Коэффициент теплопроводности сравнение материалов. Особенности определения теплопроводности строительных материалов

Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.

Теплопроводность – это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).

Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.

Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины , чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:

От чего зависит теплопроводность?

Значения данной величины могут зависеть от нескольких факторов . Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.

  • Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
  • На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
  • Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
  • Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.

Коэффициент теплопроводности

Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности , строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.

Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов , таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.

  • Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
  • Различные типы бетона.
  • Различные виды строительного и декоративного кирпича.

Расчёт толщины утеплителя

Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула , которая связывает толщину утеплителя и коэффициент его теплопроводности.

R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.

Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.

Теперь приведём примеры некоторых наиболее популярных утеплителей и их технических характеристик.

Какими бы ни были масштабы строительства, первым делом разрабатывается проект. В чертежах отражается не только геометрия строения, но и расчет главных теплотехнических характеристик. Для этого надо знать теплопроводность строительных материалов. Главная цель строительства заключается в сооружении долговечных сооружений, прочных конструкций, в которых комфортно без избыточных затрат на отопление. В связи с этим крайне важно знание коэффициентов теплопроводности материалов.

У кирпича лучшая теплопроводность

Характеристика показателя

Под термином теплопроводность понимается передача тепловой энергии от более нагретых предметов к менее нагретым. Обмен идет, пока не наступит температурного равновесия.

Теплопередача определяется отрезком времени, в течение которого температура в помещениях находится в соответствии с температурой окружающей среды. Чем меньше этот интервал, тем больше проводимость тепла стройматериала.

Для характеристики проводимости тепла используется понятие коэффициента теплопроводности, показывающего, сколько тепла за такое-то время проходит через такую-то площадь поверхности. Чем этот показатель выше, тем больше теплообмен, и постройка остывает гораздо быстрее. Таким образом, при возведении сооружений рекомендуется использовать стройматериалы с минимальной проводимостью тепла.

В этом видео вы узнаете о теплопроводности строительных материалов:

Как определить теплопотери

Главные элементы здания, через которые уходит тепло:

  • двери (5-20%);
  • пол (10-20%);
  • крыша (15-25%);
  • стены (15-35%);
  • окна (5-15%).

Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

Значение проводимости тепла зависит от таких параметров:

  1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
  2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
  3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

Коэффициент теплопроводности

В доме теплопотери неизбежны, а происходят они, когда за окном температура ниже, чем в помещениях. Интенсивность является переменной величиной и зависит от многих факторов, основные из которых следующие:

  1. Площадь поверхностей, участвующих в теплообмене.
  2. Показатель теплопроводности стройматериалов и элементов здания.
  3. Разница температур.

Для обозначения коэффициента теплопроводности стройматериалов используют греческую букву λ. Единица измерения – Вт/(м×°C). Расчет производится на 1 м² стены метровой толщины. Здесь принимается разница температур в 1°C.

Пример из практики

Условно материалы делятся на теплоизоляционные и конструкционные. Последние имеют наивысшую теплопроводность, из них строят стены, перекрытия, другие ограждения. По таблице материалов, при постройке стен из железобетона для обеспечения малого теплообмена с окружающей средой толщина их должна составлять примерно 6 м. Но тогда строение будет громоздким и дорогостоящим .

В случае неправильного расчета теплопроводности при проектировании жильцы будущего дома будут довольствоваться лишь 10% тепла от энергоносителей. Потому дома из стандартных стройматериалов рекомендуется утеплять дополнительно.

При выполнении правильной гидроизоляции утеплителя большая влажность не влияет на качество теплоизоляции, и сопротивление строения теплообмену станет гораздо более высоким.

Наиболее оптимальный вариант – использовать утеплитель

Наиболее распространенный вариант – сочетание несущей конструкции из высокопрочных материалов с дополнительной теплоизоляцией. Например:

  1. Каркасный дом. Утеплитель укладывается между стойками. Иногда при небольшом снижении теплообмена требуется дополнительное утепление снаружи главного каркаса.
  2. Сооружение из стандартных материалов. Когда стены кирпичные или шлакоблочные, утепление производится снаружи.

Стройматериалы для наружных стен

Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.

Коэффициент теплопроводности и его плотность.

Утеплители для стен

Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

Значение коэффициента λ приводится в следующей таблице.

Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

Строительство коттеджа или дачного дома - это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность - это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность - это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность - это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее - в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину - 10 метров, а длину - 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна - 10 м 2 .
  • Пол - 150 м 2 .
  • Стены - 300 м 2 .
  • Крыша (со скатами по длинной стороне) - 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d - толщина материала, а λ - коэффициент его теплопроводности.

Пол - 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал - ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна - 0,4 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S - площадь поверхности, T - разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия - это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Материал

Теплопроводность, Вт/(м*°C)

Плотность, т/м 3

Железобетон

Керамзитобетонные блоки

Керамический кирпич

Силикатный кирпич

Газобетонные блоки

Утеплители для стен

При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплая кровля

Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

Пол

Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

Заключение

При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления . Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Понятие теплопроводности

Теплопроводность – это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:

Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.

Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.

Таблица 1

Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.

Классификация строительных материалов и их теплопроводность

Теплопроводность железобетона, кирпичной кладки, керамзитобетонных блоков, обычно используемых для возведения ограждающих конструкций, отличается самыми высокими нормативными показателями. В строительной отрасли деревянные конструкции применяются значительно реже.

В зависимости от значения показателя теплопроводности , строительные материалы делятся на классы:

  • конструкционно-теплоизоляционные (от 0,210);
  • теплоизоляционные (до 0,082 – А, от 0,082 до 0,116 – Б и т.д.).

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении.

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м °С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Таблица 3.2

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

Читайте в статье:

Что такое теплопроводность

Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

  • бетон –1,51 Вт/м×К;
  • кирпич – 0,56;
  • древесина – 0,09-0,1;
  • песок – 0,35;
  • керамзит – 0,1;
  • сталь – 58.

Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.


Что такое коэффициент теплопроводности

Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.


Что влияет на теплопроводность строительных материалов

Есть несколько параметров, которые сильно влияют на тепловую проводимость.

  1. Структура самого материала.
  2. Его плотность и влажность.

Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.


Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.


Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.


Мнение эксперта

Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО "АСП Северо-Запад"

Спросить у специалиста

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

Фото Вид кирпича Теплопроводность, Вт/м*К
Керамический полнотелый 0,5-0,8
Керамический щелевой 0,34-0,43
Поризованный 0,22
Силикатный полнотелый 0,7-0,8
Силикатный щелевой 0,4
Клинкерный 0,8-0,9

Теплопроводность дерева: таблица по породам

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материал Плотность, кг/м³ Теплопроводность, Вт/м*К
Минеральная вата (базальтовая) 50 0,048
100 0,056
200 0,07
Стекловата 155 0,041
200 0,044
Пенополистирол 40 0,038
100 0,041
150 0,05
Пенополистирол экструдированный 33 0,031
Пенополиуретан 32 0,023
40 0,029
60 0,035
80 0,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материал Плотность, кг/м³ Теплопроводность, Вт/м*К
Бетон 2400 1,51
Железобетон 2500 1,69
Керамзитобетон 500 0,14
Керамзитобетон 1800 0,66
Пенобетон 300 0,08
Пеностекло 400 0,11

Коэффициент теплопроводности воздушной прослойки

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.


Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.


В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.


Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

Что еще почитать