нормированию лежат в широком диапазоне - от желания иметь установленный твердый норматив в виде процента потерь до контроля за "нормальными" потерями с помощью постоянно проводимых расчетов по схемам сетей с использованием соответствующего программного обеспечения.

По полученным нормам потерь электроэнергии устанавливаются тарифы на электроэнергию. Регулирование тарифов возлагается на государственные регулирующие органы ФЭК и РЭК (федеральную и региональные энергетические комиссии). Энергоснабжающие организации должны обосновывать уровень потерь электроэнергии, который они считают целесообразным включить в тариф, а энергетические комиссии - анализировать эти обоснования и принимать или корректировать их .

В данной работе рассмотрена проблема расчета, анализа и нормирования потерь электроэнергии с современных позиций; изложены теоретические положения расчетов, приведено описание программного обеспечения, реализующего эти положения, и изложен опыт практических расчетов.

Обзор литературы

Проблема расчета потерь электроэнергии волнует энергетиков уже очень долго. В связи с этим, в настоящее время выпускается очень мало книг по данной теме, т.к мало что изменилось в принципиальном устройстве сетей. Но при этом выпускается достаточно большое количество статей, где производится уточнение старых данных и предлагаются новые решения проблем, связанных с расчетом, нормированием и снижением потерь электроэнергии.

Одной из последних книг, выпущенных по данной теме, является книга Железко Ю.С. "Расчет, анализ и нормирование потерь электроэнергии в электрических сетях" . В ней наиболее полно представлена структура потерь электроэнергии, методы анализа потерь и выбор мероприятий по их снижению. Обоснованы методы нормирования потерь. Подробно описано программное обеспечение, реализующее методы расчета потерь.

Ранее этим же автором была выпущена книга "Выбор мероприятий по снижению потерь электроэнергии в электрических сетях: Руководство для практических расчетов" . Здесь наибольшее внимание было уделено методам расчета потерь электроэнергии в различных сетях и обосновано применение того или иного метода в зависимости от типа сети, а также мероприятиям по снижению потерь электроэнергии.

В книге Будзко И.А. и Левина М.С. "Электроснабжение сельскохозяйственных предприятий и населенных пунктов" авторы подробно рассмотрели проблемы электроснабжения в целом, сделав упор на распределительные сети, питающие сельскохозяйственные предприятия и населенные пункты. Также в книге даны рекомендации по организации контроля за потреблением электроэнергии и совершенствованию систем учета.

Авторы Воротницкий В.Э., Железко Ю.С. и Казанцев В.Н. в книге "Потери электроэнергии в электрических сетях энергосистем" рассмотрели подробно общие вопросы, относящиеся к снижению потерь электроэнергии в сетях: методы расчета и прогнозирования потерь в сетях, анализ структуры потерь и расчет их технико-экономической эффективности, планирование потерь и мероприятий по их снижению.

В статье Воротницкого В.Э., Заслонова С.В. и Калинкини М.А. "Программа расчета технических потерь мощности и электроэнергии в распределительных сетях 6 - 10 кВ" подробно описана программа для расчета технических потерь электроэнергии РТП 3.1 Ее главным достоинством является простота в использовании и удобный для анализа вывод конечных результатов, что существенно сокращает трудозатраты персонала на проведение расчета.

Статья Железко Ю.С. "Принципы нормирования потерь электроэнергии в электрических сетях и программное обеспечение расчетов" посвящена актуальной проблеме нормирования потерь электроэнергии. Автор делает упор на целенаправленное снижение потерь до экономически обоснованного уровня, что не обеспечивает существующая практика нормирования. Также в статье выносится предложение использовать нормативные характеристики потерь, разработанные на основе детальных схемотехнических расчетов сетей всех классов напряжений. При этом расчет может производится при использовании программного обеспечения.

Целью другой статьи этого же автора под названием "Оценка потерь электроэнергии, обусловленных инструментальными погрешностями измерения" не является уточнение методики определения погрешностей конкретных измерительных приборов на основе проверки их параметров. Автором в статье проведена оценка результирующих погрешностей системы учета поступления и отпуска электроэнергии из сети энергоснабжающей организации, включающей в себя сотни и тысячи приборов. Особое внимание уделено систематической погрешности, которая в настоящее время оказывается существенной составляющей структуры потерь.

В статье Галанова В.П., Галанова В.В. "Влияние качества электроэнергии на уровень ее потерь в сетях" уделено внимание актуальной проблеме качества электроэнергии, что оказывает существенное влияние на потери электроэнергии в сетях.

Статья Воротницкого В.Э., Загорского Я.Т. и Апряткина В.Н. "Расчет, нормирование и снижение потерь электроэнергии в городских электрических сетях" посвящена уточнению существующих методов расчета потерь электроэнергии, нормированию потерь в современных условиях, а также новым методам снижения потерь.

В статье Овчинникова А. "Потери электроэнергии в распределительных сетях 0,38 - 6 (10) кВ" делается упор на получение достоверной информации о параметрах работы элементов сетевого хозяйства, и прежде всего о загрузке силовых трансформаторов. Данная информация, по мнения автора, поможет существенно снизить потери электроэнергии в сетях 0,38 - 6 - 10 кВ.

1. Структура потерь электроэнергии в электрических сетях. Технические потери электроэнергии

1.1 Структура потерь электроэнергии в электрических сетях

При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.

Фактические (отчетные) потери электроэнергии ΔW Отч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.

Что еще почитать