Деление ядра возможно при условии. Деление ядер: процесс расщепления атомного ядра

Начал опыты по облучению урана медленными нейтронами от радий-бериллиевого источника. Целью этих опытов, послуживших толчком к многочисленным аналогичным экспериментам, выполненным в других лабораториях, было обнаружение неизвестных в то время трансурановых элементов, которые предполагалось получить в результате - -распада образующихся при захвате нейтронов изотопов урана. Новые радиоактивные продукты действительно были найдены, однако дальнейшие исследования показали, что радиохимические свойства многих "новых трансурановых элементов" отличались от ожидаемых. Исследование этих необычных продуктов продолжалось вплоть до 1939 г., когда радиохимики Ган и Штрассман доказали, что новые активности принадлежат не тяжелым элементам, а атомам среднего веса. Правильная интерпретация необычного ядерного процесса была дана в том же году Мейтнер и Фришем , предположившими, что возбужденное ядро урана делится на два приблизительно равных по массе осколка. На основании анализа энергий связи элементов периодической таблицы они пришли к выводу, что в каждом акте деления должно освобождаться очень большое количество энергии, в несколько десятков раз превышающее энергию, выделяющуюся при -распаде. Это подтверждалось опытами Фриша, зарегистрировавшего в ионизационной камере импульсы от осколков деления, и Жолио , показавшего на основании измерения пробегов осколков, что последние обладают большой кинетической энергией.

Из рис.1 видно, что наибольшую устойчивость имеют ядра с А = 40-120, т.е. находящиеся в середине периодической таблицы. Энергетически выгодными являются процессы соединения (синтеза) легких ядер и деления тяжелых ядер. В обоих случаях конечные ядра располагаются в той области значений А, где удельная энергия связи больше, чем удельная энергия связи начальных ядер. Поэтому указанные процессы должны идти с выделением энергии. Пользуясь данными по удельным энергиям связи, можно оценить энергию, которая освобождается в одном акте деления. Пусть ядро с массовым числом А 1 = 240 делится на два равных осколка с А 2 = 120. В этом случае удельная энергия связи осколков по сравнению с удельной энергией связи начального ядра увеличивается на 0.8 МэВ (от 1 7.6 МэВ для ядра с А 1 = 240 до 2 8.4 МэВ для ядра с А 2 = 120). При этом должна выделяться энергия

Е = А 1 1 - 2А 2 2 = А 1 ( 2 - 1)240(8.4-7.6) МэВ 200 МэВ.

. Элементарная теория деления

Рассчитаем величину энергии, выделяющейся при делении тяжелого ядра. Подставим в (f.2) выражения для энергий связи ядер (f.1), полагая А 1 =240 и Z 1 = 90. Пренебрегая последним членом в (f.1) вследствие его малости и подставив значения параметров a 2 и a 3 ,получаем

Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости. Энергия Е, освобождающаяся при делении, растет с увеличением Z 2 /A ; Z 2 /A = 17 для ядер в районе иттрия и циркония. Из полученных оценок видно, что деление энергетически выгодно для всех ядер с A > 90. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, посмотрим, как меняется форма ядра в процессе деления.

В процессе деления ядро последовательно проходит через следующие стадии (рис.2): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как меняется потенциальная энергия ядра на различных стадиях деления? После того как деление произошло, и осколки находятся друг от друга на расстоянии, много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Рассмотрим начальную стадию деления, когда ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. На этой стадии деления r - мера отклонения ядра от сферической формы (рис.3). Вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий Е" п + Е" к. Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия Е" п при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия Е" к уменьшается, так как увеличивается среднее расстояние между нуклонами. Пусть сферическое ядро в результате незначительной деформации, характеризующейся малым параметром, приняло форму аксиально-симметричного эллипсоида. Можно показать, что поверхностная энергия Е" п и кулоновская энергия Е" к в зависимости от меняются следующим образом:

В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.
В области тяжелых ядер 2Е п > Е к сумма поверхностной и кулоновской энергий увеличивается с увеличением . Из (f.4) и (f.5) следует, что при малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а, следовательно, и делению. Выражение (f.5) справедливо для малых значений (малых деформаций). Если деформация настолько велика, что ядро принимает форму гантели, то силы поверхностного натяжения, как и кулоновские силы, стремятся разделить ядро и придать осколкам шарообразную форму. На этой стадии деления увеличение деформации сопровождается уменьшением как кулоновской, так и поверхностной энергии. Т.е. при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. Теперь r имеет смысл расстояния между центрами будущих осколков. При удалении осколков друг от друга потенциальная энергия их взаимодействия будет уменьшаться, так как уменьшается энергия кулоновского отталкивания Е к. Зависимость потенциальной энергии от расстояния между осколками показана на рис. 4. Нулевой уровень потенциальной энергии соответствует сумме поверхностной и кулоновской энергий двух невзаимодействующих осколков.
Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера Н. Максимум потенциальной энергии делящегося ядра примерно равен
е 2 Z 1 Z 2 /(R 1 +R 2), где R 1 и R 2 - радиусы осколков. Например, при делении ядра золота на два одинаковых осколка е 2 Z 1 Z 2 /(R 1 +R 2) = 173 МэВ, а величина энергии Е, освобождающейся при делении (), равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 МэВ.
Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А (). Чем тяжелее ядро, тем меньше высота барьера Н, так как параметр делимости увеличивается с ростом массового числа:

Т.е. согласно капельной модели в природе должны отсутствовать ядра с Z 2 /А > 49, так как они практически мгновенно (за характерное ядерное время порядка 10 -22 с) самопроизвольно делятся. Возможность существования атомных ядер с Z 2 /А > 49 ("остров стабильности") объясняется оболочечной структурой. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z 2 /А показана на рис. 5.

Освобождение энергии при делении ядер. Так же как и в других ядерных реакциях, энергия, освобождающаяся при делении, эквивалентна разности масс взаимодействующих частиц и конечных продуктов. Так как энергия связи нуклона в уране а энергия связи одного нуклона в осколках при делении урана должна выделяться энергия

Таким образом, при делении ядра освобождается огромная энергия, подавляющая ее часть выделяется в виде кинетической энергии осколков деления.

Распределение продуктов деления по массам. Ядро урана в большинстве случаев делится несимметрично. Два ядерных осколка имеют соответственно разные скорости и разные массы.

Осколки по массам распадаются на две группы; одна вблизи криптона с другая вблизи ксенона Массы осколков относятся друг к другу в среднем как Из за-конов сохранения энергии и импульса можно получить, что кинетические энергии осколков должны быть обратно пропорциональны их массам:

Кривая выхода продуктов деления симметрична относительно вертикальной прямой, проходящей через точку Значительная ширина максимумов свидетельствует о многообразии путей деления.

Рис. 82. Распределение продуктов деления урана по массам

Перечисленные характеристики относятся главным образом к делению под действием тепловых нейтронов; в случае деления под действием нейтронов с энергией в несколько и больше, ядро распадается на два более симметричных по массам осколка.

Свойства продуктов деления. При делении атома урана происходит срыв очень многих электронов оболочки, и осколки деления представляют собой приблизительно -кратно ионизованные положительные ионы, которые при прохождении через вещество сильно ионизуют атомы. Поэтому пробеги осколков в воздухе небольшие и близки к 2 см.

Легко установить, что образующиеся при делении осколки должны быть радиоактивными, склонными к испусканию нейтронов. Действительно, у стабильных ядер отношение числа нейтронов и протонов меняется в зависимости от А следующим образом:

(см. скан)

Ядра, которые образовались при делении, лежат в середине таблицы и, следовательно, содержат больше нейтронов, чем это допустимо для их стабильности. Освобождаться от лишних нейтронов они могут как путем -распада, так и непосредственно испуская нейтроны.

Запаздывающие нейтроны. В одном из возможных вариантов деления образуется радиоактивный бром. На рис. 83 показана схема его распада, в конце которой находятся стабильные изотопы

Интересна особенность этой цепочки: криптон может освобождаться от лишнего нейтрона либо за счет -распада, либо если он образовался в возбужденном состоянии за счет прямого испускания нейтрона. Эти нейтроны появляются через 56 сек после деления (время жизни относительно -перехода в возбужденное состояние хотя сам испускает нейтроны практически мгновенно.

Рис. 83. Схема распада радиоактивного брома, образованного в возбужденном состоянии при делении урана

Они называются запаздывающими нейтронами. Со временем интенсивность запаздывающих нейтронов спадает по экспоненте, как при обычном радиоактивном распаде.

Энергия этих нейтронов равна энергии возбуждения ядра. Хотя они составляют лишь 0,75% от всех нейтронов, вылетающих при делении, в осуществлении цепной реакции запаздывающие нейтроны играют важную роль.

Мгновенные нейтроны. Свыше 99% нейтронов освобождается в течение чрезвычайно короткого времени; их называют мгновенными нейтронами.

При изучении процесса деления возникает фундаментальный вопрос, сколько нейтронов получается в одном акте деления; этот вопрос важен потому, что если их число в среднем велико они могут быть использованы для деления последующих ядер, т. е. возникает возможность создания цепной реакции. Над разрешением этого вопроса в 1939-1940 гг. работали практически во всех крупнейших ядерных лабораториях мира.

Рис. 84. Энергетический спектр нейтронов полученных при делении урана-235

Распределение энергии деления. Непосредственное измерение энергии осколков и энергии, уносимой другими продуктами деления, дало следующее приближенное распределение энергии

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнерома и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка:

где k > 1.

При делении ядра урана тепловой нейтрон с энергией ~ 0,1 эВ освобождает энергию ~ 200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана, – цепная реакция деления . Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях :

· управляемая ядерная реакция деления – создание атомных реакторов;

· неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 г. в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 г. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Как видно из рис. 4.2, с ростом значения А удельная энергия связи увеличивается вплоть до А » 50. Это поведение можно объяснить сложением сил; энергия связи отдельного нуклона усиливается, если его притягивают не один или два, а несколько других нуклонов. Однако в элементах со значениями массового числа больше А » 50 удельная энергия связи постепенно уменьшается с ростом А. Это связано, с тем, что ядерные силы притяжения являются короткодействующими радиусом действия порядка размеров отдельного нуклона. За пределами этого радиуса преобладают силы электростатического отталкивания. Если два протона удаляются более чем на 2,5×10 - 15 м, то между ними преобладают силы кулоновского отталкивания, а не ядерного притяжения.

Следствием такого поведения удельной энергии связи в зависимости от А является существование двух процессов - синтеза и деления ядер . Рассмотрим взаимодействие электрона и протона. При образовании атома водорода высвобождается энергия 13,6 эВ и масса атома водорода оказы­вается на 13,6 эВ меньше суммы масс свободного электрона и протона. Аналогично, масса двух легких ядер превышает мaccу после их соединения на DМ . Если их соединить, то они сольются с выделением энергии DМс 2 . Этот процесс называется синтезом ядер . Разность масс может превышать 0,5 %.

Если расщепляется тяжелое ядро на два более легких ядра, то их масса будет меньше массы родительского ядра на 0,1 %. У тяжелых ядер существует тенденция к делению на два более легких ядра с выделением энергии . Энергия атомной бомбы и ядерного реактора представляет собой энергию , высвобождающуюся при делении ядер . Энергия водородной бомбы - это энергия, выделяющаяся при ядерном синтезе. Альфа-распад можно рассматривать как сильно асимметричное деление, при котором родительское ядро М расщепляется на маленькую альфа-частицу и большое остаточное ядро . Альфа-распад возможен, только если в реакции

масса М оказывается больше суммы масс и альфа-частицы. У всех ядер с Z > 82 (свинец) .При Z > 92 (уран) полупериоды альфа-распада оказываются значительно длиннее возраста Земли, и такие элементы не встречаются в природе. Однако их можно создать искусственно. Например, плутоний (Z = 94) можно получить из урана в ядерном реакторе. Эта процедура стала обычной и обходится всего в 15 долларов за 1 г. До сих пор удалось получить элементы вплоть до Z = 118, однако гораздо более дорогой ценой и, как правило, в ничтожных количествах. Можно надеяться, что радиохимики научатся получать, хотя и в небольших количествах, новые элементы сZ > 118.

Если бы массивное ядро урана удалось разделить на две группы нуклонов, то эти группы нуклонов перестроились бы в ядра с более сильной связью. В процессе перестройки выделилась бы энергия. Спонтанное деление ядер разрешено законом сохранения энергии. Однако потенциальный барьер в реакции деления у встречающихся в природе ядер настолько высок, что вероятность спонтанного деления оказывается много меньше вероятности альфа-распада. Период полураспада ядер 238 U относительно спонтанного деления составляет 8×10 15 лет. Это более чем в миллион раз превышает возраст Земли. Если нейтрон сталкивается с тяжелымядром, то оно может перейти на более высокий энергетический уровень вблизи вершины электростатического потенциального барьера, в результате возрастет вероятность деления. Ядро в возбужденном состоянии может обладать значительным моментом импульса и приобрести овальную форму. Участки на периферии ядра легче проникают сквозь барьер, поскольку они частично уже находятся за барьером. У ядра овальной формы роль барьера еще больше ослабляется. При захвате ядром или медленного нейтрона образуются состояния с очень короткими временами жизни относительно деления. Разность масс ядра урана и типичных продуктов деления такова, что в среднем при делении урана высвобождается энергия 200 МэВ. Масса покоя ядра урана 2,2×10 5 МэВ. В энергию превращается около 0,1 % этой массы, что равно отношению 200 МэВ к величине 2,2×10 5 МэВ.

Оценка энергии , освобождающейся при делении , может быть получена из формулы Вайцзеккера :

При делении ядра на два осколка изменяется поверхностная энергия и кулоновская энергия , причем поверхностная энергия увеличивается, а кулоновская энергия уменьшается. Деление возможно в том случае, когда энергия, высвобождающаяся при делении, Е > 0.

.

Здесь A 1 = A /2, Z 1 = Z /2. Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости . Энергия Е , освобождающаяся при делении, растет с увеличением Z 2 /A .

В процессе деления ядро изменяет форму - последовательно проходит черезследующие стадии (рис. 9.4): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка.

После того как деление произошло, и осколки находятся друг от друга на расстоянии много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Вследствие эволюции формы ядра, изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий . Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между нуклонами. В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер сумма поверхностной и кулоновской энергий увеличивается с увеличением деформации. При малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно и делению. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию, превышающую высоту барьера деления Н .

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А. Чем тяжелее ядро, тем меньше высота барьера Н , так как параметр делимости увеличивается с ростом массового числа:

Более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление. Из формулы Вайцзеккера следует, что высота барьера деления обращается в нуль при . Т.е. согласно капельной модели в природе должны отсутствовать ядра с , так как они практически мгновенно (за характерное ядерное время порядка 10 –22 с) самопроизвольно делятся. Существование атомных ядер с («остров стабильности ») объясняется оболочечной структурой атомных ядер. Самопроизвольное деление ядер с , для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения осколков через потенциальный барьер и носит название спонтанного деления . Вероятность спонтанного деления растет с увеличением параметра делимости , т.е. с уменьшением высоты барьера деления.

Вынужденное деление ядер с может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, α-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

Массы осколков, образующихся при делении тепловыми нейтронами, не равны. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов. На рис. 9.5 приведено распределение по массам при делении . Наиболее вероятная комбинация массовых чисел - 95 и 139.

Отношение числа нейтронов к числу протонов в ядре равно 1,55, в то время как у стабильных элементов, имеющих массу, близкую к массе осколков деления, это отношение 1,25 - 1,45. Следовательно, осколки деления сильно перегружены нейтронами и неустойчивы к β-распаду - радиоактивны.

В результате деления высвобождается энергия ~ 200 МэВ. Около 80 % ее приходится на энергию осколков. За один акт деления образуется более двух нейтронов деления со средней энергией ~ 2 МэВ.

В 1 г любого вещества содержится . Деление 1 г урана сопровождается выделением ~ 9×10 10 Дж. Это почти в 3 млн раз превосходит энергию сжигания 1 г угля (2,9×10 4 Дж). Конечно, 1 г урана обходится значительно дороже 1 г угля, ностоимость 1 Дж энергии, полученной сжиганием угля, оказывается в 400 раз выше, чем в случае уранового топлива. Выработка 1 кВт×ч энергии обходилась в 1,7 цента на электростанциях, работающих на угле, и в 1,05 цента на ядерных электростанциях.

Благодаря цепной реакции процесс деления ядер можно сделать самоподдерживающимся . При каждом делении вылетают 2 или 3 нейтрона (рис. 9.6). Если одному из этих нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся.

Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой . Первая такая сборка, названная ядерным реактором , была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске (рис. 9.7).

Массу и можно также сделать надкритической . В этом случае возникающие при делении нейтроны будут вызывать несколько вторичных делений. Поскольку нейтроны движутся со скоростями, превышающими 10 8 см/с, надкритическая сборка может полностью прореагировать (или разлететься) быстрее, чем за тысячную долю секунды. Такое устройство называется атомной бомбой . Ядерный заряд из плутония или урана переводят в надкритическое состояние обычно с помощью взрыва. Подкритическую массу окружают химической взрывчаткой. При ее взрыве плутониевая или урановая масса подвергается мгновенному сжатию. Поскольку плотность сферы при этом значительно возрастает, скорость поглощения нейтронов оказывается выше скорости потери нейтронов за счет их вылета наружу. В этом и заключается условие надкритичности.

На рис. 9.8 изображена схема атомной бомбы «Малыш», сброшенной на Хиросиму. Ядерной взрывчаткой в бомбе служил , разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

При взрыве 1 т тринитротолуола (ТНТ) высвобождается 10 9 кал, или 4×10 9 Дж. При взрыве атомной бомбы, расходующей 1 кг плутония , высвобождается около 8×10 13 Дж энергии.

Или это почти в 20 000 раз больше, чем при взрыве 1 т ТНТ. Такая бомба называется 20-килотонной бомбой. Современные бомбы мощностью в мегатонны в миллионы раз мощнее обычной ТНТ-взрывчатки.

Производство плутония основано на облучении 238 U нейтронами, ведущем к образованию изотопа 239 U, который в результате бета-распада превращается в 239 Np, а затем после еще одного бета-распада в 239 Рu. При поглощении нейтрона с малой энергией оба изотопа 235 U и 239 Рu испытывают деление. Продукты деления характеризуются более сильной связью (~ 1 МэВ на нуклон), благодаря чему в результате деления высвобождается примерно 200 МэВ энергии.

Каждый грамм израсходованного плутония или урана порождает почти грамм радиоактивных продуктов деления, обладающих огромной радиоактивностью.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Как этот процесс был открыт и описан. Раскрывается его применение в качестве источника энергии и ядерного оружия.

«Неделимый» атом

Двадцать первый век изобилует такими выражениями, как «энергия атома», «ядерные технологии», «радиоактивные отходы». То и дело в газетных заголовках мелькают сообщения о возможности радиоактивного загрязнения почвы, океанов, льдов Антарктики. Однако обыкновенный человек часто не очень хорошо себе представляет, что это за область науки и как она помогает в повседневной жизни. Начать стоит, пожалуй, с истории. С самого первого вопроса, который задавал сытый и одетый человек, его интересовало, как устроен мир. Как видит глаз, почему слышит ухо, чем вода отличается от камня - вот что исстари волновало мудрецов. Еще в древней Индии и Греции некоторые пытливые умы предположили, что существует минимальная частица (её еще называли «неделимой»), обладающая свойствами материала. Средневековые химики подтвердили догадку мудрецов, и современное определение атома следующее: атом - это наименьшая частица вещества, которая является носителем его свойств.

Части атома

Однако развитие технологии (в частности, фотографии) привело к тому, что атом перестал считаться наименьшей возможной частицей вещества. И хотя отдельно взятый атом электронейтрален, ученые достаточно быстро поняли: он состоит из двух частей с разными зарядами. Количество положительно заряженных частей компенсирует количество отрицательных, таким образом, атом остается нейтральным. Но однозначной модели атома не существовало. Так как в тот период все еще господствовала классическая физика, то высказывались различные предположения.

Модели атома

Поначалу была предложена модель «булка с изюмом». Положительный заряд как бы заполнял собой все пространство атома, и в нем, как изюм в булке, распределялись отрицательные заряды. Знаменитый определил следующее: в центре атома расположен очень тяжелый элемент с положительным зарядом (ядро), а вокруг располагаются значительно более легкие электроны. Масса ядра в сотни раз тяжелее суммы всех электронов (оно составляет 99,9 процентов от массы всего атома). Таким образом, родилась планетарная модель атома Бора. Однако некоторые из её элементов противоречили принятой на тот момент классической физике. Поэтому была разработана новая, квантовая механика. С ее появлением начался неклассический период науки.

Атом и радиоактивность

Из всего сказанного выше становится понятно, что ядро - это тяжелая, положительно заряженная часть атома, которая составляет его основную массу. Когда и положений электронов на орбите атома были хорошо изучены, пришло время понять природу атомного ядра. На помощь пришла гениальная и неожиданно открытая радиоактивность. Она помогла раскрыть сущность тяжелой центральной части атома, так как источник радиоактивности - деление ядер. На рубеже девятнадцатого и двадцатого столетия, открытия сыпались одно за другим. Теоретическое решение одной задачи вызывало необходимость ставить новые опыты. Результаты экспериментов порождали теории и гипотезы, которые требовалось подтвердить или опровергнуть. Зачастую величайшие открытия появлялись просто потому, что именно таким образом формула становилась удобной для вычислений (как, например, квант Макса Планка). Еще в начале эры фотографии ученые знали: урановые соли засвечивают светочувствительную пленку, но они не подозревали, что в основе этого явления лежит деление ядер. Поэтому радиоактивность изучали, чтобы понять природу распада ядра. Очевидно, что излучение порождались квантовыми переходами, но было не до конца ясно, какими именно. Чета Кюри добывала чистые радий и полоний, обрабатывая практически вручную урановую руду, чтобы получить ответ на этот вопрос.

Заряд радиоактивного излучения

Резерфорд много сделал для изучения строения атома и внес вклад и в исследование того, как происходит деление ядра атома. Ученый поместил излучение, выделяющееся радиоактивным элементом, в магнитное поле и получил потрясающий результат. Оказалось, что радиация состоит из трех компонентов: одна была нейтральной, а две другие - положительно и отрицательно заряженными. Изучение деления ядра началось с определения его составляющих. Было доказано, что ядро может делиться, отдавать часть своего положительного заряда.

Строение ядра

Позже выяснилось, что атомное ядро состоит не только из положительно заряженных частиц протонов, но и нейтральных частиц нейтронов. Все вместе они называются нуклонами (от английского «nucleus», ядро). Однако, ученые вновь натолкнулись на проблему: масса ядра (то есть количество нуклонов) не всегда соответствовала его заряду. У водорода ядро имеет заряд +1, а масса может быть и три, и два, и один. У следующего за ним в периодической таблице гелия заряд ядра +2, при этом его ядро содержит от 4 до 6 нуклонов. Более сложные элементы могут иметь гораздо большее количество разных масс при одном и том же заряде. Такие вариации атомов называются изотопами. Причем некоторые изотопы оказались вполне устойчивыми, другие же быстро распадались, так как для них было характерно деление ядер. Какому принципу отвечало количество нуклонов устойчивости ядер? Почему добавление всего лишь одного нейтрона к тяжелому и вполне стабильному ядру приводило к его расколу, к выделению радиоактивности? Как ни странно, ответ на этот важный вопрос до сих пор не найден. Опытным путем выяснилось, что определенным количествам протонов и нейтронов соответствуют устойчивые конфигурации атомных ядер. Если в ядре 2, 4, 8, 50 нейтронов и/или протонов, то ядро однозначно будет устойчивым. Эти числа даже называют магическими (и назвали их так взрослые ученые, ядерные физики). Таким образом, деление ядер зависит от их массы, то есть от количества входящих в них нуклонов.

Капля, оболочка, кристалл

Определить фактор, который отвечает за устойчивость ядра, на данный момент не удалось. Существует множество теорий модели Три самые знаменитые и разработанные зачастую противоречат друг другу в разных вопросах. Согласно первой, ядро - это капля специальной ядерной жидкости. Как и для воды, для него характерны текучесть, поверхностное натяжение, слияние и распад. В оболочечной модели в ядре тоже существуют некие уровни энергии, которые заполняются нуклонами. Третья утверждает, что ядро - среда, которая способна преломлять особые волны (дебройлевские), при этом коэффициент преломления - это Однако ни одна модель пока не смогла в полной мере описать, почему при определенной критической массе именно этого химического элемента, начинается расщепление ядра.

Каким бывает распад

Радиоактивность, как уже было сказано выше, была обнаружена в веществах, которые можно найти в природе: уране, полонии, радии. Например, только что добытый, чистый уран радиоактивен. Процесс расщепления в данном случае будет спонтанным. Без каких-либо внешних воздействий определенное количество атомов урана испустит альфа-частицы, самопроизвольно преобразуясь в торий. Есть показатель, который называется периодом полураспада. Он показывает, за какой промежуток времени от начального числа части останется примерно половина. Для каждого радиоактивного элемента период полураспада свой - от долей секунды для калифорния до сотен тысяч лет для урана и цезия. Но существует и вынужденная радиоактивность. Если ядра атомов бомбардировать протонами или альфа-частицами (ядрами гелия) с высокой кинетической энергией, то они могут «расколоться». Механизм превращения, конечно, отличается от того, как разбивается любимая мамина ваза. Однако некая аналогия прослеживается.

Энергия атома

Пока что мы не ответили на вопрос практического характера: откуда при делении ядра берется энергия. Для начала надо пояснить, что при образовании ядра действуют особые ядерные силы, которые называются сильным взаимодействием. Так как ядро состоит из множества положительных протонов, остается вопрос, как они держатся вместе, ведь электростатические силы должны достаточно сильно отталкивать их друг от друга. Ответ одновременно и прост, и нет: ядро держится за счет очень быстрого обмена между нуклонами особыми частицами - пи-мезонами. Эта связь живет невероятно мало. Как только прекращается обмен пи-мезонами, ядро распадается. Также точно известно, что масса ядра меньше суммы всех составляющих его нуклонов. Этот феномен получил название дефекта масс. Фактически недостающая масса - это энергия, которая затрачивается на поддержание целостности ядра. Как только от ядра атома отделяется какая-то часть, эта энергия выделяется и на атомных электростанциях преобразуется в тепло. То есть энергия деления ядра - это наглядная демонстрация знаменитой формулы Эйнштейна. Напомним, формула гласит: энергия и масса могут превращаться друг в друга (E=mc 2).

Теория и практика

Теперь расскажем, как это сугубо теоретическое открытие используется в жизни для получения гигаватт электроэнергии. Во-первых, необходимо отметить, что в управляемых реакциях используется вынужденное деление ядер. Чаще всего это уран или полоний, которые бомбардируется быстрыми нейтронами. Во-вторых, нельзя не понимать, что деление ядер сопровождается созданием новых нейтронов. В результате количество нейтронов в зоне реакции способно нарастать очень быстро. Каждый нейтрон сталкивается с новыми, еще целыми ядрами, расщепляет их, что приводит к росту выделения тепла. Это и есть цепная реакция деления ядер. Неконтролируемый рост количества нейтронов в реакторе способен привести к взрыву. Именно это и произошло в 1986 году на Чернобыльской АЭС. Поэтому в зоне реакции всегда присутствует вещество, которое поглощает лишние нейтроны, предотвращая катастрофу. Это графит в форме длинных стержней. Скорость деления ядер можно замедлить, погружая стрежни в зону реакции. Уравнение составляется конкретно для каждого действующего радиоактивного вещества и бомбардирующих его частиц (электроны, протоны, альфа-частицы). Однако конечный выход энергии подсчитывается согласно закону сохранения: Е1+Е2=Е3+Е4. То есть полная энергия исходного ядра и частицы (Е1+Е2) должно быть равным энергии получившегося ядра и выделившейся в свободном виде энергии (Е3+Е4). Уравнение ядерной реакции также показывает, какое вещество получается в результате распада. Например, для урана U=Th+He, U=Pb+Ne, U=Hg+Mg. Здесь не приведены изотопы химических элементов, однако это важно. Например, существует целых три возможности деления урана, при которых образуются различные изотопы свинца и неона. Почти в ста процентах случаев реакция деления ядра дает радиоактивные изотопы. То есть при распаде урана получается радиоактивный торий. Торий способен распасться до протактиния, тот - до актиния, и так далее. Радиоактивными в этом ряду могут быть и висмут, и титан. Даже водород, содержащий в ядре два протона (при норме один протон), называется иначе - дейтерий. Вода, образованная с таким водородом, называется тяжелой и заполняет первый контур в ядерных реакторах.

Немирный атом

Такие выражения, как «гонка вооружений», «холодная война», «ядерная угроза» современному человеку могут показаться историческими и неактуальными. Но когда-то каждый выпуск новостей почти по всему миру сопровождался репортажами о том, сколько изобретено видов ядерного оружия и как надо с этим бороться. Люди строили подземные бункеры и делали запасы на случай ядерной зимы. Целые семьи работали на создание убежища. Даже мирное использование реакций деления ядер может привести к катастрофе. Казалось бы, Чернобыль научил человечество аккуратности в этой сфере, но стихия планеты оказалась сильнее: землетрясение в Японии повредило весьма надежные укрепления АЭС «Фукусима». Энергию ядерной реакции использовать для разрушения гораздо легче. Технологам необходимо лишь ограничить силу взрыва, чтобы не разрушить ненароком всю планету. Наиболее «гуманные» бомбы, если их можно так назвать, не загрязняют окрестности радиацией. В целом чаще всего они используют неконтролируемую цепную реакцию. То, чего на атомных электростанциях стремятся всеми силами избежать, в бомбах добиваются весьма примитивным способом. Для любого естественно радиоактивного элемента существует некоторая критическая масса чистого вещества, в котором цепная реакция зарождается сама собой. Для урана, например, это всего пятьдесят килограммов. Так как уран очень тяжелый, это лишь небольшой металлический шарик 12-15 сантиметров в диаметре. Первые атомные бомбы, сброшенные на Хиросиму и Нагасаки, были сделаны именно по такому принципу: две неравные части чистого урана просто соединялись и порождали ужасающий взрыв. Современное оружие, вероятно, более сложное. Однако про критическую массу не стоит забывать: между небольшими объемами чистого радиоактивного вещества при хранении должны быть преграды, не позволяющие соединиться частям.

Источники радиации

Все элементы с зарядом атомного ядра больше 82 радиоактивны. Почти все более легкие химические элементы обладают радиоактивными изотопами. Чем тяжелее ядро, тем меньше его время жизни. Некоторые элементы (типа калифорния) можно добыть только искусственным путем - сталкивая тяжелые атомы с более легкими частицами, чаще всего на ускорителях. Так как они очень нестабильны, в земной коре их нет: при формировании планеты они очень быстро распались на другие элементы. Вещества с более легкими ядрами, например уран, вполне можно добывать. Процесс этот долгий, пригодного к добыче урана даже в очень богатых рудах содержится менее одного процента. Третий путь, пожалуй, указывает на то, что новая геологическая эпоха уже началась. Это добыча радиоактивных элементов из радиоактивных отходов. После отработки топлива на электростанции, на подлодке или авианосце, получается смесь исходного урана и конечного вещества, результата деления. На данный момент это считается твердыми радиоактивными отходами и стоит острый вопрос, как их захоранивать так, чтобы они не загрязнили окружающую среду. Однако есть вероятность, что в недалеком будущем уже готовые концентрированные радиоактивные вещества (к примеру, полоний), будут добывать из этих отходов.

В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238 U нейтронами. Идея Э. Ферми заключалась в том, что в результате β - -распада изотопа 239 U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92 U + n → 56 Ba + 36 Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236 U, образовавшееся в результате захвата нейтрона изотопом 235 U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236 U, образующегося при захвате теплового нейтрона 235 U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235 U. Для наиболее распространенного изотопа 238 U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239 U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238 U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238 U составляет 10 16 –10 17 лет, в то время как период распада изотопа 238 U составляет 4.5∙10 9 лет. Основным каналом распада изотопа 238 U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238 U, нужно было регистрировать один акт деления на фоне 10 7 –10 8 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z 2 /A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков. С увеличением заряда ядра доля спонтанного деления по сравнению с α-распадом увеличивается.

Изотоп Период полураспада Каналы распада
235 U 7.04·10 8 лет α (100%), SF (7·10 -9 %)
238 U 4.47·10 9 лет α (100%), SF (5.5·10 -5 %)
240 Pu 6.56·10 3 лет α (100%), SF (5.7·10 -6 %)
242 Pu 3.75·10 5 лет α (100%), SF (5.5·10 -4 %)
246 Cm 4.76·10 3 лет α (99,97%), SF (0.03%)
252 Cf 2.64 лет α (96,91%), SF (3.09%)
254 Cf 60.5 лет α (0,31%), SF (99.69%)
256 Cf 12.3 лет α (7.04·10 -8 %), SF (100%)

Деление ядер. История

1934 г. − Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра, природу которых установить не удалось.
Л. Сциллард выдвинул идею цепной ядерной реакции.

1939 г. − О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий.
Л. Мейтнер и О. Фриш впервые объявили, что под действием нейтронов происходило деление урана на два сравнимых по массе осколка.
Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.
Я. Френкель развил капельную теорию деления ядер медленными нейтронами.
Л. Сциллард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф. Жолио-Кюри, Я. Зельдович, Ю. Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1940 г. − Г. Флеров и К. Петржак открыли явление спонтанного деления ядер урана U.

1942 г. − Э. Ферми осуществил управляемую цепную реакцию деления в первом атомного реакторе.

1945 г. − Первое испытание ядерного оружия (штат Невада, США). На японские города Хиросима (6 августа) и Нагасаки (9 августа) американскими войсками были сброшены атомные бомбы.

1946 г. − Под руководством И.В. Курчатова был пущен первый в Европе реактор.

1954 г. − Запущена первая в мире атомная электростанция (г. Обнинск, СССР).

Деление ядер. С 1934 г. Э.Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами.
Атомы, возникающие во всех этих ядерных реак­циях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы
урана происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникаю­щие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полурас­пада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоя­щие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 ·10 15 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.
Расщепление урана посредством нейтронов дает те­перь возможность того использования атомной энер­гии, которое уже многим мерещилось, как «мечта Жюля Верна».

М. Лауэ, «История физики»

1939 г. О. Ган и Ф. Штрассман, облучая соли урана тепловыми нейтронами, обнаружили среди продуктов реакции барий (Z = 56)


Отто Ганн
(1879 – 1968)

Деление ядер – расщепление ядра на два (реже три) ядра с близкими массами, которые называют осколками деления. При делении возникают и другие частицы – нейтроны, электроны, α-частицы. В результате деления высвобождается энергия ~200 МэВ. Деление может быть спонтанным либо вынужденным под действием других частиц, чаще всего нейтронов.
Характерной особенностью деления является то, что осколки деления, как правило, существенно различаются по массам, т. е. преобладает асимметричное деление. Так, в случае наиболее вероятного деления изотопа урана 236 U, отношение масс осколков равно 1.46. Тяжёлый осколок имеет при этом массовое число 139 (ксенон), а легкий – 95 (стронций). С учётом испускания двух мгновенных нейтронов рассматриваемая реакция деления имеет вид

Нобелевская премия по химии
1944 г. – О. Ган.
За открытие реакции деления ядер урана нейтронами.

Осколки деления


Зависимость средних масс легкой и тяжелой групп осколков от массы делящегося ядра.

Открытие деления ядер. 1939 г.

Я приехал в Швецию, где Лизе Мейтнер страдала от одиночества, и я, как преданный племянник, решил навестить ее на рождество. Она жила в маленьком отеле Кунгэльв около Гетеборга. Я застал ее за завтраком. Она обдумывала письмо, только что полученное ею от Гана. Я был весьма скептически настроен относительно содержания письма, в котором сообщалось об образовании бария при облучении урана нейтронами. Однако ее привлекла такая возможность. Мы гуляли по снегу, она пешком, я на лыжах (она сказала, что может проделать этот путь, не отстав от меня, и доказала это). К концу прогулки мы уже могли сформулировать некоторые выводы; ядро не раскалывалось, и от него не отлетали куски, а это был процесс, скорее напоминавший капельную модель ядра Бора; подобно капле ядро могло удлиняться и делиться. Затем я исследовал, каким образом электрический заряд нуклонов уменьшает поверхностное натяжение, которое, как мне удалось установить, падает до нуля при Z = 100 и, возможно, весьма мало для урана. Лизе Мейтнер занималась определением энергии, выделяющейся при каждом распаде из-за дефекта массы. Она очень ясно представляла себе кривую дефекта масс. Оказалось, что за счет электростатического отталкивания элементы деления приобрели бы энергию около 200 МэВ, а это как раз соответствовало энергии, связанной с дефектом массы. Поэтому процесс мог идти чисто классически без привлечения понятия прохождения через потенциальный барьер, которое, конечно, оказалось бы тут бесполезным.
Мы провели вместе два или три дня на рождество. Затем я вернулся в Копенгаген и едва успел сообщить Бору о нашей идее в тот самый момент, когда он уже садился на пароход, отправляющийся в США. Я помню, как он хлопнул себя по лбу, едва я начал говорить, и воскликнул: «О, какие мы были дураки! Мы должны были заметить это раньше». Но он не заметил, и никто не заметил.
Мы с Лизе Мейтнер написали статью. При этом мы постоянно поддерживали связь по междугородному телефону Копенгаген – Стокгольм.

О. Фриш, Воспоминания. УФН. 1968. Т. 96, вып.4, с. 697.

Спонтанное деление ядер

В описанных ниже опытах мы использовали метод, впервые предложенный Фришем для регистрации процессов деления ядер. Ионизационная камера с пластинами, покрытыми слоем окиси урана, соединяется с линейным усилителем, настроенным таким образом, что α частицы, вылетающие из урана, не регистрируются системой; импульсы же от осколков, намного превышающие по величине импульсы от α-частиц, отпирают выходной тиратрон и считаются механическим реле.
Была специально сконструирована ионизационная камера в виде многослойного плоского конденсатора с общей площадью 15 пластин в 1000 см. Пластины, расположенные друг от друга на расстоянии 3 мм, были покрыты слоем окиси урана 10-20 мг/см
2 .
В первых же опытах с настроенным для счета осколков усилителем удалось наблюдать самопроизвольные (в отсутствие источника нейтронов) импульсы на реле и осциллографе. Число этих импульсов было невелико (6 в 1 час), и вполне понятно поэтому, что это явление не могло наблю­даться с камерами обычного типа…
Мы склонны думать, что наблюдаемый нами эффект следует приписать осколкам, получающимся в результате спонтанного деления урана…

Спонтанное деление следует приписать одному из невозбужденных изотопов U с периодами полураспада, полученными из оценки наших результатов:

U 238 – 10 16 ~ 10 17 лет,
U
235 – 10 14 ~ 10 15 лет,
U
234 – 10 12 ~ 10 13 лет.

Распад изотопа 238 U

Спонтанное деление ядер


Периоды полураспада спонтанно делящихся изотопов Z = 92 - 100

Первая экспериментальная система с уран-графитовой решёткой была построена в 1941 г. под руководством Э. Ферми. Она представляла собой графитовый куб с ребром длиной 2,5 м, содержащий около 7 т окиси урана, заключенной в железные сосуды, которые были размещены в кубе на одинаковых расстояниях друг от друга. На дне уран-графитовой решётки был помещён RaBe источник нейтронов. Коэффициент размножения в такой системе был ≈ 0.7. Окись урана содержала от 2 до 5% примесей. Дальнейшие усилия были направлены на получение более чистых материалов и к маю 1942 г. была получены окись урана, в которой примесь составляла меньше 1%. Чтобы обеспечить цепную реакцию деления, было необходимо использовать большое количество графита и урана – порядка нескольких тонн. Примеси должны были составлять меньше нескольких миллионных долей. Реактор, собранный к концу 1942 г. Ферми в Чикагском университете, имел форму срезанного сверху неполного сфероида. Он содержал 40 т урана и 385 т графита. Вечером 2 декабря 1942 г. после того, как были убраны стержни нейтронного поглотителя, было обнаружено, что внутри реактора происходит цепная ядерная реакция. Измеренный коэффициент составлял 1.0006. Вначале реактор работал на уровне мощности 0.5 Вт. К 12 декабря его мощность была увеличена до 200 Вт. В дальнейшем реактор был перенесен в более безопасное место, и мощность его была повышена до нескольких кВт. При этом реактор потреблял 0.002 г урана-235 в день.

Первый ядерный реактор в СССР

Здание для первого в СССР исследовательского ядерного реактора Ф-1 было готово к июню 1946 г.
После того как были проведены все необходимые эксперименты, раз­работана система управления и защиты реактора, установлены размеры реактора, проведены все необходимые опыты с моделями реактора, определена плотность нейтронов на нескольких моделях, получены графитовые блоки (так называемой ядерной чистоты) и (после нейтронно-физической проверки) урановые блочки, в ноябре 1946 г. приступили к сооружению реактора Ф-1.
Общий радиус реактора был 3,8 м. Для него потребовалось 400 т графита и 45 т урана. Реактор собирали слоями и в 15 ч 25 декабря 1946 г. был собран последний, 62-й слой. После извлечения так называемых аварийных стержней был произведен подъем регулирующего стержня, начался отсчет плотности нейтронов, и в 18 ч 25 декабря 1946 г. ожил, заработал первый в СССР реактор. Это была волнующая победа ученых - создателей ядерного реактора и всего советского народа. А через полтора года, 10 июня 1948 г., промышленный реактор с водой в каналах достиг критического состояния и вскоре началось промышленное производство нового вида ядерного горючего − плутония.

Что еще почитать