Способы уменьшения потерь энергии в тепловых сетях. Анализ влияния тепловой изоляции на сокращение тепловых потерь с поверхности трубопроводов на примере тепловой сети г

Сегодня все более, жизненнее перед каждым человеком встает вопрос энергосбережения. Такая острая проблема решается как на государственном уровне, так и на международном, в виде внедрения в жизнь общества механизмов специально созданных, для достижения этой цели, программ. Одной из основных составляющих их него действия является сохранение тепла в жилых, государственных и других типах помещений.

Вопрос тепло сбережения обоснован тремя главными причинами, к которым относят:

  • значительный рост цен на энергоресурсы;
  • уменьшение природных запасов энергетического сырья, из которого вырабатывается тепловая энергия;
  • значительное негативное влияние выбросов от сжигания энергетического сырья на климат и природу.
Поэтому одним из основных технических решений указанных проблем является наружная теплоизоляция конструкций зданий и тепловых магистралей.

Наружная теплоизоляция стен зданий

Главной задачей наружных теплоизоляционных материалов является уменьшение тепловых потерь и влажности в зданиях. Важнейшие приоритетные их особенности – это надежная эффективная защита внешних конструктивных элементов строений и значительное сохранение внутренних площадей их помещений. Грамотный подход к выбору теплоизоляционных материалов позволяет добиться высоких показателей в сохранении тепла, даже при низких затратах.

В современных строительных технологиях центральным техническим и технологическим средством, с помощью которого выполняется теплоизоляция наружных стен, является минеральная вата. Этот материл, изготавливается производителями в виде ватных плит из базальта и кремнезема, которые покрываются водостойким веществом. Основным способом укладки этого теплоизоляционного средства является его монтаж под облицовочную кирпичную кладку, что позволяет создать так называемую вентилируемую прослойку стен.

В строительной индустрии применяют следующие основные способы утепления стен:

  • теплоизоляция при помощи пенополистирола – способ наклейки специального пенопласта или нанесение жидкого пенополиуретана на наружную сторону стен, которые могут быть с вентилируемой прослойкой и без нее;
  • теплоизоляция при помощи создания, так называемого «мокрого» вида стен – этот способ предусматривает монтаж на стену ватных плит, на которые наклеивается специальная армирующая сетка, и дальнейшее покрытие их шпаклевочным материалом;
  • наружная теплоизоляция стен дома с вентилирующей прослойкой, при которой используется, для предотвращения возможности появления разрушающего стены конденсата, пароизоляционный материал и ватные плиты, с последующей их обработкой фасадным материалом, через деревянную обрешетку.

Теплоизоляция тепловых магистралей

Не оспоримым является тот факт что, какие бы способы не использовались для утепления конструкций здания, но без теплоизоляции тепловых устройств, механизмов и трубопроводов вопрос сбережения тепла будет считаться пустым звуком. Особенно важным техническим решением такой проблемы, как снижение тепловых потерь является наружная теплоизоляция трубопроводов.

На сегодняшний день, одной из самых передовых технологий при утеплении трубных магистралей является создание специальной теплоизоляционной скорлупы из пенополистирола. Диаметр и толщина такого изоляционного материала изготавливаются производителями исходя из существующих размеров труб и по индивидуальному заказу.

Эффективность в снижении тепловых потерь при использовании в качестве утеплителя для труб изоляционной скорлупы достигается особенными его характеристиками:

  • высокая степень водонепроницаемости;
  • устойчивость к разным видам процессов гниения (грибки, плесень).

Теплопотери в зданиях

Искусственно возникают хорошие условия переходу теплоты от обогревающих приборов в строительные ограждающие конструкции при применении распространенного способа крепления отопительных батарей к стене. Речь идет о забивке подвесных крюков или с помощью закладных анкерных болтов. Наличие такого металла в стене создает более легкие пути движения теплоты наружу. Даже близкое расположение к стене стояков внутренней системы отопления квартир способствует тоже усиленной теплоотдаче наружу (рис. 4). Получается, что важно очень строго оценить зазор между стояком и стеной и рекомендовать его величину строителям. А может быть, возможно стояки крепить к внутренней сте стене квартиры, а не к наружной. Хотя схемы поквартирного учета теплоты исключают квартирные стояки, но появляются так называемые подъездные, с которыми следует избежать упомянутой ситуации.

Общеизвестны строителям и эксплуатационникам схемы нижней или верхней разводки греющей сетевой воды внутри жилого дома. Это когда сетевая вода остывает в многоэтажном доме снизу вверх (рис. 5, а) и сверху вниз (рис. 5, б). При фактической разлаженности внутридомовой сети и частым не выдерживанием температуры подающей сетевой воды (tn) по схеме «а» может быть жарко на нижних этажах и холодно на верхних. По схеме «б» все наоборот при одной и той же температуре обратной сетевой воды (to).

Известна и смешанная схема. Последнюю важно использовать не вообще, как это делается сегодня, а целенаправленно для поддержания комфортных температур адресно по высоте всего дома внутри угловых квартир, которые отличаются повышенной теплоотдачей наружу. В целом в таких комнатах и квартирах по смешанной схеме будет усредненная довольно высокая температура греющей сетевой воды по всем этажам дома, приближающаяся к расчетной (рис. 5, в), а не такая, как указано выше по схеме «а» и «б». Это может снизить дискомфорт в угловых и неблагополучных квартирах и сократить потери от перегрева других более теплых помещений.
Таким образом, перечисленные факты подсказывают решения более эффективного использования теплоты. С другой стороны прямые потери тепловой энергии непосредственно усиливают парниковый эффект планеты и ускоряют глобальное потепление климата. Происходит переплетение экологических и экономических вопросов, обязывающее вести энергосбережение уже с гражданских позиций для сохранения окружающей нас природы и уменьшения заболеваний людей.

1. Эскиз неподвижной опоры трубопровода.

2. Термограмма промежуточной скользящей опоры трубопровода теплосети.

3. Эскиз подвижной опоры с минимальным оттоком теплоты.

4. Схемы остывания греющей сетевой воды в 6-тиэтажом доме: а - с верхней разводкой, б - с нижней разводкой, в - со смешанной разводкой.

С анализом российского рынка теплоизоляции Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок теплоизоляционных материалов в России ».

к.т.н. В.И.Рябцев, член-кор. МАН, доцент, Курский технический университет; к.т.н. М.А.Литвиненко, инженер; А.Н.Плетнев, инженер; Г.А.Рябцев, инженер, Курские муниципальные тепловые сети

Количество потребляемого энергосистемой топлива в значительной мере зависит от потерь тепловой и электрической энергии. Чем выше эти потери, тем больше топлива потребуется при прочих равных условиях. Снижение потерь электроэнергии на 1 % позволит сэкономить 2,5–4 % топливных ресурсов. Одним из путей, способствующих уменьшению потерь тепловой и электрической энергии, является внедрение АСУ ТП и АСКУЭ.

Главной причиной потерь тепловой энергии является низкий коэффициент полезного действия (КПД) тепловых электростанций. В настоящее время износ энергетических установок на белорусских электростанциях составляет порядка 60 %, а темпы обновления основных фондов в энергетике отстают от темпов старения ранее введенных мощностей. По этой причине значительная часть основного оборудования уже отработала положенный срок эксплуатации. Оборудование крупных ТЭЦ и ГРЭС в Беларуси сегодня соответствует среднему зарубежному уровню 1980-х гг. КПД на наших конденсационных электростанциях составляет не более 40 % при полной загрузке энергоблоков, а при неполной загрузке он еще ниже. На электростанциях типа ТЭЦ в отопительный сезон и при полной загрузке энергоблоков КПД составляет примерно 80 %, в неотопительный сезон и при неполной загрузке энергоблоков – примерно 50 %. Значительная часть тепла теряется и в котлоагрегатах. В старых котлоагрегатах КПД составляет около 75 %. При их замене на новые, более совершенные котлоагрегаты КПД котельной части увеличивается до 80–85 %. Однако это не решает проблему снижения потерь тепловой энергии кардинально.

Ведется также преобразование котельных в мини-ТЭЦ. В этих работах используются газотурбинные, газопоршневые двигатели и котлы-утилизаторы. Применение частотного электропривода позволяет существенно повысить КПД тепловых электростанций и котельных.

Для уменьшения потерь тепла в теплосетях стали применять предизолированные трубы (ПИ-трубы). Благодаря их использованию потери тепла уменьшаются примерно в 10 раз по сравнению с применением обычных стальных труб с теплоизоляцией 120 Вт/м.

Одним из способов уменьшения потерь тепловой энергии является также переход с централизованной системы теплоснабжения к децентрализованной, при которой отсутствует потребление тепла от ТЭЦ или от центральной котельной через тепловые сети.

Немало тепла «уходит» через стены, полы, потолки, окна и двери зданий и сооружений старой постройки. В старых зданиях из кирпича потери составляют примерно 30 %, а в зданиях из бетонных плит со встроенными радиаторами – до 40 %. Потери тепла в зданиях увеличиваются и из-за неравномерности распределения тепла в помещениях, поэтому желательно проводить выравнивание разности температур (пол – потолок) с помощью потолочных вентиляторов. За счет этого потери тепла можно уменьшить до 30 %. Для сокращения утечек тепла из помещений желательно делать воздушный завес.

Снизить потери тепловой энергии в помещениях помогает и регулирование тепла с учетом ориентации дома по частям света, что у нас пока не делается.

Со временем ожидается внедрение в энергетику высокоэкономичных дизельных и газотурбинных установок средней и малой мощности, высокоинтенсивных теплогенераторов для электро- и теплоснабжения отдельных домов и малых предприятий. Планируется также применение топливных элементов и тепловых насосов для выработки тепла, холода и электроэнергии.

Предисловие

Причин потери тепла в доме несколько, и каждая из них может быть если не полностью устранена, то хотя бы частично локализована. Согласно исследованиям Госстроя, две трети энергии, вырабатываемой в стране, «растворяется в воздухе».

Cодержание

Причин потери тепла в доме несколько, и каждая из них может быть если не полностью устранена, то хотя бы частично локализована. Согласно исследованиям Госстроя, две трети энергии, вырабатываемой в стране, «растворяется в воздухе». Перед тем как снизить теплопотери дома, нужно выяснить, почему вместо обогрева помещения отапливается улица и, несмотря на огненные батареи, в квартире холодно.

Понять, как дом теряет тепло, можно, если вспомнить некоторые физические законы.

Основными причинами теплопотери дома являются следующие факторы:

  • проводимость . Поскольку дом построен на холодной земле, то вследствие теплопроводности тепловые потоки уходят в почву;
  • конвекция . При включенном отоплении стены и крыша изнутри становятся теплыми. В результате действия теплопроводности тепло перемещается и на наружную сторону стен и крыши. При этом окружающая их атмосфера, будучи более холодной, нагревается за счет них и отбирает часть тепла, унося его вверх.

Таким образом, можно сказать, что теплопроводность стройматериалов и разница между температурами в доме и на улице - два главных фактора, влияющих на потери домом тепла.

При этом основные потери тепла происходят через ограждающие конструкции дома: на долю стен приходится 35% теплопотерь, на крышу - 25%, через подвальное перекрытие и всевозможные щели - по 15%, через окна - 10%. Определенная часть тепла может выносить из дома .

Установить, что именно из них повинно в том, что в доме холодно, несмотря на огненные батареи, поможет специальная экспертиза, которая называется тепловизионной диагностикой. Если пригласить службы, специализирующиеся на ней, то проведенное обследование выявит конкретные места утечек тепла; качество, дефекты и повреждения теплоизоляции чердачного и подвального перекрытий и труб; мостики холода; состояние и и т. д.

Как уменьшить теплопотери дома: теплоизоляция стен и окон

Понимание причин потери тепла вызывает естественный вопрос: как устранить теплопотери дома хотя бы значительно снизить? Ответ очевиден - кардинально улучшить теплоизоляцию стен, крыши, перекрытий, окон, что позволит повысить температуру в доме без увеличения затрат на отопление.

При качественной теплоизоляции дома даже при понижении температуры воздуха до -25 °С и выключенном отоплении температура внутри дома за сутки упадет всего лишь на 1 °С. Понятно, что и расходы на отопление в таком доме не столь обременительны.

Если вы не знаете, как уменьшить теплопотери дома, начните с осмотра окон: проверьте механизмы открывания и закрывания, при необходимости отрегулируйте их. Если будут обнаружены зазоры между оконными блоками и стенами, их тоже нужно герметично заделать. На стекла можно нанести отражающее покрытие. Поможет снизить теплопотери и остекление балкона и лоджии.

Ещё один способ, как снизить теплопотери дома - утепление дверей, причем желательно установить вторую дверь, которая дополнительно будет играть роль звукоизолятора.

Как снизить теплопотери дома: утепление крыши и подвала

Кроме того, стены, крышу и подвал необходимо утеплить. При этом надо заметить, что утеплять дом надо не изнутри, а снаружи. Если сделать это со стороны помещения, то между стеной и внутренней теплоизоляцией будет скапливаться конденсат, что не только ухудшит теплоизоляцию дома, но и приведет к повреждению отделки и размножению грибов. Для внешней теплоизоляции подходит такой материал, как экструдированный пенополистирол; хорошо себя зарекомендовало устройство вентилируемого фасада и т.д.

Для теплоизоляции крыш, как правило, используют каменную или минеральную вату, которые реализуются в виде плит. При этом нельзя забыть о пароизоляции (желательно, чтобы ее сторона, обращенная внутрь, была покрыта алюминиевой фольгой, что предотвратит потери тепла от излучения).

Если дом еще только в проекте, то необходимо заранее подумать о том, как уменьшить периметр внешних холодных стен (чем больше квадратура наружных стен, тем значительнее потери тепла; дом, украшенный многочисленными выступающими элементами, теряет много тепла), не допустить образования мостиков холода.

Снижение теплопотерь дома: возведение монсарды

Возведение мансарды - еще один способ снижения теплопотерь дома и сокращения потери тепла через крышу, поскольку ее часть используется в качестве стен мансардного помещения. О том, что для кровли следует выбрать качественный материал, наверное, можно не говорить.

Уменьшение теплопотерь дома до нуля вряд ли удастся, но реально предпринять меры, благодаря которым можно перестать обогревать улицу. Первое, что приходит на ум,- это необходимость утепления дома. При этом заметим, что стоимость теплоизоляции по сравнению с тем, во сколько обойдется строительство дома, просто мизерна. Экономия на теплоизоляции непременно обернется еще большими потерями в будущем, тем более что цены на энергоносители постоянно растут. Подойдя к утеплению дома в комплексе, можно сократить расходы на отопление примерно на 40%. Это означает, что теплоизоляция выгодна вдвойне, поскольку снижает теплопотери и минимизирует затраты на энергоресурсы.

Уменьшение теплопотерь дома: теплоизоляционные материалы

Теплоизоляционные материалы должны отвечать целому ряду требований, среди которых:

  • долговечность (это важно для длительной его эксплуатации);
  • экологичность (отсутствие вредных для здоровья выделений);
  • горючесть (отсюда и пожаробезопасность);
  • повышенная паропроницаемость (благодаря чему из помещения будет выводиться влага и конструкции дома будут оставаться сухими);
  • небольшой вес (не придется , не возникнет проблем с монтажом, транспортировка материала и покупка крепежа обойдутся не слишком дорого
  • естественно, цена (для многих это главный показатель, определяющий ).

Чтобы предложить действенные мероприятия по повышению эффективности использования тепловой энергии в здании требуется грамотно составить и рассчитать тепловой баланс здания и произвести оценку его энергоэффективности. Тепловой баланс включает в себя отопительную нагрузку здания, на которую влияют потери теплоты через ограждающие конструкции, потери теплоты на нагрев инфильтрующегося воздуха, потери теплоты на нагрев вентиляционного воздуха, тепловыделения от солнечной радиации через световые проемы и внутренние бытовых тепловыделения.

Практика показывает, что 40...50 % всех тепловых потерь приходится на нагрев инфильтрующегося и вентиляционного воздуха, около 20...30 % теплоты теряется через световые проемы и лишь порядка 30 % составляют потери тепла через наружные стены, полы и покрытия.

В настоящее время расчеты между потребителем и поставщиком тепловой энергии производятся по старым отопительным нормам, которые не учитывают долю суммарных тепловыделений здания с учетом теплопоступлений от солнечной радиации, в то время как она доходит до 20 % от суммарных тепловых потерь в зданиях жилого и общественного назначения. Это приводит к излишнему отпуску теплоты, которая выбрасывается через форточки.

После постатейного определения доли тепловых потерь здания и его удельных тепловых характеристик можно произвести оценку энергоэффективности здания и предложить энергосберегающие мероприятия, которые приведут к существенной экономии тепловой энергии.

Таблица 9.2

Уменьшение теплопотерь зданий

Снижение потерь тепла с инфильтрующим воздухом путем уплотнения дверей и оконных стыков

Снижение трансмиссионных потерь через оконные проемы путем установки третьего стекла или пленки ПВХ в межрамном пространстве окон

Улучшение тепловой изоляции стен, полов и чердаков

Снятие декоративных ограждений с радиаторов отопления и установка теплоотражателей за радиаторами

Устройство вентилируемых наружных стен

Дополнительное утепление наружных стен при реконструкции зданий

Применение периодического режима отопления

Вращающиеся регенеративные воздуховоздушные утилизаторы тепла

9.3.2. Регулирование теплопотребления в тепловых пунктах.

Таблица 9.3

Тепловые пункты

Оснащение систем отопления счетчиками расходов

10-100% от потребления тепловой энергии

Снижение теплопотребления за счет автоматизации систем отопления путем установки индивидуальных тепловых пунктов (ИТП) .

20-30 % от потребления тепловой энергии

Составление руководств по эксплуатации, управлению и обслуживанию систем отопления и периодический контроль со стороны руководства учреждения за их выполнением

5-10 % от потребления тепловой энергии

Оснащение систем ГВС счетчиками расхода горячей воды

10-20 % от потребления горячей воды

    Энергосбережение в системах освещения

Во всем мире на наружное, бытовое и производственное освещение затрачивается значительная часть производимой электроэнергии. Для России актуальность решения задачи снижение затрат на искусственное освещение определяется большим расходом электроэнергии в расчете на миллион жителей (более чем в 1,5 раза, чем в Великобритании и Японии) и наличием дефицита электроэнергии в ряде регионов страны. Экономия электрической энергии при освещении может быть достигнута как за счет уменьшения установленной мощности, так и за счет уменьшения времени использования осветительного оборудования.

Приведем данные по эффективности источников излучения с точки зрения экономии электроэнергии и срока службы. Эффективность использования электроэнергии (Н) прежде всего определяется световой отдачей используемых источников излучения, равной отношению светового потока лампы (лм) к её мощности (Вт). В нижеследующей таблице приведены световая отдача и средний срок службы в часах различных наиболее распространенных в настоящее время типов источников света.

Таблица 9.1

Здесь: ЛН - лампы накаливания; ГЛН - галогенные лампы накаливания; ЛЛ - люминесцентные лампы; КЛЛ - компактные люминесцентные лампы; ДРЛ - дуговые ртутные лампы; МГЛ - металлогалогенные лампы; НЛВД - натриевые лампы высокого давления.

Из приведенной таблицы видно, что компактные люминесцентные лампы и лампы накаливания, применяемые в быту по светоотдаче отличаются примерно в 5 раз, т.е. на получение одного и того же светового потока для компактных люминесцентных ламп требуется в пять раз меньше электроэнергии. За время срока службы одна компактная люминесцентная лампа мощностью 20 Вт позволяет сэкономить, по сравнению с лампой накаливания, 800 кВт ч электроэнергии, для выработки которой потребовалось бы 250 кг каменного угля или 200 литров мазута. Тем не менее у нас в стране компактные люминесцентные лампы применяются ограниченно. Причины две: высокая стоимость и ограниченный выпуск этих ламп.

Достоинства современных источников света в полной мере могут быть реализованы с соответствующими пускорегулирующими аппаратами. В настоящее время для включения источников света используются: как электромагнитные пускорегулирующие аппараты (ЭМПРА, обычные, с пониженными потерями, с минимизированными потерями), так и электронные пускорегулирующие аппараты (ЭПРА, неуправляемых и управляемых).

К достоинствам ЭМПРА следует отнести чрезвычайно высокую надежность и относительно низкую стоимость.

К достоинствам комплектов "лампа-ЭПРА" следует отнести:

    практически полное отсутствие пульсаций светового потока ламп, что позволяет использовать данные комплекты для освещения помещений с тяжелой зрительной работой;

    высокие световые отдачи комплекта "КЛЛ - пускорегулирующий аппарат", достигающие световой отдачи самих ламп при их работе на частоте 50 Гц, что позволяет обеспечить экономию электроэнергии в осветительной установке на 25 %;

    больший на 30-40 % срок службы ламп при их работе с ЭПРА, по сравнению с ЭМПРА;

    возможность регулирования световым потоком ламп при работе с ЭПРА.

Однако при реализации указанных возможностей потенциал снижения установленной мощности искусственного освещения в общественных зданиях весьма ограничен. Например, лучшие из применяемых в настоящее время для внутреннего освещения общественных зданий источники света по характеристикам световой отдачи практически достигли “потолка” в 96–104 лм/Вт, а для современных типов светильников реальные значения КПД составляют 70–80% и резерв его повышения практически исчерпан. Все шире применяются отделочные материалы с высокими (до 0,8) коэффициентами отражения.

Тем не менее, возможно значительное уменьшение потребления электроэнергии в осветительных установках. Анализ показывает, что, например, в структуре энергопотребления общественных зданий доля расхода энергии на цели освещения достигает 70%, четкая же персональная ответственность и материальная заинтересованность в экономии электроэнергии трудно реализуемы. В этом случае оптимизировать энергопотребление можно за счет применения автоматизированных систем управления. Системы управления освещением поддерживают требуемые (нормируемые) уровни освещенности в процессе эксплуатации осветительной установки в соответствии с заданной программой, исключая перерасход электроэнергии.

При использовании системы управления освещением экономия электроэнергии достигается за счет нескольких факторов.

Во-первых, в начальный период эксплуатации люминесцентных ламп, а также при избыточном (по строительно-конструктивным, архитектурным или другим соображениям) количестве светильников создаваемая в помещении освещенность завышена и может автоматически уменьшаться до требуемого значения, что по оценке снижает энергопотребление на 15–25%.

Во-вторых, наиболее значительную экономию электроэнергии позволяет обеспечить рациональное использование естественного освещения (переход от искусственного освещения к совмещенному), так как в течение достаточно большого времени суток освещение может быть вообще отключено либо включено на минимальную мощность (1–10% от номинальной). Экономия может достигать 25–40%.

В-третьих, часовая наработка осветительной установки при отсутствии автоматического управления также превышает рациональные значения, так как при стихийном управлении искусственное освещение остается включенным при достаточном естественном освещении и отсутствии в освещаемых помещениях людей, а также в нерабочее время из-за забывчивости персонала.

Что еще почитать