Трубопроводы и виды их прокладки. Выбор способа прокладки тепловых сетей

6.1*. Выбор трассы тепловых сетей и способ прокладки следует предусматривать в соответствии с указаниями СНиП 1.02.01-85 и СНиПII-89-80.

Прокладка тепловых сетей по насыпям автомобильных дорог общей сети I, II, и III категорий не допускается.

Тепловые сети, независимо от способа прокладки и системы теплоснабжения не должны проходить по территории кладбищ, свалок, скотомогильников, мест захоронения радиоактивных отходов, земледельческих полей орошения, полей фильтрации и других участков, представляющих опасность химического, биологического и радиоактивного загрязнения.

6.2*. В населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в городских и внутриквартальных тоннелях совместно с другими инженерными сетями).

При обосновании допускается надземная прокладка тепловых сетей кроме территорий детских и лечебных учреждений.

Для тепловых сетей D у  400 мм следует предусматривать, преимущественно, бесканальную прокладку.

6.3. Прокладку тепловых сетей по территории, не подлежащей застройке вне населенных пунктов, следует предусматривать надземную на низких опорах.

6.4. При выборе трассы тепловых сетей допускается пересечение водяными сетями диаметром 300 мм и менее жилых и общественных зданий при условии прокладки сетей в технических подпольях, технических коридорах и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания.

Пересечение тепловыми сетями детских дошкольных, школьных и лечебно-профилактических учреждений не допускается.

6.5. Прокладка тепловых сетей при рабочем давлении пара выше 2,2 МПа и температуре выше 350С в непроходных каналах и общих городских или внутриквартальных тоннелях не допускается.

6.6. Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002. При катковых и шариковых опорах уклон не должен превышать

где r - радиус катка или шарика, см.

Уклон тепловых сетей к отдельным зданиям при подземной прокладке должен приниматься от зданий к ближайшей камере.

На отдельных участках (при пересечении коммуникаций, прокладке по мостам и т.п.) допускается принимать прокладку тепловых сетей без уклона.

6.7*. Подземную прокладку тепловых сетей допускается принимать совместно с перечисленными инженерными сетями:

в каналах - с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, мазутопроводами, контрольными кабелями, предназначенными для обслуживания тепловых сетей;

в тоннелях - с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа, трубопроводами напорной канализации. Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями кроме указанных - не допускается.

Прокладка водопровода совместно с тепловыми сетями в тоннелях должна предусматриваться в одном ряду или под трубопроводами тепловых сетей, при этом необходима тепловая изоляция водопровода, исключающая конденсацию влаги.

6.8*. Расстояния по горизонтали и вертикали от наружной грани строительных конструкций каналов и тоннелей или оболочки изоляции трубопроводов при бесканальной прокладке тепловых сетей до зданий, сооружений и инженерных сетей следует принимать по обязательному приложению 6, а по территории промышленных предприятий - по СНиПII-89-80.

6.9. Пересечение тепловыми сетями рек, автомобильных дорог, трамвайных путей, а также зданий и сооружений следует, как правило, предусматривать под прямым углом. Допускается при обосновании пересечение под меньшим углом, но не менее 45, а сооружений метрополитена и железных дорог - не менее 60.

6.10. Пересечение подземными тепловыми сетями трамвайных путей следует предусматривать на расстоянии от стрелок и крестовин не менее 3 м (в свету).

6.11. При подземном пересечении тепловыми сетями железных дорог наименьшие расстояния по горизонтали в свету следует принимать, м:

до стрелок и крестовин железнодорожного пути и мест присоединения отсасывающих кабелей к рельсам электрифицированных железных дорог - 10;

до стрелок и крестовин железнодорожного пути при пучинистых грунтах - 20;

до мостов, труб, тоннелей и других искусственных сооружений на железных дорогах - З0.

6.12*. Прокладка тепловых сетей при пересечении железных дорог общей сети, а также рек, оврагов, открытых водостоков должна предусматриваться, как правило, надземной. При этом допускается использовать постоянные автодорожные и железнодорожные мосты.

Прокладку тепловых сетей при подземном пересечении железных, автомобильных, магистральных дорог и улиц общегородского и районного значении, а также улиц и дорог местного значения, трамвайных путей и линий метрополитена следует предусматривать:

в каналах - при возможности производства строительно-монтажных и ремонтных работ открытым способом;

в футлярах - при невозможности производства работ открытым способом, длине пересечения до 40 м и обеспечении по обе стороны от пересечения прямых участков трассы длиной до 10-15 м;

в тоннелях - в остальных случаях, а также при заглублении от поверхности земли до перекрытия канала (футляра) 2,5 м и более.

При пересечении улиц и дорог местного значения, автомобильных дорог V категории. а также внутрихозяйственных автомобильных дорог категории IIIс допускается бесканальная прокладка тепловых сетей.

При прокладке тепловых сетей под водными преградами следует предусматривать, как правило, устройство дюкеров.

Пересечение тепловыми сетями станционных сооружений метрополитена не допускается.

При подземном пересечении тепловыми сетями линий метрополитена каналы и тоннели следует предусматривать из монолитного железобетона с гидроизоляцией.

6.13*. Длину каналов, тоннелей или футляров в местах пересечений необходимо принимать в каждую сторону не менее, чем на 3 м больше размеров пересекаемых сооружений, в том числе сооружений земляного полотна железных и автомобильных дорог.

При пересечении тепловыми сетями железных дорог общей сети, автомобильных дорог I,II,III категорий, магистральных дорог городов, линий метрополитена, рек и водоемов следует предусматривать запорную арматуру с обеих сторон пересечения, а также устройства для спуска воды из трубопроводов тепловых сетей, каналов, тоннелей или футляров на расстоянии не более 100 м от границы пересекаемых сооружений.

6.14. При прокладке тепловых сетей в футлярах должна предусматриваться усиленная антикоррозионная защита труб тепловых сетей и футляров, а в местах пересечения электрифицированных железных дорог и трамвайных путей дополнительно активная электрохимическая защита, электроизолирующие опоры и контрольно-измерительные пункты.

Между тепловой изоляцией и футляром должен предусматриваться зазор не менее 100 мм.

6.15. В местах пересечения при подземной прокладке тепловых сетей с газопроводами не допускается прохождение газопроводов через строительные конструкции камер, непроходных каналов и ниш тепловых сетей.

6.16*. При пересечении тепловыми сетями действующих сетей водопровода и канализации, расположенными над трубопроводами тепловых сетей, а также при пересечении газопроводов, следует предусматривать устройство футляров на трубопроводах водопровода, канализации и газа на длине 2 м по обе стороны от пересечения (в свету). На футлярах следует предусматривать защитное покрытие от коррозии.

6.17. В местах пересечения тепловых сетей при их подземной прокладке в каналах или тоннелях с газопроводами должны предусматриваться на тепловых сетях на расстоянии не более 15 м по обе стороны от газопровода устройства для отбора проб на утечку газа.

При прокладке тепловых сетей с попутным дренажом на участке пересечения с газопроводом дренажные трубы следует предусматривать без отверстий на расстоянии по 2 м в обе стороны от газопровода с герметической заделкой стыков.

6.18*. На вводах трубопроводов тепловых сетей в здания в газифицированных районах необходимо предусматривать устройства, предотвращающие проникание воды и газа в здания, а в негазифицированных - воды.

6.19*. В местах пересечения наземных тепловых сетей с воздушными линиями электропередачи и электрифицированными железными дорогами следует предусматривать заземление всех электропроводящих элементов тепловых сетей (с сопротивлением заземляющих устройств не более 10 Ом), расположенных на расстоянии по горизонтали по 5 м в каждую сторону от проводов.

6.20*. Прокладка тепловых сетей вдоль бровок террас, оврагов, откосов, искусственных выемок должна предусматриваться за пределами призмы обрушения грунта от замачивания. При этом, при расположении под откосом зданий и сооружений различного назначения следует предусматривать мероприятия по отводу аварийных вод из тепловых сетей с целью недопущения затопления территории застройки.

Перед вами встал вопрос подключения к сетям центрального теплоснабжения? Эта статья для вас: какие виды тепловых сетей бывают, из чего состоит эта коммуникация, какие организации и почему являются наиболее подходящими для разработки проекта и на чем иногда можно сэкономить, читайте прямо сейчас.

Коротко о тепловых сетях

Что такое теплосеть представляют себе многие, но для более доступного повествования следует напомнить несколько прописных истин.

Во-первых, теплосеть не подает горячую воду непосредственно в батареи. Температура теплоносителя в магистральном трубопроводе в самые холодные дни может достигать 150 градусов и ее прямое нахождение в радиаторе отопления чревато ожогами и опасно для здоровья человека.

Во-вторых, теплоноситель из сети в большинстве случаев не должен попадать в систему горячего водоснабжения здания. Это называется закрытая система ГВС. Для удовлетворения нужд ванной и кухни используется вода питьевая (из водопровода). Она прошла обеззараживание, а теплоноситель лишь обеспечивает подогрев до определенной температуры в 50-60 градусов посредством бесконтактного теплообменника. Использование сетевой воды из тепловых трубопроводов в системе ГВС, по меньшей мере, расточительно. Готовят теплоноситель на источнике теплоснабжения (котельной, ТЭЦ) путем химической водоочистки. Из-за того, что температура этой воды часто выше точки кипения, из нее в обязательном порядке удаляются соли жесткости, вызывающие накипь. Образование любых отложений на узлах трубопровода может вывести оборудование из строя. Водопроводная вода до такой степени не нагревается и, следовательно, дорогое обессоливание не проходит. Это обстоятельство и повлияло на то, что открытые системы ГВС, с непосредственным водоразбором, практически нигде не применяются.

Виды прокладки тепловых сетей

Рассмотрим виды прокладки тепловых сетей по количеству уложенных рядом трубопроводов.

2-х трубная

В состав такой сети входят две линии: подающая и обратная. Приготовление конечного продукта (снижение температуры теплоносителя для отопления, подогрев питьевой воды) происходит непосредственно в теплоснабжаемом здании.

3-х трубная

Такой вид прокладки тепловых сетей используют довольно редко и только для зданий, где перебои с теплом не допустимы, например больницы или детские сады с постоянным пребыванием детей. В этом случае добавляется третья линия: резерв подающего трубопровода. Непопулярность такого способа резервирования заключается в его дороговизне и непрактичности. Прокладку лишней трубы запросто заменяет установленная стационарно модульная котельная и классический 3-х трубный вариант сегодня практически не встречается.

4-х трубная

Вид прокладки, когда потребителю подается и теплоноситель, и горячая вода системы водоснабжения. Это возможно в случае подключения здания к распределительным (внутриквартальным) сетям после центрального теплового пункта, в котором и происходит подогрев питьевой воды. Первые две линии, как и в случае с 2-х трубной прокладкой, это подача и обратка теплоносителя, третья — подача горячей питьевой воды, четвертая ее возврат. Если сделать акцент на диаметрах, то 1 и 2 труба будут одинаковыми, 3-я может от них отличаться (зависит от расхода), а 4-я всегда меньше 3-ей.

Прочие

В эксплуатируемых сетях есть и другие виды прокладки, но связаны они больше не с функциональностью, а с недочетами проектирования или непредусмотренной дополнительной застройкой района. Так при неверном определении нагрузок предложенный диаметр может быть существенно занижен и на ранних этапах эксплуатации появляется необходимость увеличения пропускной способности. Для того чтобы не перекладывать всю сеть заново, докладывается еще один трубопровод, большего диаметра. В этом случае подача идет по одной линии, а обратка по двум или наоборот.

При строительстве тепловой сети к обычному зданию (не больница и т. п.) используется либо вариант 2-трубной прокладки, либо 4-трубной. Зависит это только от того, на каких сетях вам дали точку врезки.

Существующие способы прокладки теплотрасс

Надземная

Наиболее выгодный способ с точки зрения эксплуатации. Все дефекты видно даже не специалисту, не требуется устройство дополнительных систем контроля. Есть и недостаток: ее довольно редко можно применить вне промзоны — портит архитектурный облик города.

Подземная

Этот вид прокладки можно разделить еще на три разновидности:

  1. Канальная (теплосеть укладывается в лоток).

Плюсы: защита от внешнего воздействия (например, от повреждения ковшом экскаватора), безопасность (при порыве труб грунт не будет вымываться и исключаются его провалы).

Минусы: стоимость монтажа достаточно велика, при плохой гидроизоляции канал заполняется грунтовой или дождевой водой, что отрицательно сказывается на долговечности металлических труб.

  1. Бесканальная (трубопровод кладется непосредственно в грунт).

Плюсы: Относительно малая стоимость, простота монтажа.

Минусы: при разрыве трубопровода есть опасность подмывания грунта, сложно определить место разрыва.

  1. В гильзах.

Используется для нейтрализации вертикальной нагрузки на трубы. В основном это необходимо при пересечении дорог под углом. Представляет собой трубопровод тепловой сети, проложенный внутри трубы большего диаметра.

Выбор способа прокладки зависит от того, по какой местности проходит трубопровод. Оптимальным по стоимости и трудозатратам является бесканальный вариант, однако его не везде можно применить. Если участок теплосети расположен под дорогой (не пересекает ее, а проходит параллельно под проезжей частью) используется канальная прокладка. Для удобства эксплуатации следует использовать расположение сети под проездами лишь при отсутствии других вариантов, т. к. при обнаружении дефекта необходимо будет вскрыть асфальт, остановить или ограничить движение по улице. Есть места, где устройство канала используется для повышения безопасности. Это обязательно при прокладке сети по территориям больниц, школ, детских садов и т. д.

Основные элементы тепловой сети

Тепловая сеть, к какой разновидности ее не относи, по своей сути набор собранных в длинный трубопровод элементов. Они выпускаются промышленностью в готовом виде, и строительство коммуникации сводится к укладке и соединению частей друг с другом.

Труба является базовым кирпичиком в этом конструкторе. В зависимости от диаметра их выпускают длиной по 6 и 12 метров, но под заказ на заводе изготовителе можно приобрести любой метраж. Придерживаться рекомендуется, как ни странно, именно стандартных размеров — заводская нарезка будет стоить на порядок дороже.

В большинстве своем для теплосетей используются стальные трубы покрытые слоем изоляции. Неметаллические аналоги используются редко и только на сетях с сильно пониженным температурным графиком. Такое возможно после центральных тепловых пунктов или когда источником теплоснабжения является маломощная водогрейная котельная, да и то не всегда.

Для тепловой сети необходимо использовать исключительно новые трубы, повторное применение бывших в употреблении деталей ведет к существенному сокращению срока эксплуатации. Такая экономия на материалах приводит к значительным тратам на последующие ремонты и довольно раннюю реконструкцию. Нежелательно применение для теплотрасс любого типа прокладки труб со спиральным сварным швом. Такой трубопровод очень трудоемок при ремонте и снижает скорость аварийного устранения порывов.

Отвод 90 градусов

Помимо обычных прямых труб промышленностью выпускаются и фасонные детали к ним. В зависимости от выбранного типа трубопровода они могут разниться по количеству и назначению. Во всех вариантах обязательно присутствуют отводы (повороты трубы под углом 90, 75, 60, 45, 30 и 15 градусов), тройники (ответвления от основной трубы, вваренной в нее трубой такого же или меньшего диаметра) и переходы (изменение диаметра трубопровода). Остальные, к примеру, концевые элементы системы оперативного дистанционного контроля, выпускаются по необходимости.

Отвлетвление от основной сети

Не менее важный элемент в строительстве теплотрассы — запорная арматура. Это приспособление перекрывает поток теплоносителя, как к потребителю, так и от него. Отсутствие запорной арматуры на сети абонента недопустимо, так как при аварии на участке придется отключать не только одно здание, а весь соседствующий район.

Для воздушной прокладки трубопровода необходимо предусмотреть мероприятия, исключающие любую возможность несанкционированного доступа к управляющим частям кранов. При случайном или намеренном закрытии либо ограничении пропускной способности обратного трубопровода создастся недопустимое давление, результатом которого станет не только порыв труб тепловой сети, но и отопительных элементов здания. Наиболее зависимы от давления батареи. Причем новые дизайнерские решения радиаторов разрываются гораздо раньше своих советских чугунных собратьев. Последствия лопнувшей батареи представить себе не сложно — залитые кипятком помещения требуют довольно приличных сумм на ремонт. Для исключения возможности управления арматурой посторонними людьми можно предусмотреть ящики с замками, закрывающими органы управления на ключ, либо съемные штурвалы.

При подземной прокладке трубопроводов к арматуре наоборот необходимо предусмотреть доступ обслуживающего персонала. Для этого сооружаются тепловые камеры. Спускаясь в них, рабочие могут производить необходимые манипуляции.

При бесканальной прокладке предварительно изолированных труб арматура выглядит отлично от своего стандартного вида. Вместо управляющего штурвала шаровой кран имеет длинный шток, на конце которого расположен управляющий элемент. Закрытие/открытие происходит при помощи Т-образного ключа. Он поставляется заводом изготовителем в комплекте с основным заказом на трубы и арматуру. Для организации доступа этот шток помещают в бетонный колодец и закрывают люком.

Запорная арматура с редуктором

На трубопроводах малого диаметра можно сэкономить на железобетонных кольцах и люках. Вместо ЖБИ штоки можно разместить в металлических коверах. Выглядят они как труба с приделанной сверху крышкой, установленная на небольшую бетонную подушку и зарытая в землю. Довольно часто проектировщики на небольших диаметрах труб предлагают размещать оба штока арматуры (подающего и обратного трубопроводов) в одном железобетонном колодце диаметром от 1 до 1,5 метров. Это решение хорошо смотрится на бумаге, на практике же такое расположение зачастую приводит к невозможности управления арматурой. Происходит это из-за того, что оба штока не всегда располагаются прямо под люком, следовательно, установить ключ вертикально на управляющий элемент не представляется возможным. Арматура для трубопроводов среднего и выше диаметра оснащается редуктором или электроприводом, ее разместить в ковере не получится, в первом случае это будет железобетонный колодец, а во втором — электрифицированная тепловая камера.

Установленный ковер

Следующий элемент тепловой сети — компенсатор. В самом простом случае это укладка труб в виде буквы П или Z и любой поворот трассы. В более сложных вариантах применяются линзовые, сальниковые и прочие компенсирующие устройства. Необходимость применения этих элементов вызвана подверженностью металлов значительному температурному расширению. Простыми словами, труба под действием высоких температур увеличивает свою длину и для того, чтобы она не лопнула в результате чрезмерной нагрузки, через определенные промежутки предусматривают специальные устройства или углы поворота трассы — они снимают вызванное расширением металла напряжение.

П-образный компенсатор

Для бесканальной прокладки трубопроводов помимо самого угла поворота предусматривают и небольшое пространство для его работы. Это достигается путем укладки компенсационных матов в месте изгиба сети. Отсутствие мягкого участка приведет к тому, что в момент расширения труба будет защемлена в грунте и попросту лопнет.

П-образный компенсатор с уложенными матами

Немаловажной частью конструктора тепловой коммуникации является и дренаж. Это устройство представляет собой ответвление от основного трубопровода с арматурой, опускающееся в бетонный колодец. При необходимости опустошения теплосети краны открывают и теплоноситель сбрасывают. Устанавливается этот элемент теплотрассы во всех нижних точках трубопровода.

Дренажный колодец

Сброшенную воду откачивают из колодца специальной техникой. Если есть возможность и получено соответствующее разрешение, то можно соединить сбросной колодец с сетями бытовой или ливневой канализации. В этом случае специальная техника для эксплуатации не потребуется.

На небольших участках сетей, протяженностью до нескольких десятков метров, дренаж допускается не устанавливать. При ремонте лишний теплоноситель можно будет сбросить дедовским методом — разрезать трубу. Однако при таком опорожнении вода должна значительно снизить свою температуру из-за опасности ожогов персонала и сроки завершения ремонта немного откладываются.

Еще один элемент конструкции, без которого невозможно нормальное функционирование трубопровода — это воздушник. Он представляет собой ответвление тепловой сети, направленное строго вверх, на конце которого располагается шаровой кран. Это устройство служит для освобождения трубопровода от воздуха. Без удаления газовых пробок невозможно нормальное заполнение труб теплоносителем. Устанавливается этот элемент во всех верхних точках тепловой сети. Отказаться от его использования нельзя ни в коем случае — другого метода удаления воздуха из труб еще не придумали.

Тройники с шаровым краном воздушника

При устройстве воздушника следует помимо функциональных идей руководствоваться еще и принципами безопасности персонала. При спуске воздуха имеется риск ожогов. Отводящая воздух трубка обязательно должна быть направлена в сторону или вниз.

Проектирование

Работа проектировщика при создании тепловой сети не основывается на шаблонах. Каждый раз проводятся новые расчеты, подбирается оборудование. Повторное использование проекта невозможно. По этим причинам стоимость такой работы всегда довольно высокая. Однако цена не должна стать основным критерием при выборе проектировщика. Не всегда самое дорогое — самое лучшее, равно как и наоборот. В некоторых случаях излишняя стоимость вызвана не трудоемкостью процесса, а желанием набить себе цену. Опыт в разработке таких проектов также немалый плюс при подборе организации. Правда бывают случаи, когда компания наработала статус и полностью сменила специалистов: отказалась от опытных и дорогих в пользу молодых да амбициозных. Хорошо бы этот момент уточнить еще до заключения договора.

Правила выбора проектировщика

  1. Стоимость. Она должна находиться в среднем диапазоне. Крайности не уместны.
  2. Опыт. Для определения опыта проще всего попросить телефоны заказчиков, для которых организация уже выполняла аналогичные проекты и не полениться позвонить по нескольким номерам. Если все было «на уровне», то вы получите необходимые рекомендации, если «не очень» или «более или менее» — можно смело продолжать поиск дальше.
  3. Наличие в штате опытных сотрудников.
  4. Специализация. Следует избегать организаций, которые не смотря на небольшой штат сотрудников готовы сделать и дом с трубой и дорожку к нему. Нехватка специалистов приводит к тому, что один и тот же человек может разрабатывать сразу несколько разделов, если не все. Качество таких работ оставляет желать лучшего. Оптимальным вариантом станет узконаправленная организация с уклоном в коммуникации или энергетическое строительство. Крупные институты гражданского строительства также не самый плохой вариант.
  5. Стабильность. Необходимо избегать фирм-однодневок, как бы ни заманчиво было их предложение. Хорошо если есть возможность обратиться в институты, которые созданы на базе старых советских НИИ. Обычно они поддерживают марку, да и сотрудники в этих местах зачастую работают всю жизнь и уже «собаку съели» на таких проектах.

Процесс проектирования начинается задолго до того, как проектировщик берет в руки карандаш (в современном варианте до того как он сел перед компьютером). Эта работа состоит из нескольких последовательных процессов.

Этапы проектирования

  1. Сбор исходных данных.

Эта часть работы может быть поручена как проектировщику, так и выполняться самостоятельно заказчиком. Стоит она не дорого, однако требует некоторого времени на посещение энного количества организаций, написания писем, заявлений и получения на них ответов. Не следует заниматься самостоятельно сбором исходных данных для проектирования только в том случае, если вы не сможете объяснить, что конкретно хотите сделать.

  1. Инженерные изыскания.

Этап довольно сложный и не может быть выполнен самостоятельно. Некоторые проектные организации выполняют эту работу сами, некоторые отдают субподрядным организациям. Если проектировщик работает по второму варианту, есть смысл подобрать субподрядчика самостоятельно. Так стоимость может быть несколько снижена.

  1. Сам процесс проектирования.

Выполняется проектировщиком, на любом этапе контролируется заказчиком.

  1. Согласование проекта.

Разработанную документацию должен обязательно проверить заказчик. После этого проектировщик согласовывает ее со сторонними организациями. Иногда для ускорения процесса достаточно поучаствовать в этом процессе. Если заказчик ездит совместно с разработчиком по согласованиям, во-первых нет возможности затянуть проект, а во-вторых есть шанс увидеть все недочеты своими глазами. Если же будут какие-либо спорные вопросы, появится возможность проконтролировать их еще и на стадии строительства.

Множество организаций, производящих разработку проектной документации, предлагают альтернативные варианты ее вида. Набирает популярность 3D-проектирование, цветное оформление чертежей. Все эти украшающие элементы носят чисто коммерческий характер: добавляют стоимость проектирования и нисколько не поднимают качество самого проекта. Строители выполнят работу одинаково при любом виде проектно-сметной документации.

Составление договора на проектирование

Помимо уже сказанного, необходимо добавить несколько слов о самом договоре на проектирование. От прописанных в нем пунктов зависит очень многое. Не всегда следует слепо соглашаться на предложенную проектировщиком форму. Довольно часто там учтены только интересы разработчика проекта.

Договор на проектирование обязательно должен содержать:

  • полные наименования сторон
  • стоимость
  • срок выполнения
  • предмет договора

Эти пункты должны быть прописаны четко. Если дата, то это как минимум месяц и год, а не через определенное количество дней или месяцев с начала проектирования или с начала действия договора. Указание такой формулировки поставит Вас в неловкое положение, если вдруг придется доказывать что-то в суде. Так же следует уделить особое внимание названию предмета договора. Оно должно звучать не как проект и точка, а как «выполнение проектных работ по теплоснабжению такого-то здания» или «проектирование тепловой сети от определенного места и до определенного места».

Полезно прописать в договоре и некоторые моменты штрафов. Например, задержка срока проектирования влечет за собой уплату проектировщиком 0,5% от суммы договора в пользу заказчика. Полезно прописывать в договоре и количество экземпляров проекта. Оптимальное количество — 5 штук. 1 для себя, еще 1 для технадзора и 3 для строителей.

Полная оплата работ должна производиться только после 100% готовности и подписания акта сдачи-приемки (акта выполненных работ). При оформлении этого документа обязательно проверить название проекта, оно должно быть идентично указанному в договоре. При несовпадении записей даже на одну запятую или букву вы рискуете не доказать оплату именно по этому договору в случае возникновения спорной ситуации.

Следующая часть статьи посвящена вопросам стройки. Она прольет свет на такие моменты как: особенности подбора подрядчика и заключение договора на выполнение строительных работ, приведет пример правильной последовательности монтажа и подскажет как поступить, когда трубопровод будет уже проложен, чтобы избежать негативных последствий при эксплуатации.

Ольга Устимкина, рмнт.ру

Тепловая сеть – это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя (воды или пара) от источника (ТЭЦ или котельной) к тепловым потребителям.

От коллекторов прямой сетевой воды ТЭЦ или от районных котельных с помощью магистральных теплопроводов горячая вода подается в городской массив. Магистральные теплопроводы имеют ответвления, к которым присоединяется внутриквартальная разводка к центральным тепловым пунктам (ЦТП). В ЦТП находится теплообменное оборудование с регуляторами, обеспечивающее снабжение квартир и помещений горячей водой.

Теплопроводы могут быть подземными и надземными.

Надземные теплопроводы обычно прокладывают по территориям промышленных предприятий и промышленных зон, не подлежащих застройке, при пересечении большого числа железнодорожных путей, т.е. везде, где либо не вполне эстетический вид теплопроводов не играет большой роли, либо затрудняется доступ к ревизии и ремонту теплопроводов. На дземные теплопроводы долговечнее и лучше приспособлены к ремонтам.

Рис. Основные виды надземной прокладки теплопроводов а-на отдельно стоящих опорах (мачтах), б-на эстакадах, в - на подвесных (ва - Д) нтовых) конструкциях, 1 - металлическая "/ вершина, 2 - подвесные опоры, 3 - тяги

В жилых районах из эстетических соображений используется подземная прокладка теплопроводов, которая бывает бесканальной и канальной.

При бесканальной прокладке участки теплопровода укладывают на специальные опоры непосредственно на дне вырытых грунтовых каналов, сваривают между собой стыки, защищают их от воздействия агрессивной среды и засыпают грунтом. Бесканальная прокладка – самая дешевая, однако теплопроводы испытывают внешнюю нагрузку от давления грунта (заглубление теплопровода должно быть 0,7 м), более подвержены воздействию агрессивной среды (грунта) и менее ремонтопригодны.

Рис. Типы бесканальных теплопроводов "А - в сборной и монолитной оболочке; б - литые и сборно-литые; в - засыпные

При канальной прокладке теплопроводы помещаются в каналы из сборных железобетонных элементов, изготовленных на заводе. При такой прокладке теплопровод разгружается от гидростатического действия грунта, находится в более комфортных условиях, более доступен для ремонта.

По возможности доступа к теплопроводам каналы делятся на

проходные, полупроходные и непроходные.

Рис. Размещение трубопроводов и кабелей в коммуникационном коллекторе: 1- водопровод; 2- электрические кабели; 3- светильник; 4- технологические трубопроводы; 5- теплопроводы

В проходных каналах кроме трубопроводов подающей и обратной сетевой воды, размещают водопроводные трубы питьевой воды, силовые кабели и т.д. Это наиболее дорогие каналы, но и наиболее надежные, так как позволяют организовать постоянный легкий доступ для ревизий и ремонта, без нарушения дорожных покрытий и мостовых. Такие каналы оборудуются освещением и естественной вентиляцией.


Внутренние габариты коллекторов определяются следующими требованиями:

A) ширина прохода должна быть не менее 800 мм, высота 1800 мм;

Б) расстояние в свету от поверхности изоляции теплопроводов до стенки и пола коллектора - 200 мм при диаметре трубопровода 500.. .700 мм и 220 мм при диаметре трубопровода 800...900 мм и до перекрытия коллектора соответственно - 120 и 150 мм;

B) расстояния между поверхностями изоляции теплопроводов - 200 мм (при диаметре трубопроводов 500.. .900 мм);

Г) расстояние от поверхности труб водопровода, напорной канализации и воздуховодов до строительных конструкций коллектора и до кабелей не менее 200 мм;

Д) расстояние по вертикали между консолями для укладки силовых кабелей - 200 мм, для контрольных кабелей и кабелей связи - 150 мм;

Е) горизонтальное расстояние в свету между силовыми кабелями должно быть равно диаметру кабеля, но не менее 35 мм.

Рис. 3.2. Прокладка сети теплоснабжения в непроходном канале: а - сборный из железобетонных плит; б - сводчатый с опорной рамой;

1- железобетонное основание: 2- стеновой блок; 3- навесная теплоизоляция; 4- блок перекрытия; 5- подушка; 6- железобетонный свод

Непроходные каналы позволяют разместить в себе только подающий и обратный теплопроводы, для доступа к которым необходимо срывать слой грунта и снимать верхнюю часть канала. В непроходных каналах и бесканально прокладывается большая часть теплопроводов, Непроходные каналы применяют для труб диаметром 500-700 мм. Каналы могут быть железобетонными, асбестоцементными и металлическими. Снаружи каналы изолируют от влаги битумом и оклеивают гидрозащитным материалом.

Полупроходные каналы сооружают в тех случаях, когда к теплопроводам необходим постоянный, но редкий доступ. Полупроходные каналы имеют высоту не менее 1400 мм, что позволяет человеку передвигаться в нем в полусогнутом состоянии, выполняя осмотр и мелкий ремонт тепловой изоляции.

Трассы тепловых сетей не могут быть сделаны произвольно, по субъективному желанию, они выполняются в соответствии с указаниями СНиП 41-02-2003, СНиП 3.05.03-85 и строго регламентированы .

Современные способы прокладки и возведения тепловых сетей (рис. 6.15) классифицируют следующим образом:

  • 1. Бесканальная прокладка тепловых сетей в грунте. (Для тепловых сетей условным диаметром О у
  • 2. Совмещенная многотрубная прокладка теплопроводов в общей траншее совместно с другими коммуникациями.

Рис. 6.15.

  • 3. Прокладка тепловых сетей в подземных непроходных каналах - раздельно или совмещенно с другими коммуникациями.
  • 4. Совмещенная прокладка теплопроводов в подземных проходных коллекторах и технических подпольях зданий.
  • 5. Надземная - воздушная прокладка теплопроводов.

Бесканальная прокладка 1 является наиболее экономичным

способом сооружения теплосетей, обеспечивающая меньшие объемы земляных и строительно-монтажных работ, экономию сборного железобетона, снижение трудоемкости строительства и повышение производительности труда.

При качественных и долговечных индустриальных конструкциях теплопроводов и материалах и надлежащем выполнении монтажных и изоляционно-сварочных работ способ обеспечивает расчетную долговечность подземных коммуникаций (более 30 лет) и необходимую защиту от коррозии.

При сооружении внутриквартальных подземных коммуникаций от котельных, ЦТП в районах нового жилищного строительства городов наиболее эффективно применяется совмещенная бесканальная прокладка нескольких сетей 2 - горячего и холодного водоснабжения и других в общей траншее. Число труб при этом может достигать до 10-12 шт. Она более экономична, чем раздельная прокладка (на 15 % по стоимости, на 25-30 % по объему земляных работ), сокращаются сроки строительства.

Преимущественное распространение в городах получил способ строительства тепловых сетей в непроходных подземных каналах 3. Канал защищает теплопровод от механических нагрузок, обеспечивает температурные деформации его, защищает от воздействия грунтовой среды и поверхностных вод. Но такой тип прокладки весьма дорог, требует значительного расхода железобетонных конструкций (от 500 до 2000 м 3 на 1 км трассы), больших объемов земляных работ и трудовых затрат.

Ограниченное применение получил способ совмещенной прокладки теплопроводов в тоннелях, проходных коллекторах и технических подпольях зданий 4.

Подземную прокладку тепловых сетей допускается принимать совместно с другими инженерными сетями: в каналах - только с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, мазутопроводами, с контрольными кабелями связи теплосетей, а в тоннелях - только с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализации. Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями кроме указанных не допускается.

Таким образом, в населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в городских и внутриквартальных тоннелях совместно с другими инженерными сетями), прокладка тепловых сетей по насыпям автомобильных дорог не допускается. Под городскими проездами и площадями с усовершенствованным покрытием, а также при пересечении крупных автомагистралей их следует прокладывать в тоннелях или футлярах.

При обосновании допускается надземная прокладка тепловых сетей 5 на низких или высоких железобетонных опорах, в отдельных случаях - на кронштейнах вдоль стен зданий.

При выборе трассы теплосетей разрешается пересечение водяными сетями диаметром 300 мм и менее жилых и общественных зданий при условии прокладки сетей в технических подпольях, технических коридорах и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания. Пересечение тепловыми сетями детских дошкольных, школьных и лечебно-профилактических учреждений не допускается. На рис. 6.16 и 6.17 показаны различные виды прокладок тепловых сетей .

Рис. 6.16.

На рис. 6.17 показано надземное расположение теплопроводов промышленного предприятия на низких опорах. На переднем плане хорошо видны вертикально-расположенные и-образные компенсаторы температурного удлинения трубопроводов, рядом слева расположен «холодный» трубопровод.

В последние годы надземная прокладка тепловых сетей получает все большее распространение, особенно при реконструкции и капитальных ремонтах существующих подземных сооружений. Их часто выносят на поверхность земли в совершенно неожиданных местах - во дворах жилых микрорайонов, на спортивных площадках, в парковых зонах, на внутриквартальных проездах и т.д., нисколько не считаясь с интересами жителей, учреждений и организаций. При попустительстве архитектурных и административных инспекций «украшают» теплопроводами окружающие пространства. Организации - владельцы теплосетей часто мотивируют такие решения как временный выход из положения.

Трубопроводы тепловых сетей могут быть проложены на земле, в земле и над землей. При любом способе монтажа трубопроводов необходимо обеспечивать наибольшую надежность работы системы теплоснабжения при наименьших капитальных и эксплуатационных затратах.

Капитальные затраты определяются стоимостью строительно-монтажных работ и затраты на оборудование и материалы для прокладки трубопровода. В эксплуатационные включают затраты по обслуживанию и содержанию трубопроводов, а так же затраты связанные с потерей тепла в трубопроводах и расходом электроэнергии на всей трассе. Капитальные затраты определяются в основном стоимостью оборудования и материалов, а эксплуатационные - стоимостью тепла, электроэнергии и ремонта.

Основными видами прокладками трубопроводов являются подземная и надземная . Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта - назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта - и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на монтаж теплотрассы с использованием подземной прокладки труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Механическая защита труб при монтаже труб под землей может быть обеспечена путем устройства каналов, а тепловая защита - путаем применения тепловой изоляции, нанесенной непосредственно на наружную поверхность трубопроводов. Изоляция труб и прокладка их в каналах увеличивают первоначальную стоимость теплотрассы, но быстро окупаются в процессе эксплуатации за счет повышения эксплуатационной надежности и уменьшения тепловых потерь.

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

  1. Непосредственная прокладка труб в земле (бесканальная).
  2. Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопро-вод от внешних воздействий, и для обеспечения свободного теплового удлинения труб предназначе-ны каналы. В зависимости от ко-личества прокладывае-мых в одном направле-нии теплопроводов при-меняют непроходные, по-лу проходные или про-ходные каналы.

Для закрепления трубопровода, а так же обеспечения свободного перемещения при температурных удлинениях трубы укладывают па опоры. Что бы обеспечить отток воды лотки укладываются с уклоном не менее 0,002. Вода из нижних точек лотков удаляется самотеком в систему дренажа или из специальных приямков при помощи насоса откачивается в канализацию.

Кроме продольного уклона лотков, перекрытия так же должны иметь поперечный уклон порядка 1-2% для отвода паводковой и атмосферной влаги. При высоком уровне грунтовых вод наружную поверхность стенок, перекрытия и дна канала покрывают гидроизоляцией.

Глубина прокладки лотков принимается из условия минимального объема земляных работ и равномерного распре-деления сосредоточенных нагрузок на перекрытие при движении автотранспорта. Слой грунта над каналом должен состав-лять порядка 0,8—1,2 м и не менее. 0,6 м в мес-тах, где движение автотранспорта запрещено.

Непроходные каналы применяются при большом числе труб небольшого диа-метра, а так же двухтрубной прокладке для всех диаметров. Их конструкция зависит от влажности грунтов. В сухих грунтах наибольшее распространение получили блочные каналы с бетонными или кирпичными стенками либо железобе-тонные одно- или многоячейковые.

Стенки канала могут иметь толщину 1/2 кирпича (120 мм) при трубопроводах небольшого диаметра и 1 кирпич (250 мм) при трубопроводах крупных диа-метров.

Стенки возводят только из обыкновенного кирпича марки не ниже 75. Силикатный кирпич из-за малой его морозоустойчивости применять не рекомендуется. Каналы перекрывают железобетонной плитой. Кирпичные каналы в зависимости от категории грунта имеют несколько разновидностей. В плотных и сухих грунтах дно канала не требует бетонной подготов-ки, достаточно хорошо утрамбовать щебень непосредст-венно в грунт. В слабых грунтах на бетонное основание укладывают дополнительно железобетонную плиту. При высоком уровне стояния грунтовых вод для их отвода предусматривают дренаж. Стенки возводят после монтажа и изоляции трубопро-водов.

Для трубопроводов крупных диаметров применяют каналы, собираемые из стандартных железобетонных эле-ментов лоткового типа КЛ и КЛс, а также из сборных железо-бетонных плит КС.

Каналы типа КЛ состоят из стандартных лотковых элемен-тов, перекрываемых плоскими железобетонными плитами.

Каналы типа КЛс состоят из двух лотковых элементов, уложенных друг на друга и соединенных на цементном растворе при помощи двутавра.

В каналах типа КС стеновые панели устанав-ливают в пазы плиты днища и заливают бетоном. Эти каналы перекрывают плоскими железобетонными плитами.

Основания каналов всех типов выполняют из бетонных плит или пес-чаной подготовки в зависимости от вида грунта.

Наряду с рассмотрен-ными выше каналами применяются и другие их типы.

Сводча-тые каналы состоят из железобетонных сводов или скорлуп полукруглой формы, которыми накрывают трубопровод. На дне траншеи выпол-няют лишь основание ка-нала.

Для трубопроводов крупного диаметра применяют сводчатый двухячейковый ка-нал с разделительной стенкой, при этом свод канала образуется из двух полусводов.

При монтаже непроходного ка-нала, предназначенного для прокладки в мокрых и слабых грунтах стенки и дно канала выполняют в виде железобе-тонного корытообразного лотка, а перекрытие состоит из сборных железобетонных плит. Наружная поверхность лотка (стенки и дно) покрывается гидроизоляцией из двух слоев рубероида на битумной мастике, поверхность основания также покрывают гидроизоляцией затем устанавливают или бетонируют лоток. Перед засыпкой траншеи гидроизоляцию защищают спе-циальной стенкой, выполненной из кирпича.

Замена труб, вышедших из строя, или ремонт тепловой изоляции в таких каналах возможны только при разработке групп, а иногда и разборки мостовой. Поэтому тепловая сеть в непроход-ных каналах трассируется вдоль газонов или на территории зе-леных насаждений.

Полупроходные каналы. В сложных условиях пересечения теплопроводами существующих подземных устройств (под проезжей частью, при высоком уровне стояния грунтовых вод) вместо непроходных устраивают полупроходные каналы. Полу-проходные каналы применяют также при небольшом количестве труб в тех местах, где по условиям эксплуатации вскрытие про-езжей части исключено. Высоту полупроходного канала прини-мают равной 1400 мм. Каналы выполняют из сборных железобе-тонных элементов. Конструкции полупроходных и проходных каналов практически аналогичны.

Проходные каналы применяют при наличии большого количества труб. Их прокладывают под мостовыми крупных магистралей, на территориях боль-ших промышленных предприятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Наряду с теплопроводами в проходных каналах располагают и другие подземные коммуни-кации - электрокабели, телефонные кабели, водопровод, газо-провод и т. п. В коллекторах обеспечивается свободный доступ обслуживающего персонала к трубопроводам для осмотра и ликвидации аварии.

Проходные каналы должны иметь естественную вентиляцию с трехкратным обменом воздуха, обеспечивающую температуру воздуха не более 40° С, и освещение. Входы в проходные каналы устраивают через каждые 200 - 300 м. В местах, где располага-ются сальниковые компенсаторы, предназначенные для восприя-тия тепловых удлинений, запорные устройства и другое оборудо-вание, устраивают специальные ниши и дополнительные люки. Высота проходных каналов должна быть не менее 1800 мм.

Их конструкции бывают трех типов — из ребри-стых плит, из звеньев рамной конструкции и из блоков.

Проходные каналы из ребристых плит , выполняют из четырех железобетонных панелей: днища, двух стенок и плиты перекрытия, изготовляемых заводским способом на про-катных станах. Панели соединены болтами, а наружная поверх-ность перекрытия канала покрывается изоляцией. Секции канала устанавливаются па бетонную плиту. Вес одной секции такого ка-нала сечением 1,46х1,87 м и длиной 3,2 м составляет 5 т, входы устраивают через каждые 50 м.

Проходной канал из железо-бетонных звеньев рамной конструкции , сверху покрывается изоляцией. Элементы канала имеют длину 1,8 и 2,4 м и бывают нормальной и повышенной прочности при заглублении соответст-венно до 2 и 4 м над перекрытием. Железобетонную плиту подкладывают только под стыками звеньев.

Следующий вид это коллектор, изготовляемый из же-лезобетонных блоков трех типов: Г-образного стенового, двух плит перекрытия и днища. Блоки в стыках соединяются моно-литным железобетоном. Эти коллекторы выполняются также нормальными и усиленными.

Бесканальная прокладка.

При бесканальной прокладке за-щиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон-тажных работ, уменьшение объема земляных работ и сокраще-ние сроков строительства. К ее недостаткам относятся: усложне-ние ремонтных работ и затруднение перемещения трубопрово-дов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит при-менение в мокрых грунтах, но с обязательным устройством в зо-не расположения труб дренажа.

Подвижные опоры при бесканальной прокладке трубопрово-дов не применяются. Трубы с теплоизоляцией укладывают не-посредственно на песчаную подушку, находящуюся на предвари-тельно выровненном дне траншеи. Песчаная подушка, являю-щаяся постелью для труб, имеет наилучшие упругие свойства и допускает наибольшую равномерность температурных переме-щений. В слабых и глинистых грунтах слой песка на дне траншеи должен быть толщиной не менее 100-150 мм. Неподвижные опо-ры при бесканальной прокладке труб представляют собой желе-зобетонные стенки, устанавливаемые перпендикулярно теплопро-водам.

Компенсация тепловых перемещений труб при любом спосо-бе их бесканальной прокладки обеспечивается при помощи гну-тых или сальниковых компенсаторов, устанавливаемых в специ-альных нишах или камерах.

На поворотах трассы во избежание зажатия труб в грунте и обеспечения возможных перемещений устраивают непроходные каналы. В местах пересечения стенки капала трубопроводом в результате неравномерной осадки грунта и основания канала происходит наибольший изгиб трубопроводов. Во избежание из-гиба трубы необходимо оставлять в отверстии стенки зазор, за-полняя его эластичным материалом (например, асбестовым шну-ром). Тепловая изоляция трубы включает в себя утеплительный слой из автоклавного бетона с объемным весом 400 кг/м3, имеющего стальную арматуру, гидроизоляционное покрытие, состоящей из трех слоев бризола на битумно-резиновой мастике, в состав которой входят 5—7% резиновой крошки и защитный слой, вы-полненный из асбестоцементной штукатурки по стальной сет-ке.

Обратные магистрали трубопроводов изолируются таким же образом, как и подающие. Однако наличие изоляции об-ратных магистралей зависит от диаметра труб. При диаметре труб до 300 мм устройство изоляции обяза-тельно; при диаметре труб 300-500 мм устройство изоляции должно быть определено технике экономическим расчетом исходя из местных условий; при диаметре труб 500 мм и более уст-ройство изоляции не предусматривается. Трубопроводы при такой изоляции укладывают непосредст-венно на выровненный уплотненный грунт основания траншеи.

Для понижения уровня грунтовых вод предусматривают специальные дренажные трубопроводы, которые укладывают на глубине 400 мм от дна канала. В зависимости от условий работы дренажные устройства могут быть выполнены из различных труб: для безнапорных дренажей применяют керамические бетонные и асбестоцементные, а для напорных - стальные и чу-гунные.

Дренажные трубы прокладывают с уклоном 0,002—0,003. На поворотах и при перепадах уровней труб устраивают специаль-ные смотровые колодцы по типу канализационных.

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубо-проводов служат: для небольших и средних диаметров — надзем-ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстака-ды могут быть как стальными, так и железобетонными. Расстоя-ние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

При надземной прокладке тепловые удлинения трубопрово-дов компенсируются при помощи гнутых компенсаторов, требу-ющих минимальных затрат времени на обслуживание. Обслуживание арматуры производится со специально устраиваемых площадок. В качестве подвижных следует применить катковые опоры, создающие минимальные горизонтальные усилия.

Так же при надземной прокладке трубопроводов могут применяться низкие опоры, которые могут быть выполнены из металла или низких бетонных блоков. В местах пересечения такой трассы с пешеходными дорожками устанавливают специальные мостики. А при пересечении с автодорогами - или выполняют компенсатор нужной высоты или под дорогой прокладывают канал для прохода труб.

Что еще почитать