Молекулярная физика. Температура и ее измерение

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 0 0 С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 100 0 С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t 0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t 0 = 0 0 C; V – объём газа при температуре t 0 , α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t 0 = 0 0 C; P – объём газа при температуре t 0 , α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 273 0 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

Каждый человек ежедневно сталкивается с понятием температуры. Термин прочно вошел в нашу повседневную жизнь: мы разогреваем в микроволновой печи продукты или готовим еду в духовом шкафу, интересуемся погодой на улице или узнаем, холодная ли вода в реке - все это тесно связано с данным понятием. А что такое температура, что означает этот физический параметр, в чем он измеряется? На эти и другие вопросы ответим в статье.

Физическая величина

Давайте рассмотрим, что такое температура с точки зрения изолированной системы, находящейся в термодинамическом равновесии. Термин пришел из латинского языка и означает "надлежащее смешение", "нормальное состояние", "соразмерность". Эта величина характеризует состояние термодинамического равновесия какой-либо макроскопической системы. В том случае, когда находится вне равновесия, с течением времени происходит переход энергии от более нагретых объектов к менее нагретым. В результате получается выравнивание (изменение) температуры во всей системе. Это является первым постулатом (нулевым началом) термодинамики.

Температура определяет распределение составных частиц системы по уровням энергии и по скоростям, степень ионизации веществ, свойства равновесного электромагнитного излучения тел, полную объемную плотность излучения. Так как для системы, которая находится в термодинамическом равновесии, перечисленные параметры равны, то их принято называть температурой системы.

Плазма

Кроме равновесных тел, существуют системы, у которых состояние характеризуется несколькими значениями температуры, не равными между собой. Хорошим примером является плазма. Она состоит из электронов (легких заряженных частиц) и ионов (тяжелых заряженных частиц). При их столкновениях происходит быстрая передача энергии от электрона к электрону и от иона к иону. А вот между неоднородными элементами происходит медленный переход. Плазма может находиться в состоянии, при котором электроны и ионы в отдельности близки к равновесию. В таком случае можно принять отдельные температуры каждого вида частиц. Однако между собой эти параметры будут отличаться.

Магниты

В телах, у которых частицы обладают магнитным моментом, передача энергии обычно происходит медленно: от поступательных к магнитным степеням свободы, которые связаны с возможностью изменения направлений момента. Получается, что существуют состояния, при которых тело характеризуется температурой, не совпадающей с кинетическим параметром. Она соответствует поступательному движению элементарных частиц. Магнитная температура определяет часть внутренней энергии. Она может быть как положительной, так и отрицательной. В процессе выравнивания энергия будет передаваться от частиц с большим значением к частицам с меньшим значением температуры в том случае, если они являются одновременно положительными либо отрицательными. В противной ситуации этот процесс будет протекать в обратном направлении - отрицательная температура будет «выше» положительной.

А зачем это надо?

Парадокс заключается в том, что обывателю, чтобы провести процесс измерения как в быту, так и в промышленности, даже нет необходимости знать, что такое температура. Для него будет достаточным понимать, что это степень нагретости объекта или среды, тем более что с этими терминами мы знакомы с детства. Действительно, большая часть практических приборов, предназначенных для измерения этого параметра, фактически измеряет иные свойства веществ, которые изменяются от уровня нагрева или охлаждения. Например, давление, электрическое сопротивление, объем т. д. Далее такие показания вручную или автоматически пересчитываются в нужную величину.

Получается, чтобы определить температуру, нет необходимости изучать физику. По такому принципу живет большая часть населения нашей планеты. Если работает телевизор, то нет необходимости разбираться в переходных процессах полупроводниковых приборов, изучать, в розетке или как поступает на сигнал. Люди привыкли, что в каждой области есть специалисты, которые смогут починить или отладить систему. Обыватель не хочет напрягать свой мозг, ведь куда лучше смотреть мыльную оперу или футбол по «ящику», потягивая холодное пиво.

А я хочу знать

Но есть люди, чаще всего это студенты, которые либо в меру своей любознательности, либо по необходимости вынуждены изучать физику и определять, что такое температура на самом деле. В результате в своем поиске они попадают в дебри термодинамики и изучают ее нулевой, первый и второй законы. Кроме того, пытливому уму придется постичь и энтропию. И в конце своего пути он наверняка признает, что определение температуры в качестве параметра обратимой тепловой системы, которая не зависит от типа рабочего вещества, не добавит ясности в ощущение этого понятия. И все равно видимой частью будут принятые международной системой единиц (СИ) какие-то градусы.

Температура как кинетическая энергия

Более "осязаемым" является подход, который называют молекулярно-кинетической теорией. Из него формируется представление того, что теплота рассматривается в качестве одной из форм энергии. Например, кинетическая энергия молекул и атомов, параметр, усредненный по огромному числу хаотично движущихся частиц, оказывается мерилом того, что принято называть температурой тела. Так, частицы нагретой системы движутся быстрее, чем холодной.

Поскольку рассматриваемый термин тесно связан с усредненной кинетической энергией группы частиц, было бы вполне естественным в качестве единицы измерения температуры использовать джоуль. Тем не менее этого не происходит, что объясняется тем, что энергия теплового движения элементарных частиц весьма мала по отношению к джоулю. Поэтому использование его неудобно. Тепловое движение измеряют в единицах, полученных из джоулей посредством специального переводного коэффициента.

Единицы измерения температуры

На сегодняшний день используется три основных единицы для отображения этого параметра. В нашей стране температуру принято определять в градусах по Цельсию. В основе этой единицы измерения лежит точка затвердевания воды - абсолютное значение. Она является началом отсчета. То есть температура воды, при которой начинает образовываться лед, является нулем. В данном случае вода служит образцовым мерилом. Это условное значение было принято для удобства. Вторым абсолютным значением является температура пара, то есть момент, когда вода из жидкого состояния переходит в газообразное.

Следующей единицей являются градусы по Кельвину. Началом отсчета этой системы принято считать точку Так, один градус Кельвина равен одному Отличием является только начало отсчета. Получаем, что нуль по Кельвину будет равен минус 273,16 градусов по Цельсию. В 1954 году на Генеральной конференции по мерам и весам было решено заменить термин «градус Кельвина» для единицы температуры на «кельвин».

Третьей общепринятой единицей измерения являются градусы Фаренгейта. До 1960 года они широко использовались во всех англоязычных странах. Однако и сегодня в быту в США используют эту единицу. Система в корне отличается от описанных выше. За начало отсчета принята температура замерзания смеси соли, нашатыря и воды в пропорции 1:1:1. Так, на шкале Фаренгейта точка замерзания воды равна плюс 32 градуса, а кипения - плюс 212 градусов. В этой системе один градус равен 1/180 разности этих температур. Так, диапазон от 0 до +100 градусов по Фаренгейту соответствует диапазону от -18 до +38 по Цельсию.

Абсолютный нуль температуры

Давайте разберемся, что означает этот параметр. Абсолютным нулем называют значение предельной температуры, при которой давление идеального газа обратится в нуль при фиксированном объеме. Это самое низкое значение в природе. Как предсказывал Михайло Ломоносов, «это наибольшая или последняя степень холода». Из этого следует химический в равных объемах газов при условии одинаковой температуры и давления содержится одинаковое количество молекул. Что из этого следует? Существует минимальная температура газа, при которой его давление либо объем обратятся в нуль. Эта абсолютная величина соответствует нулю по Кельвину, или 273 градусам по Цельсию.

Несколько интересных фактов о Солнечной системе

Температура на поверхности Солнца достигает 5700 кельвинов, а в центре ядра - 15 миллионов кельвинов. Планеты Солнечной системы сильно отличаются друг от друга по уровню нагрева. Так, температура ядра нашей Земли составляет примерно столько же, сколько на поверхности Солнца. Самой горячей планетой считается Юпитер. Температура в центре его ядра в пять раз выше, чем на поверхности Солнца. А вот самое низкое значение параметра зафиксировали на поверхности Луны - оно составило всего 30 кельвинов. Это значение даже ниже, чем на поверхности Плутона.

Факты о Земле

1. Самое высокое значение температуры, которое зафиксировал человек, составило 4 миллиарда градусов по Цельсию. Эта величина в 250 раз превышает температуру ядра Солнца. Рекорд поставлен Нью-Йоркской естественной лабораторией Брукхэвена в ионном коллайдере, длина которого составляет около 4 километров.

2. Температура на нашей планете тоже не всегда идеальная и комфортная. Например, в городе Верхноянске в Якутии температура в зимний период опускается до минус 45 градусов по Цельсию. А вот в эфиопском городе Даллол обратная ситуация. Там среднегодовая температура составляет плюс 34 градуса.

3. Самые экстремальные условия, при которых работают люди, зафиксированы в золотых шахтах в Южной Африке. Шахтеры трудятся на глубине трех километров при температуре плюс 65 градусов по Цельсию.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

кельвин градус Цельсия градус Фаренгейта градус Ранкина градус Реомюра Планковская температура

Подробнее о температуре

Общие сведения

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Парадокс заключается в том, что чтобы измерять температуру в быту, промышленности и даже в прикладной науке не нужно знать, что такое «температура». Достаточно довольно расплывчатого представления, что «температура - это степень нагретости тела». Действительно, большинство практических приборов для измерения температуры фактически измеряют другие свойства веществ, меняющиеся от этой степени нагретости, такие как давление, объем, электрическое сопротивление и т.д. Затем их показания автоматически или вручную пересчитываются в единицы температуры.

Любознательные люди и студенты, которые либо хотят, либо вынуждены разобраться, что же такое температура, обычно попадают в стихию термодинамики с ее нулевым, первым и вторым законами, циклом Карно и энтропией. Нужно признать, что определение температуры, как параметра идеальной обратимой тепловой машины, не зависящего от рабочего вещества, обычно не добавляет ясности в наше ощущение понятия «температура».

Более «осязаемым» кажется подход, называемый молекулярно-кинетической теорией, из которого формируется представление, что теплота может рассматривается просто как одна из форм энергии, а именно - кинетическая энергия атомов и молекул. Эта величина, усредненная по огромному числу беспорядочно движущихся частиц, и оказывается мерилом того, что называется температурой тела. Частицы нагретого тела движутся быстрее, чем холодного.

Поскольку понятие температуры тесно связано с усредненной кинетической энергией частиц, было бы естественным и в качестве единиц ее измерения использовать джоуль. Однако, энергия теплового движения частиц очень мала по сравнению с джоулем, поэтому использование этой величины оказывается неудобным. Тепловое движение измеряется в других единицах, которые получаются из джоулей посредством переводного коэффициента «k».

Если температура T измеряется в кельвинах (К), то связь ее со средней кинетической энергией поступательного движения атомов идеального газа имеет вид

E k = (3/2) kT , (1)

Где k - переводный коэффициент, определяющий, какая часть джоуля содержится в кельвине. Величина k называется постоянной Больцмана.

Учитывая, что давление тоже может быть выражено через среднюю энергию движения молекул

p=(2/3)n E k (2)

Где n = N/V, V - объем, занимаемый газом, N - полное число молекул в этом объеме

Уравнение состояния идеального газа будет иметь вид:

p = n kT

Если полное число молекул представить в виде N = µN A , где µ - число молей газа, N A - число Авагадро,т.е число частиц на один моль, можно легко получить известное уравнение Клапейрона - Менделеева:

pV = µ RT,где R - молярнаягазовая постоянная R = N A . k

или для одного моля pV = N A . kT (3)

Таким образом, температура - это искусственно введенный в уравнение состояния параметр. С помощью уравнения состояния можно определить термодинамическую температуру Т, если все другие параметры и константы известны. Из такого определения температуры очевидно, что значения Т будут зависеть от константы Больцмана. Можем ли выбрать для этого коэффициента пропорциональности произвольное значение и затем на него опираться? Нет. Ведь мы можем таким образом получить произвольное значение для тройной точки воды, в то время как мы должны получить значение 273,16 К! Возникает вопрос - почему именно 273,16 К?

Причины тому чисто исторические, а не физические. Дело в том, что в первых температурных шкалах были приняты точные значения сразу для двух состояний воды - точки затвердевания (0 °С) и точки кипения (100 °С). Это были условные значения, выбранные для удобства. Учитывая, что градус Цельсия равен градусу Кельвина и выполняя измерения термодинамической температуры газовым термометром, градуированным в этих точках, получили для абсолютного нуля (0 °К) методом экстраполяции значение - 273,15 °С. Конечно, это значение можно считать точным только в том случае, если измерения газовым термометром были абсолютно точны. Это не так. Поэтому фиксируя значение 273,16 К для тройной точки воды, и измерив точку кипения воды более совершенным газовым термометром, можно получить слегка отличное от 100 °С значение для кипения. Например, сейчас наиболее реальным является значение 99,975 °С. И это только потому, что ранние работы с газовым термометром дали ошибочное значение для абсолютного нуля. Таким образом, мы либо фиксируем абсолютный ноль, либо интервал 100 °С между точками затвердевания и кипения воды. Если зафиксировать интервал и повторить измерения для экстраполяции к абсолютному нулю, то получим -273,22 °С.

В 1954 г. МКМВ принял резолюцию о переходе на новое определение кельвина, никак не связанное с интервалом 0 -100 °С. Оно фактически закрепило за тройной точкой воды значение 273,16 К (0,01 °С) и «пустило в свободное плаванье» около 100 °С точку кипения воды. Вместо «градуса Кельвина» для единицы температуры был введен просто «кельвин».

Из формулы (3) следует, что приписав Т при таком стабильном и хорошо воспроизводимом состоянии системы как тройная точка воды фиксированное значение 273,16 К, значение константы k можно определить экспериментально. До недавнего времени наиболее точные экспериментальные значения константы Больцмана к получались методом предельно разреженного газа.

Существуют и другие методы получения постоянной Больцмана, основанные на использовании законов, в которые входит параметр кТ.

Это закон Стефана-Больцмана, согласно которому полная энергия теплового излучения Е(Т) является функцией четвертой степени от кТ .
Уравнение, связывающее квадрат скорость звука в идеальном газе с 0 2 линейной зависимостью с кТ .
Уравнение для среднего квадратического напряжения шумов на электрическом сопротивлении V 2 , также линейно зависящего от кТ .

Установки для реализации вышеперечисленных методов определения кТ называются приборами абсолютной термометрии или первичной термометрии.

Таким образом, в определении значений температуры в кельвинах, а не в джоулях много условностей. Основное то, что сам коэффициент пропорциональности k между температурными и энергетическими единицами не является постоянным. Он зависит от точности термодинамических измерений, достижимой на настоящий момент. Такой подход не очень удобен для первичных термометров, особенно работающих в диапазоне температур, далеком от тройной точки. Их показания будут зависеть от изменений в значении постоянной Больцмана.

Каждое изменение практической международной температурной шкалы - результат научных исследований метрологических центров всего мира. Введение новой редакции температурной шкалы сказывается на градуировках всех средств измерения температуры.

Характеризующая тепловое состояние тел.

В окружающем нас мире происходят различные явления, связанные с нагреванием и охлаждением тел. Их называют тепловыми явлениями . Так, при нагревании холодная вода сначала стано-вится теплой, а затем горячей; вынутая из пламени металлическая деталь постепенно охлаждает-ся и т. д. Степень нагретости тела, или его тепловое состояние, мы обозначаем словами «теплый», «холодный», «горячий», Для количественной оценки этого состояния и служит температура .

Температура — один из макроскопических параметров системы. В физике, тела, состоящие из очень большого числа атомов или молекул , называют макроскопическими . Размеры макроскопических тел во много раз превышают размеры атомов. Все окружающие тела — от стола или газа в воздушном шарике до песчинки — макроскопические тела.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами . К ним относятся объем , давление , темпе-ратура , концентрация частиц, масса , плотность , намагниченность и т. д. Температура — один из важнейших макроскопических параметров системы (газа, в частности).

Температура — характеристика теплового равновесия системы.

Известно, что для определения температуры среды следует поместить в эту среду термометр и подождать до тех нор, пока температура термометра не перестанет изменяться, приняв значе-ние, равное температуре окружающей среды. Другими словами, необходимо некоторое время для установления между средой и термометром теплового равновесия.

Тепловым , или термодинамическим , равновесием называют такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными. Это означает, что не меняются объем и давление в системе, не происходят фазовые превращения, не меняется температура.

Однако микроскопические процессы при тепловом равновесии не прекращаются: скорости молекул меняются, они перемещаются, сталкиваются.

Любое макроскопическое тело или группа макроскопических тел — термодинамическая система — может находиться в различных состояниях теплового равновесия. В каждом из этих состояний температура имеет свое вполне определенное значение. Другие величины могут иметь разные (но постоянные) значения. Например, давление сжатого газа в баллоне будет отличаться от давления в помещении и при температурном равновесии всей системы тел в этом помещении.

Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, находящихся в состоянии теплового равновесия, температура имеет одно и то же значение (это единственный макроскопический параметр, обладающий таким свойством).

Если два тела имеют одинаковую температуру, между ними не происходит теплообмен, если разную — теплообмен происходит, причем тепло передается от более нагретого тела к менее нагретому до полного выравнивания температур.

Измерение температуры основано на зависимости какой-либо физической величины (напри-мер, объема) от температуры. Эта зависимость и используется в температурной шкале термомет-ра — прибора, служащего для измерения температуры.

Действие термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении — уменьшается. Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С) .

А. Цельсий (1701-1744) — шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусом — температура кипения воды при нормальном атмосферном давлении.

Поскольку различные жидкости расширяются с повышением температуры по-разному, то температурные шкалы в термометрах с разными жидкостями различны.

Поэтому в физике используют идеальную газовую шкалу температур , основанную на зависимости объема (при постоянном давлении) или давления (при постоянном объеме) газа от тем-пературы.

Что еще почитать