Робот типа «рука. Настольная робо-рука манипулятор из оргстекла на сервоприводах своими руками или реверс-инжиниринг uArm

Данный проект представляет собой многоуровневую модульную задачу. Первый этап проекта – сборка модуля роботизованной руки-манипулятора, поставляемой в виде набора деталей. Вторым этапом задачи будет сборка интерфейса IBM PC также из набора деталей. Наконец, третий этап задачи представляет собой создание модуля голосового управления.

Манипулятором робота можно управлять вручную с помощью ручного пульта управления, входящего в комплект набора. Рукой робота можно также управлять либо через собранный из набора интерфейс IBM PC, либо используя модуль голосового управления. Набор интерфейса IBM PC позволяет управлять и программировать действия робота через рабочий компьютер IBM PC. Устройство голосового управления позволит вам управлять рукой робота с помощью голосовых команд.

Все эти модули вместе образуют функциональное устройство, которое позволит вам проводить эксперименты и программировать автоматизированные последовательности действий или даже «оживлять» управляемую полностью «по проводам» руку-манипулятор.

Интерфейс PC позволит вам с помощью персонального компьютера запрограммировать руку-манипулятор на цепь автоматизированных действий или «оживить» ее. Существует также опция, в которой вы можете управлять рукой в интерактивном режиме, используя либо ручной контроллер, либо программу под Windows 95/98. «Оживление» руки представляет собой «развлекательную» часть цепочки запрограммированных автоматизированных действий. Например, если вы наденете на руку-манипцулятор детскую перчаточную куклу и запрограммируете устройство на показ небольшого шоу, то вы запрограммируете «оживление» электронной куклы. Программирование автоматизированных действий находит широкое применение в промышленности и индустрии развлечений.

Наиболее широко применяемым в промышленности роботом является робот рука-манипулятор. Рука робота представляет собой исключительно гибкий инструмент хотя бы потому, что конечный сегмент манипулятор руки может быть соответствующим инструментом, требуемым для конкретной задачи или производства. Например, шарнирный сварочный манипулятор может быть использован для точечной сварки, с помощью сопла-распылителя можно окрашивать различные детали и узлы, а захват может использоваться для зажима и установки предметов – это лишь некоторые примеры.

Итак, как мы видим, рука-манипулятор робота выполняет много полезных функций и может служить идеальным инструментом для изучения различных процессов. Однако создание роботизованной руки-манипулятора с «нуля» представляет собой сложную задачу. Гораздо проще собрать руку из деталей готового набора. Компания OWI продает достаточно хорошие наборы руки-манипулятора, которые можно приобрести у многих дистрибьюторов электронных устройств (см. список деталей в конце этой главы). С помощью интерфейса можно подключить собранную руку-манипулятор к порту принтера рабочего компьютера. В качестве рабочего компьютера можно использовать машину серии IBM PC или совместимую, которая поддерживает DOS или Windows 95/98.

После подключения к порту принтера компьютера рукой-манипулятором можно управлять в интерактивном режиме либо программным образом с компьютера. Управление рукой в интерактивном режиме очень просто. Для этого достаточно щелкнуть по одной из функциональных клавиш, чтобы передать роботу команду выполнения того или иного движения. Второе нажатие на клавишу прекращает выполнение команды.

Программирование цепочки автоматизированных действий также не составляет особого труда. Сперва щелкните по клавише Program, чтобы перейти в программную моду. В этой моде рука функционирует точно так же, как это было описано выше, но при этом в дополнение каждая функция и время ее действия фиксируются в script-файле. Script-файл может содержать до 99 различных функций, включая паузы. Сам script-файл может быть повторно воспроизведен 99 раз. Запись различных script-файлов позволяет производить эксперименты с управляемой компьютером последовательностью автоматизированных действий и «оживлению» руки. Работа с программой под Windows 95/98 более детально описана ниже. Программа под Windows включена в набор интерфейса роботизованной руки-манипулятора или может быть бесплатно загружена из Интернета http://www.imagesco.com .

В дополнение к программе Windows рукой можно управлять, используя BASIC или QBASIC. Программа уровня DOS содержится на дискетах, включенных в комплект набора интерфейса. Однако DOS программа позволяет осуществлять управление только в интерактивном режиме с использованием клавиатуры (см. распечатку BASIC программы на одной из дискет). Программа уровня DOS не позволяет создавать script-файлы. Однако если есть опыт программирования на BASIC, то последовательность движений руки-манипулятора может быть запрограммирована аналогично работе script-файла, используемого в программе под Windows. Последовательность движений может повторяться, как это сделано во многих «одушевленных» роботах.

Роботизованная рука-манипулятор

Рука-манипулятор (см. рис. 15.1) имеет три степени свободы движения. Локтевое сочленение может перемещаться вертикально вверх-вниз по дуге примерно 135°. Плечевой «сустав» перемещает захват вперед и назад по дуге примерно 120°. Рука может поворачиваться на основании по часовой стрелке или против часовой стрелки на угол примерно 350°. Захват руки робота может брать и удерживать объекты до 5 см в диаметре и поворачиваться вокруг в кистевом сочленении примерно на 340°.

Рис. 15.1. Кинематическая схема движений и поворотов руки-робота


Для приведения руки в движение компания OWI Robotic Arm Trainer использовала пять миниатюрных двигателей постоянного тока. Двигатели обеспечивают управление рукой при помощи проводов. Такое «проводное» управление означает, что каждая функция движения робота (т. е. работа соответствующего двигателя) управляется отдельными проводами (подачей напряжения). Каждый из пяти двигателей постоянного тока управляет своим движением руки-манипулятора. Управление по проводам позволяет сделать блок контроллера руки, непосредственно реагирующий на электрические сигналы. Это упрощает схему интерфейса руки робота, который подключается к порту принтера.

Рука изготовлена из легкого пластика. Большинство деталей, несущих основную нагрузку, также выполнены из пластика. Двигатели постоянного тока, использованные в конструкции руки, представляют собой миниатюрные высокооборотные двигатели с низким крутящим моментом. Для увеличения крутящего момента каждый мотор соединен с редуктором. Двигатели вместе с редукторами установлены внутри конструкции руки-манипулятора. Хотя редуктор увеличивает крутящий момент, рука робота не может поднять или нести достаточно тяжелые предметы. Рекомендуемый максимально допустимый вес при поднятии составляет 130 г.

Набор для изготовления руки робота и его компоненты представлены на рисунках 15.2 и 15.3.


Рис. 15.2. Набор для изготовления руки-робота



Рис. 15.3. Редуктор перед сборкой

Принцип управления двигателями

Для того чтобы понять принцип работы управления по проводам, посмотрим, как цифровой сигнал управляет работой отдельного двигателя постоянного тока. Для управления двигателем требуются два комплементарных транзистора. Один транзистор имеет проводимость PNP типа, другой – соответственно проводимость NPN типа. Каждый транзистор работает как электронный ключ, управляя движением тока, протекающего через двигатель постоянного тока. Направления движения тока, управляемые каждым из транзисторов, противоположны. Направление тока определяет направление вращения двигателя соответственно по часовой стрелке или против часовой стрелки. На рис. 15.4 приведена тестовая схема, которую вы можете собрать перед изготовлением интерфейса. Обратите внимание, что когда оба транзистора заперты, то двигатель выключен. В каждый момент времени должен быть включен только один транзистор. Если в какой-то момент оба транзистора случайно окажутся открытыми, то это приведет к короткому замыканию. Каждый двигатель управляется двумя транзисторами интерфейса, работающими аналогичным образом.


Рис. 15.4. Схема устройства проверки

Конструкция интерфейса для PC

Схема PC интерфейса приведена на рис. 15.5. В набор деталей PC интерфейса входит печатная плата, расположение деталей на которой показано на рис. 15.6.


Рис. 15.5. Принципиальная схема интерфейса РС



Рис. 15.6. Схема расположения деталей РС интерфейса


Прежде всего нужно определить сторону монтажа печатной платы. На стороне монтажа прочерчены белые линии, обозначающие резисторы, транзисторы, диоды, ИС и разъем DB25. Все детали вставляются в плату с монтажной стороны.

Общее указание: после пайки детали к проводникам печатной платы необходимо удалить излишне длинные выводы со стороны печати. Очень удобно следовать определенной последовательности при монтаже деталей. Сперва смонтируйте резисторы 100 кОм (цветная маркировка колец: коричневое, черное, желтое, золотое или серебряное), которые обозначены R1-R10. Затем смонтируйте 5 диодов D1-D5, убедившись, что черная полоска на диодах находится напротив разъема DB25, как это показано белыми линиями, нанесенными на монтажную сторону печатной платы. Затем смонтируйте резисторы 15 кОм (цветная маркировка, коричневый, зеленый, оранжевый, золотой или серебряный), обозначенные R11 и R13. В позиции R12 припаяйте к плате красный светодиод. Анод светодиода соответствует отверстию под R12, обозначенному знаком +. Затем смонтируйте 14– и 20-контактные панельки под ИС U1 и U2. Смонтируйте и впаяйте разъем DB25 уголкового типа. Не пытайтесь вставлять ножки разъема в плату с излишним усилием, здесь требуется исключительно точность. При необходимости осторожно покачайте разъем, стараясь не погнуть ножки выводов. Закрепите движковый переключатель и регулятор напряжения типа 7805. Отрежьте четыре куска провода необходимой длины и припаяйте к верхней части переключателя. Придерживайтесь расположения проводов, как показано на рисунке. Вставьте и впаяйте транзисторы TIP 120 и TIP 125. Наконец, впаяйте восьмиконтактный цокольный разъем и соединительный 75 миллиметровый кабель. Цоколь монтируется так, что наиболее длинные выводы смотрят вверх. Вставьте две ИС – 74LS373 и 74LS164 – в соответствующие панельки. Убедитесь, что положение ключа ИС на ее крышке совпадает с ключом, помеченным белыми линиями на печатной плате. Вы могли заметить, что на плате остались места под дополнительные детали. Это место предназначено для сетевого адаптера. На рис. 15.7 показана фотография готового интерфейса со стороны монтажа.


Рис. 15.7. РС интерфейс в сборе. Вид сверху

Принцип работы интерфейса

Рука-манипулятор имеет пять двигателей постоянного тока. Соответственно нам потребуются 10 шин входа/выхода для управления каждым двигателем, включая направление вращения. Параллельный (принтерный) порт IBM PC и совместимых машин содержит только восемь шин ввода/вывода. Для увеличения числа шин управления в интерфейсе руки робота используется ИС 74LS164, которая является преобразователем последовательного кода в параллельный (SIPO). При использовании всего двух шин параллельного порта D0 и D1, по которым посылается последовательный код в ИС, мы можем получить восемь дополнительных шин ввода/вывода. Как уже говорилось, можно создать восемь шин ввода/вывода, но в данном интерфейсе используются пять из них.

Когда последовательный код поступает на вход ИС 74LS164, на выходе ИС появляется соответствующий параллельный код. Если бы выходы ИС 74LS164 были непосредственно подключены к входам управляющих транзисторов, то отдельные функции руки-манипулятора включались и выключались бы в такт посылке последовательного кода. Очевидно, что такая ситуация является недопустимой. Чтобы избежать этого, в схему интерфейса введена вторая ИС 74LS373 – управляемый восьмиканальный электронный ключ.

ИС 74LS373 восьмиканальный ключ имеет восемь входных и восемь выходных шин. Двоичная информация, присутствующая на входных шинах передается на соответствующие выходы ИС только в том случае, если на ИС подан разрешающий сигнал. После выключения разрешающего сигнала текущее состояние выходных шин сохраняется (запоминается). В этом состоянии сигналы на входе ИС не оказывают никакого действия на состояние выходных шин.

После передачи последовательного пакета информации в ИС 74LS164 с вывода D2 параллельного порта подается разрешающий сигнал на ИС 74LS373. Это позволяет передать информацию уже в параллельном коде с входа ИС 74LS174 на ее выходные шины. Состоянием выходных шин управляются соответственно транзисторы TIP 120, которые, в свою очередь, управляют функциями руки-манипулятора. Процесс повторяется при подаче каждой новой команды на руку-манипулятор. Шины параллельного порта D3-D7 управляют непосредственно транзисторами TIP 125.

Подключение интерфейса к руке-манипулятору

Питание роботизованной руки-манипулятора осуществляется от источника питания 6 В, состоящего из четырех D-элементов, расположенных в основании конструкции. Интерфейс PC питается также от этого источника 6 В. Источник питания является биполярным и выдает напряжения ±3 В. Питание на интерфейс подается через восьмиконтактный разъем Molex, присоединенный к основанию манипулятора.

Присоедините интерфейс к руке-манипулятору при помощи восьмижильного кабеля Molex длиной 75 мм. Кабель Molex присоединяется к разъему, расположенному в основании манипулятора (см. рис. 15.8). Проверьте правильность и надежность вставки разъема. Для соединения платы интерфейса с компьютером используется кабель типа DB25 длиной 180 см, имеющийся в наборе. Один конец кабеля присоединяется к порту принтера. Другой конец соединяется с разъемом DB25 на плате интерфейса.


Рис. 15.8. Соединение РС интерфейса с рукой-роботом


В большинстве случаев к порту принтера штатно подключен принтер. Чтобы не заниматься присоединением и отключением разъемов каждый раз, когда вы хотите использовать манипулятор, полезно приобрести двухпозиционный блок переключателя шин принтеров A/B (DB25). Присоедините разъем интерфейса манипулятора к входу А, а принтер – к входу В. Теперь вы можете использовать переключатель для соединения компьютера либо с принтером, либо с интерфейсом.

Установка программы под Windows 95

Вставьте дискету 3,5" с меткой «Disc 1» в дисковод для флоппи-дисков и запустите программу установки (setup.exe). Программа установки создаст директорию с именем «Images» на жестком диске и скопирует необходимые файлы в эту директорию. В Start меню появится иконка Images. Для запуска программы щелкните по иконке Images в стартовом меню.

Работа с программой под Windows 95

Соедините интерфейс с портом принтера компьютера при помощи кабеля DB 25 длиной 180 см. Соедините интерфейс с основанием руки-манипулятора. До определенного времени держите интерфейс в выключенном состоянии. Если в это время включить интерфейс, то сохранившаяся в порту принтера информация может вызвать движения руки-манипулятора.

Щелкнув два раза по иконке Images в стартовом меню, запустите программу. Окно программы показано на рис. 15.9. При работе программы красный светодиод на плате интерфейса должен мигать. Примечание: чтобы светодиод начал мигать, включение питания интерфейса не требуется. Скорость мигания светодиода определяется скоростью работы процессора вашего компьютера. Мерцание светодиода может оказаться очень тусклым; для того чтобы это заметить, вам, возможно, придется уменьшить освещенность в комнате и сложить ладони «колечком» для наблюдения за светодиодом. Если светодиод не мигает, то, возможно, программа обращается по ошибочному адресу порта (порт LPT). Для переключения интерфейса на другой адрес порта (LPT порт), зайдите в окно меню установки адреса порта принтера (Printer Port Options box), расположенного в правом верхнем углу экрана. Выберите другую опцию. Правильная установка адреса порта вызовет мигание светодиода.


Рис. 15.9. Скриншот программы РС интерфейса под Windows


Когда светодиод будет мигать, щелкните по иконке Puuse и только после этого включите интерфейс. Щелчок соответствующей функциональной клавиши вызовет ответное движение руки-манипулятора. Повторный Щелчок приведет к остановке движения. Использование функциональных клавиш для управления рукой называется интерактивной модой управления.

Создание script-файла

Для программирования движений и автоматизированных последовательностей действий руки-манипулятора используются script-файлы. Script-файл содержит список временных команд, управляющих движениями руки-манипулятора. Создать script-файл очень просто. Для создания файла кликните по функциональной клавише program. Эта операция позволит войти в моду «программирования» script-файла. Нажимая на функциональные клавиши, мы будем управлять движениями руки, как мы уже делали, но при этом информация команд будет записываться в желтую script-таблицу, расположенную в нижнем левом углу экрана. Номер шага, начиная с единицы, будет указан в левой колонке, а для каждой новой команды он будет увеличиваться на единицу. Тип движения (функции) указан в средней колонке. После повторного щелчка функциональной клавиши выполнение движения прекращается, а в третьей колонке появляется значение времени выполнения движения от его начала до окончания. Время выполнения движения указывается с точностью до четверти секунды. Продолжая таким же образом, пользователь может запрограммировать в script-файл до 99 движений, включая паузы во времени. Затем script-файл можно сохранить, а в дальнейшем загрузить из любой директории. Выполнение команд script-файла можно циклически повторить до 99 раз, для чего необходимо ввести количество повторов в окно Repeat и нажать Start. Для окончания записи в script-файл нажмите клавишу Interactive. Эта команда переведет компьютер обратно в интерактивный режим.

«Оживление» предметов

Script-файлы могут быть использованы для компьютерной автоматизации действий или для «оживления» предметов. В случае «оживления» предметов управляемый роботизованный механический «скелет» обычно покрыт внешней оболочкой и сам не виден. Помните куклу-перчатку, описанную в начале главы? Внешняя оболочка может иметь вид человека (частично или полностью), пришельца, животного, растения, камня и чего-либо еще.

Ограничения области применения

Если вы хотите достичь профессионального уровня выполнения автоматизированных действий или «оживления» предметов, то, так сказать, для поддержания марки, точность позиционирования при выполнении движений в каждый момент времени должна приближаться к 100 %.

Однако вы можете заметить, что по мере повторения последовательности действий, записанных в script-файле, положение руки-манипулятора (паттерн-движения) будет отличаться от первоначального. Это происходит по нескольким причинам. По мере разряда батарей источника питания руки-манипулятора уменьшение мощности, подводимой к двигателям постоянного тока, приводит к снижению крутящего момента и скорости вращения двигателей. Таким образом, длина перемещения манипулятора и высота поднятого груза за один и тот же промежуток времени будет различаться для севших и «свежих» батарей. Но причина не только в этом. Даже при стабилизированном источнике питания частота вращения вала двигателя будет меняться, поскольку отсутствует регулятор частоты вращения двигателя. Для каждого фиксированного отрезка времени количество оборотов каждый раз будет немного отличаться. Это приведет к тому, что каждый раз будет различаться и положение руки-манипулятора. В довершение ко всему, в шестернях редуктора имеется определенный люфт, который также не принимается во внимание. Под влиянием всех этих факторов, которые мы здесь подробно рассмотрели, при выполнении цикла повторяющихся команд script-файла положение руки-манипулятора будет каждый раз немного различаться.

Поиск исходного положения

Можно усовершенствовать работу устройства, добавив в него схему обратной связи, которая отслеживает положение руки-манипулятора. Эта информация может быть введена в компьютер, что позволит определить абсолютное положение манипулятора. С такой системой позиционной обратной связи возможна установка положения руки-манипулятора в одну и ту же точку в начале выполнения каждой последовательности команд, записанных в script-файле.

Для этого существует много возможностей. В одном из основных методов позиционный контроль в каждой точке не предусмотрен. Вместо этого используется набор концевых выключателей, которые соответствуют исходной «стартовой» позиции. Концевые выключатели определяют точно только одну позицию – когда манипулятор доходит до положения «старт». Чтобы это сделать, необходимо установить последовательность концевых выключателей (кнопок) таким образом, чтобы они замыкались, когда манипулятор достигает крайнего положения в том или ином направлении. Например, один конечный выключатель можно установить на основании манипулятора. Выключатель должен срабатывать только тогда, когда рука-манипулятор достигнет крайнего положения при вращении по часовой стрелке. Другие конечные выключатели нужно установить на плечевом и локтевом сочленении. Они должны срабатывать при полном разгибании соответствующего сочленения. Еще один выключатель устанавливается на кисти и срабатывает, когда кисть поворачивается до упора по часовой стрелке. Последний концевой выключатель устанавливается на захвате и замыкается при его полном открывании. Чтобы поставить манипулятор в исходное положение, каждое возможное движение манипулятора осуществляется в сторону, необходимую для замыкания соответствующего концевого выключателя до тех пор, пока этот выключатель не замкнется. После того как достигнуто начальное положение для каждого движения, компьютер будет точно «знать» истинное положение руки-манипулятора.

После достижения исходного положения мы можем заново запустить программу, записанную в script-файле, исходя из предположения, что ошибка позиционирования во время выполнения каждого цикла будет накапливаться достаточно медленно, что не будет приводить к слишком большим отклонениям положения манипулятора от желаемого. После выполнения script-файла рука выставляется в исходное положение, и цикл работы script-файла повторяется.

В некоторых последовательностях знание только исходного положения оказывается недостаточным, например при поднятии яйца без риска раздавить его скорлупу. В подобных случаях необходима более сложная и точная система позиционной обратной связи. Сигналы с датчиков могут быть обработаны с помощью АЦП. Полученные сигналы могут быть использованы для определения значений таких параметров, как положение, давление, скорость и вращающий момент. В качестве иллюстрации можно привести следующий простой пример. Представьте, что вы прикрепили небольшой линейный переменный резистор к узлу захвата. Переменный резистор установлен таким образом, что перемещение его движка вперед и назад связано с открытием и закрытием захвата. Таким образом, в зависимости от степени открывания захвата меняется сопротивление переменного резистора. После проведения калибровки, с помощью измерения текущего сопротивления переменного резистора можно точно установить угол раскрытия зажимов захвата.

Создание подобной системы обратной связи вводит еще один уровень сложности в устройство и, соответственно, приводит к его удорожанию. Поэтому более простым вариантом является введение системы ручного управления для корректировки положения и движений руки-манипулятора в процессе выполнения script-программы.

Система ручного управления интерфейсом

После того как вы убедитесь, что интерфейс работает правильным образом, вы можете с помощью 8-контактного плоского разъема подключить к нему блок ручного управления. Проверьте положение подключения 8-контактного разъема Molex к головке разъема на плате интерфейса, как показано на рис. 15.10. Аккуратно вставьте разъем до его надежного соединения. После этого рукой-манипулятором можно управлять с ручного пульта в любой момент времени. Не имеет значения, соединен ли интерфейс с компьютером или нет.


Рис. 15.10. Подключение ручного управления

Программа DOS управления с клавиатуры

Имеется DOS программа, позволяющая управлять работой руки-манипулятора с клавиатуры компьютера в интерактивном режиме. Список клавиш, соответствующих выполнению той или иной функции, приведен в таблице.

B голосовом управлении рукой-манипулятором используется набор распознавания речи (УРР), который был описан в гл. 7. В этой главе мы изготовим интерфейс, связывающий УРР с рукой-манипулятором. Этот интерфейс также предлагается в виде набора компанией Images SI, Inc.

Схема интерфейса для УРР показана на рис. 15.11. В интерфейсе использован микроконтроллер 16F84. Программа для микроконтроллера выглядит следующим образом:


‘Программа интерфейса УРР

Symbol PortA = 5

Symbol TRISA = 133

Symbol PortB = 6

Symbol TRISB = 134

If bit4 = 0 then trigger ‘Если запись в триггер разрешена, читать схе

Goto start ‘Повторение

pause 500 ‘Ожидание 0,5 с

Peek PortB, B0 ‘Чтение кода BCD

If bit5 = 1 then send ‘Выходной код

goto start ‘Повторение

peek PortA, b0 ‘Чтение порта А

if bit4 = 1 then eleven ‘Число есть 11?

poke PortB, b0 ‘Выходной код

goto start ‘Повторение

if bit0 = 0 then ten

goto start ‘Повторение

goto start ‘Повторение



Рис. 15.11. Схема контроллера УРР для руки-робота


Обновление программы под 16F84 можно бесплатно загрузить из http://www.imagesco.com

Программирование интерфейса УРР

Программирование интерфейса УРР аналогично процедуре программирования УРР из набора, описанного в гл. 7. Для правильной работы руки-манипулятора вы должны запрограммировать командные слова соответственно номерам, соответствующим определенному движению манипулятора. В табл. 15.1 приведены примеры командных слов, управляющих работой руки-манипулятора. Вы можете выбрать командные слова по вашему вкусу.

Таблица 15.1

Список деталей для интерфейса PC

(5) Транзистор NPN TIP120

(5) Транзистор PNP TIP 125

(1) ИС 74164 преобразователь кода

(1) ИС 74LS373 восемь ключей

(1) Светодиод красный

(5) Диод 1N914

(1) Гнездо разъема Molex на 8 контактов

(1) Кабель Molex 8-жильный длиной 75 мм

(1) Двухпозиционный переключатель

(1) Разъем уголковый типа DB25

(1) Кабель DB 25 1,8 м с двумя разъемами М – типа.

(1) Печатная плата

(3) Резистор 15 кОм, 0,25 Вт


Все перечисленные детали входят в комплект набора.

Список деталей для интерфейса распознавания речи

(5) Транзистор NPN TIP 120

(5) Транзистор PNP TIP 125

(1) ИС 4011 логический элемент ИЛИ-НЕ

(1) ИС 4049 – 6 буферов

(1) ИС 741 операционный усилитель

(1) Резистор 5,6 кОм, 0,25 Вт

(1) Резистор 15 кОм, 0,25 Вт

(1) Головная часть разъема Molex 8 контактов

(1) Кабель Molex 8 жил, длина 75 мм

(10) Резистор 100 кОм, 0,25 Вт

(1) Резистор 4,7 кОм, 0,25 Вт

(1) ИС регулятор напряжения 7805

(1) ИС PIC 16F84 микроконтроллер

(1) Кварцевый резонатор 4,0 МГц

Набор интерфейса руки-манипулятора

Набор для изготовления руки манипулятора компании OWI

Интерфейс распознавания речи для руки-манипулятора

Набор устройства распознавания речи


Детали можно заказать в:

Images, SI, Inc.

Всем привет!
Пару лет назад на kickstarter появился очень занятный проект от uFactory - настольная робо-рука uArm . Они обещали со временем сделать проект открытым, но я не мог ждать и занялся реверс-инжинирингом по фотографиям.
За эти годы я сделал четыре версии своего виденья этого манипулятора и в итоге разработал вот такую конструкцию:
Это робо-рука с интегрированным контроллером, приводимая в движение пятью сервпоприводами. Основное ее достоинство в том, что все детали либо можно купить, либо дешево и быстро вырязать из оргстекла лазером.
Так как в качестве источника вдохновения я брал open sorce - проект, то всеми своими результатми делюсь полностью. Вы сможете скачать все исходники по ссылкам в конце статьи и, при желании, собрать такую же (все ссылки в конце статьи).

Но проще один раз показать ее в работе, чем долго рассказывать что она из себя представляет:

Итак, перейдем к описанию.
Технические характеристики

  1. Высота: 300мм.
  2. Рабочая зона (при полностью вытянутом манипуляторе): от 140мм до 300мм вокруг основания
  3. Максимальная грузоподъемность на вытянутой руке, не менее: 200г
  4. Потребляемый ток, не более: 6А
Также мне хочется отметить некоторые особенности конструкции:
  1. Подшипники во всех подвижных частях манипулятора. Всего их одинадцать: 10 штук на вал 3мм и один на вал 30мм.
  2. Простота сборки. Я очень много внимания уделил тому, чтобы была такая последовательность сборки манипулятора при которой все детали прикручивать предельно удобно. Особенно сложно было сделать это для узлов мощных сервоприводов в основании.
  3. Все мощные сервоприводы расположены в основании. То есть "нижние" сервоприводы не таскают "верхние".
  4. За счет параллельных шарниров инструмент всегда остается параллелен или перпендикулярен земле.
  5. Положение манипулятора можно менять на 90 градусов.
  6. Готовое Arduino-совместимое программное обеспечение. Правильно собранная рука может управляться мышкой, а по примерам кода можно составить свои алгоритмы движения
Описание конструкции
Все детали манипулятора режутся из оргстекла толщиной 3 и 5мм:

Обратите внимание, как собирается поворотное основание:
Самый сложный, это узел в нижней части манипулятора. В первых версиях у меня уходило очень много сил, чтобы собрать его. В нем соединяются три сервопривода и передаются усилия на захват. Детали вращаются вокруг штифта диаметром 6мм. Захват удерживается парралельно (или перпендикулярно) рабочей поверхности за счет дополнительных тяг:

Манипулятор с установленым плечом и локтем показан на фотографии ниже. К нему еще только предстоит добавить клешню и тяги для нее:

Клешня тоже устанавливается на подшипниках. Она может сжиматься и поворачиваться вокруг своей оси:
Клешню можно установить как вертикально, так и горизонтально:

Управляется все Arduino-совместимой платой и шилдом для нее:

Сборка
Чтобы собрать манипулятор потребуется около двух часов и куча крепежа. Сам процесс сборки я офмил в виде инструкции в фотографиях (осторожно, траффик!) с подробными комментариями по каждой операции. Также я сделал подробную 3D-модель в простой и бесплатной программе SketchUp. Так что всегда можно повертеть ее перед глазами и посмотреть непонятные места:


Электроника и программирование
Я сделал целый шилд, на котором установил, помимо разъемов сервоприводов и питания, переменные резисторы. Для удобства отладки. На самом деле достаточно при помощи макетки подвести сигналы к двигателям. Но у меня в итоге получился вот такой шилд, который (так уж сложилось) я заказал на заводе:

Вообще я сделал три разные программы под Arduino. Одна для управления с компьютера, одна для работы в демо-режиме и одна для управления кнопками и переменными резисторами. Самая интересная из них, конечно, первая. Я не буду приводить здесь код целиком - он доступен в онлайн .
Для управления необходимо скачать программу для компьютера. После ее запуска мышь переходит в режим управления рукой. Движение отвечает за перемещение по XY, колесико изменяет высоту, ЛКМ/ПКМ - захват, ПКМ+колесико - поворот манипулятора. И это на самом деле удобно. Это было на видео в начале статьи.
Исходники проекта

Существует два основных подхода к вопросу о создании роботизированной руки. Можно создать роботизированную руку с простыми прямолинейными движениями, имеющую два или три пальца для захвата большинства предметов. Или достаточно сложную, со всеми пятью пальцами, предназначенную для полной имитации человеческих рук, прошедших миллионы лет эволюции. И такую руку удалось разработать, так что если вы хотите, чтобы ваш робот выполнял как можно больше движений и обладал человекоподобной рукой, то теперь это стало возможным.

Из-за сложного строения настоящей человеческой руки, биомиметические антропоморфные руки неизбежно сопряжены с большим количеством проблем: нужно заставить их работать определенным образом и сохранить форму человеческой руки. Zhe Xu и Emanuel Todorov из Вашингтонского Университета в Сиэтле совершили безумие и создали наиболее точную биомиметическую антропоморфную роботехническую руку, какую можно себе представить, для того, чтобы полностью заменить человеческую.

По словам Zhe Xu, для них было очень важно разработать новый вид робототехнической руки:

«Традиционный подход к проектированию антропоморфной робототехнической руки предполагает механизацию биологических частей с использованием шарниров, тяг, подвесов для значительного упрощения. Этот подход, несомненно, полезен для понимания и аппроксимации кинематики человеческой руки в целом, но неизбежно вносит диссонанс между роботизированной и человеческой рукой, так как большинство важных биомеханических особенностей человеческой руки не принимаются во внимание в процессе механизации. Присущее несоответствие между механизмами роботизированной руки и биомеханикой руки человека, по сути, мешает нам использовать естественные движения руки, чтобы управлять напрямую. Таким образом, в настоящее время нет ни одной антропоморфной роботизированной руки, которую можно в полной мере сравнить с человеческой».

Xu и Todorov решили начать с нуля, машинально дублируя движения человеческой руки. Сначала они просканировали лазером скелет человеческой руки, а затем напечатали на 3D-принтере искусственные кости, что позволило им продублировать незафиксированные совместные оси, которые у нас есть.

По словам Xu:

«Например, движения большого пальца опираются на сложную форму трапецевидной кости, расположенной в запястно-пястном суставе кисти. Из-за неправильной формы трапецевидной кости, точное расположение совместных осей запястно-пястного сустава не является фиксированным. Таким образом, ни один из существующих образцов антропоморфной роботехнической руки не может воспроизвести естественные движения большого пальца, так как обычные механические соединения требуют фиксированной оси вращения. С помощью лазерного сканирования модели человеческой руки и 3D печати искусственных суставов пальцев, мы получили диапазон движения, жесткости и динамических характеристик, очень близкий к человеческим аналогам. Наша роботизированная рука однозначно сохраняет важную биомеханическую информацию на анатомическом уровне».

Суставные связки (которые стабилизируют суставы и контролируют диапазон их движений) изготовлены из высокопрочных волокон Spectra, с использованием лазерной резки листов резины, заменяющих мягкие ткани.

Разгибатели и сгибатели сухожилий (для сгибания и выпрямления пальцев) также изготовлены из волокон Spectra и резиновых листов методом лазерной резки для обшивки сухожилий и мышцы-разгибателя, представляющую собой сложную перепончатую многослойную структуру, которая оборачивается вокруг пальцев, чтобы лучше управлять гибкостью и крутящим моментом. Мышцы состоят из массива 10 сервоприводов Dynamixel, тросы от которых которых проложены таким образом, чтобы точно имитировать запястье человеческой руки.

Помимо того, что это практически произведение искусства, рука способна очень точно имитировать разнообразные хватки при управлении с дистанционного манипулятора. Операторы также могут выполнять сложные манипуляции рукой без обратной связи, так как кинематика руки совпадает с настоящей человеческой рукой.

Это настоящий прорыв: дело в том, что рука предназначена для имитации человеческой руки, и это означает, что она имитирует человеческую руку, в первую очередь, из-за своей конструкции, а не программирования. Это имеет массу потенциальных преимуществ в телеманипуляции, поскольку оператор может более органично использовать ловкость собственных рук.

Ученые предполагают, что их руки могут быть использованы «как 3D каркасы для регенерации конечностей».

По словам Xu:

«Работа рук и ног существенно опирается на человеческий мозг. Поэтому технологии нейропротезирования могли бы стать намного более эффективными, если конструкция протеза больше походила на свой биологический аналог. Биосовместимые материалы теперь могут быть распечатаны в виде костных структур, биологически искусственные связки будут использованы для замены разорванной передней крестообразной связки, мышцы человека будут успешно культивированы в чашке петри (прозрачном лабораторном сосуде в форме плоского цилиндра), а периферические нервы также могут быть регенерированы при благоприятных условиях. Все эти перспективные технологии требуют подходящих каркасов для роста трансплантируемых клеток. Мы будем сотрудничать с учеными-биологами и исследователями тканевой инженерии для дальнейшего изучения перспектив и создания биоустройств, каркасов в развивающихся областях нейропротезирования и регенерации конечностей».

Разработка биомиметическая антропоморфной роботизированной руки для регенерации конечностей, созданной Zhe Xu и Emanuel Todorov из Вашингтонского Университета будет представлена на ICRA в Стокгольме в мае этого года.

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Введение

Робот (чеш. robot , от robota — подневольный труд, rob — раб), машина с антропоморфным (человекоподобным) поведением, которая частично или полностью выполняет функции человека (иногда животного) при взаимодействии с окружающим миром. Первые упоминания о человекоподобных машинах встречаются ещё в древнегреческих мифах. Термин «робот» был впервые введён К. Чапеком в пьесе « R . U . R .» (1920), где Роботами называли механических людей. В настоящее время робототехника превратилась в развитую область промышленности: тысячи промышленных роботов работают на различных предприятиях мира, подводные манипуляторы стали непременной принадлежностью подводных исследовательских и спасательных аппаратов, изучение космоса опирается на широкое использование роботов с различным уровнем интеллекта. С развитием робототехники определились 3 разновидности Роботов: с жёсткой программой действий; манипуляторы, управляемые человеком-оператором; с искусственным интеллектом (иногда называемые интегральными), действующие целенаправленно («разумно») без вмешательства человека. Большинство современных Роботов (всех трёх разновидностей) — Роботы манипуляторы, хотя существуют и другие виды Роботов (например, информационные, шагающие и т. п.). Возможно объединение Роботов первой и второй разновидностей в одной машине с разделением времени их функционирования. Допустима также совместная работа человека с Роботами третьего вида (в так называемом супервизорном режиме). Первые Роботы («андроиды», имитировавшие движения и внешний облик человека) использовались преимущественно в развлекательных целях. С 30-х гг. в связи с автоматизацией производства Роботы — автоматы стали применять в промышленности наряду с традиционными средствами автоматизации технологических процессов, в частности в мелкосерийном производстве и особенно в цехах с вредными условиями труда.

Промышленный Робот манипулятор имеет «механическую руку» (одну или несколько) и вынесенный пульт управления или встроенное устройство программного управления, реже ЭВМ. Он может, например, перемещать детали массой до нескольких десятков кг в радиусе действия его «механических рук» (до 2 м), выполняя от 200 до 1000 перемещений в час. Промышленные Роботы — автоматы имеют преимущество перед человеком в скорости и точности выполнения ручных однообразных операций. Наиболее распространены Роботы манипуляторы с дистанционным управлением и «механической рукой», закрепленной на подвижном или неподвижном основании. Оператор управляет движением манипулятора, одновременно наблюдая её непосредственно либо на телевизионном экране; в последнем случае. Роботы снабжается «телевизионным глазом» — передающей телевизионной камерой. Часто Робот оснащают обучающейся автоматической системой управления. Если такому Роботу «показывают» последовательность операций, то система управления фиксирует всё в виде программы управления и затем точно воспроизводит при работе. Роботы манипуляторы используют для работы в условиях относительной недоступности либо в опасных, вредных для человека условиях, например в атомной промышленности, где они применяются с 50-х гг. В 60-х гг. появились подводные Роботы манипуляторы разнообразных конструкций и назначения: от глубоководных управляемых аппаратов с «механическими руками» (в частности, для захвата образцов породы со дна моря и т. д.) и ползающих по морскому дну платформ с исследовательской аппаратурой до подводных бульдозеров и буровых установок. Подобные манипуляторы применяются и в космонавтике, на американских «Шаттлах».

Робот – это универсальный автомат, позволяющий выполнять механические действия. Его принципиальной особенностью является быстрая оперативная перестройка с одной выполняемой операции на другую. Существует несколько разновидностей роботов и для каждого из них имеется своё определение. Чаще всего говорят о трёх поколениях роботов: промышленных роботах или манипуляторах, адаптивных роботах и роботах с искусственным интеллектом или как говорили раньше – интегральных роботах.

Манипулятор, 1) в горном деле - основной механизм буровой каретки, предназначенный для перемещения в призабойном пространстве автоподатчика с перфоратором (бурильной машиной).

2) В процессах обработки металлов давлением - машина для выполнения вспомогательных операций, связанных с изменением положения заготовки.

3) В ядерной технике - приспособление для работы с радиоактивными веществами, исключающее непосредственный контакт человека с этими веществами. С помощью М. можно захватывать предмет, находящийся за защитной стенкой, перемещать и поворачивать его. М. пантографического типа с механическим приводом (копирующий М.) точно воспроизводит движение руки оператора. Угловая ориентация копирующей «руки» и движения, имитирующие сжимание и захват, передаются гидравлическим приводом или тросами, идущими от управляющей рукоятки к копирующей «руке». Для дистанционного управления на большом расстоянии от оператора применяются М., управляющее и копирующее плечи которых связаны между собой электрически.

«МЕХАНИЧЕСКИЕ РУКИ»

История механических рук начинается с… атомной физики. Дело в том, что многие материалы, с которыми приходится иметь дело в этой области науки, обладают радиоактивностью – свойством выделять в окружающее пространство опасные для здоровья человека лучи. Механические руки стали устанавливать там, куда доступ человека нежелателен, а сам он, управляющий руками, располагался в другом, безопасном помещении. Можно сказать, что в этих копирующих манипуляторах была использована та же идея, что и в известных всем куклах – марионетках. Оператор, работающий на манипуляторе, рукой приводит в движение управляющий механизм, звенья которого соединены с соответствующими звеньями исполнительного механизма, повторяющего все движения руки оператора.

При работе с радиоактивными веществами расстоянии от оператора до исполнительных рук манипулятора может доходить до десятков метров, при работах в подводном мире – до тысяч метров. При применении манипуляторов в космическом пространстве это расстояние будет измеряться сотнями тысяч, миллионами километров… Надёжное и точное управление на значительном расстоянии – вот первое требование, которое предъявляют к любой конструкции копирующего манипулятора. Первое, но не единственное

РОБОТ ТИПА «РУКА»

Каждый робот рассчитан на выполнение той или иной работы, которая и определяет его конструкцию, размеры, степень подвижности, число рук и пальцев на руке, грузоподъёмность, точность движения и т.д. Независимо от того, стоит ли робот возле станков, передвигается между ними или ползает под потолком, у него всегда есть мощная механическая рука с двумя или четырьмя пальцами. Роботы отличаются один от другого общим видом, габаритами и техническими характеристиками, но у них есть и общие признаки. На рис. 4 изображена структурная схема такого робота. Рукой управляет либо оператор с пульта, либо мозг робота – его ЦВМ (цифровая вычислительная машина). В блоке памяти находится программа действий робота, которую вводят в него или которую он приобретает во время обучения.

Общий блок управления электрическими, гидравлическими или пневматическими двигателями, расположенными в плече руки, предплечье, в кисти, состоит из цепей управления движением руки по каждой из координатных осей. Сколько степеней свободы у руки, столько и цепей управления.

Рис. 4. Структурная схема робота.

Робот – манипулятор, встав на рабочее место, согласовывает свою работу с обслуживаемым технологическим оборудованием. Движения руки точные, повороты строго рассчитаны во времени. Робот с оборудованием образует автоматизированную ячейку. Из таких ячеек составляют робототехнологические комплексы или линии. Одно из наиболее распространённых занятий роботов – манипуляторов – окраска изделий.

Окрашивают обычно способом набрызгивания. Чтобы защититься от вредного действия распыляемой краски, приходится работать в специальной маске, а рабочую зону оборудовать специальными защитными устройствами. Это сложно, дорого и все равно небезвредно для человека. Если же окраску изделий поручить манипулятору, а управление им человеку, это оздоровит условия работы и повысит производительность труда.

Процессы формовки кирпича обычно высокомеханизированы. За формовкой следуют операции пропаривания, обжига, требующие перекладывания кирпича и складывания его в пирамиды определённой конфигурации. Эти операции также можно механизировать и автоматизировать, используя манипуляторы. Механическая рука может брать одновременно 5-6 и более кирпичей, каждый из которых весит до 4 кг, и не боится обжечься, даже если они только что из печи.

Стеклянные заготовки для телевизионного кинескопа могут весить 10-15 кг. Сложный технологический процесс их изготовления требует многократной установки, съёма, погрузки. Сотни людей были заняты этой малопроизводительной работой, но им на смену пришли механические руки.

Эти несколько скупых примеров ясно свидетельствуют о том, как широко поле деятельности, открывающееся перед автоматическими манипуляторами в самых различных областях производства.

РОБОТЫ ПЕРВОГО ПОКОЛЕНИЯ – ОБУЧАЕМЫЕ МАНИПУЛЯТОРЫ

Каждый промышленный робот – манипулятор состоит из двух основных частей: манипулятора и устройства управления. Первая отвечает за все необходимые движения, вторая – за управление ими. Описывая конструктивную компоновку робота для промышленности, трудно удержаться от сравнения его с «конструкцией» человека. Каждый промышленный робот имеет мозг – блок управления и механическую часть, включающую тело и руку. Тело робота – это, как правило, массивное основание или, как его называют, станина, а рука – многозвенный рычажный механизм – манипулятор. Чтобы рука могла совершать положенное ей многообразие движений, она имеет мышцы – привод. Задача мышц – преобразовывать сигналы блока управления в механические перемещения руки. Венчает механическую руку кисть или захватное устройство – схват.

Большинство промышленных роботов имеет одну руку, но существуют и роботы, обладающие двумя, тремя и более руками. Взглянув на руки промышленного робота, почти любой человек, даже не обладающий проницательностью Шерлока Холмса, сможет, немного подумав, определить сферу «профессиональных интересов» робота. Вот клешни из трёх крюков для круглых поковок, вот присоски, как у осьминога, для стеклянных листов, вот ковш для сыпучих материалов, и т.д. и т.п. Ещё проще разобраться в обязанностях робота, если руки его снабжены специализированным инструментом: сверлом, краскораспылителем, гайковёртом и др. Инструмент закреплён прямо на руке, а не в схвате, теперь уже ненужном.

Различают руки роботов и по размерам: есть экземпляры рук для работы с многотонными валами, а есть миниатюрнейшие щипчики – пинцетики для изделий микроэлектроники или часовых шестерёнок. Некоторые пальчики – усики манипулируют деталями, различимыми лишь в микроскоп.

C писок литературы

    Вадим Викторович Мацкевич «Занимательная анатомия роботов» – М.: Сов. радио, 1980.

    Значение слова «Манипулятор» в Большой Советской Энциклопедии

Занимательная анатомия роботов Мацкевич Вадим Викторович

Робот типа «рука»

Робот типа «рука»

Каждый робот рассчитан на выполнение той или иной работы, которая и определяет его конструкцию, размеры, степень подвижности, число рук и пальцев на руке, грузоподъёмность, точность движения и т.д. Независимо от того, стоит ли робот возле станков, передвигается между ними или ползает под потолком, у него всегда есть мощная механическая рука с двумя или четырьмя пальцами. Роботы отличаются один от другого общим видом, габаритами и техническими характеристиками, но у них есть и общие признаки. На рис. 4 изображена структурная схема такого робота. Рукой управляет либо оператор с пульта, либо мозг робота – его ЦВМ (цифровая вычислительная машина). В блоке памяти находится программа действий робота, которую вводят в него или которую он приобретает во время обучения.

Общий блок управления электрическими, гидравлическими или пневматическими двигателями, расположенными в плече руки, предплечье, в кисти, состоит из цепей управления движением руки по каждой из координатных осей. Сколько степеней свободы у руки, столько и цепей управления.

Робот – манипулятор, встав на рабочее место, согласовывает свою работу с обслуживаемым технологическим оборудованием. Движения руки точные, повороты строго рассчитаны во времени. Робот с оборудованием образует автоматизированную ячейку. Из таких ячеек составляют робототехнологические комплексы или линии. Одно из наиболее распространённых занятий роботов – манипуляторов – окраска изделий.

Рис. 4. Структурная схема робота.

Окрашивают обычно способом набрызгивания. Чтобы защититься от вредного действия распыляемой краски, приходится работать в специальной маске, а рабочую зону оборудовать специальными защитными устройствами. Это сложно, дорого и все равно небезвредно для человека. Если же окраску изделий поручить манипулятору, а управление им человеку, это оздоровит условия работы и повысит производительность труда.

Процессы формовки кирпича обычно высокомеханизированы. За формовкой следуют операции пропаривания, обжига, требующие перекладывания кирпича и складывания его в пирамиды определённой конфигурации. Эти операции также можно механизировать и автоматизировать, используя манипуляторы. Механическая рука может брать одновременно 5-6 и более кирпичей, каждый из которых весит до 4 кг, и не боится обжечься, даже если они только что из печи.

Стеклянные заготовки для телевизионного кинескопа могут весить 10-15 кг. Сложный технологический процесс их изготовления требует многократной установки, съёма, погрузки. Сотни людей были заняты этой малопроизводительной работой, но им на смену пришли механические руки.

Эти несколько скупых примеров ясно свидетельствуют о том, как широко поле деятельности, открывающееся перед автоматическими манипуляторами в самых различных областях производства.

Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Вас слушает робот Представьте, что вы звоните по телефону приятелю и вслед за первым гудком в трубке слышите лёгкий щелчок и его голос: «Меня нет дома. Вернусь к восьми. Что вы мне хотите сказать?». Не пытайтесь уличить приятеля во лжи. Он не разыгрывает вас. И хотя слышен

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Мыслящий робот Для того чтобы поведение робота было целенаправленным, его «мозг» должен принять на себя функции системы центрального управления: командовать руками, ногами и другими системами, а также контактировать с окружающей средой, следить за её изменениями. Робот

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Глава 1 НАПЕРЕГОНКИ ИЛИ РУКА ОБ РУКУ?

Из книги Виртуальная реальность: как это начиналось автора Мельников Лев

Глава 7 Передвижной робот с голосовым управлением Речь является идеальным способом управления и коммуникации в робототехнике. Схема устройства распознавания речи (УРР), которой будет посвящена эта глава, функционирует независимо от основного «интеллекта» роботы (ЦПУ).

Из книги АвтоНАШЕСТВИЕ на СССР. Трофейные и лендлизовские автомобили автора Соколов Михаил Владимирович

Рука робота, управляемая УРР В гл. 15 будет рассмотрен еще один вариант интерфейса, управляющий рукой

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Глава 9 Робот – система телеслежения В этой главе мы построим робота – систему телеслежения. Как уже было показано в гл. 2, подобные роботы находят широкое применение в науке, бизнесе, индустрии развлечений, военном деле, различного рода исследованиях и

Из книги автора

Шагающий робот с тремя сервомоторами Шагающий робот, которого мы собираемся сделать, является компромиссным решением по замыслу и конструкции и требует наличия всего трех сервомоторов. Однако даже в этом случае он обеспечивает передвижение с помощью треножной походки.

Из книги автора

Глава 12 Робот – солнечный шар Идею создания подобного робота первоначально выдвинул Ричард Вейт из Северного Йорка, Торонто. Ричард построил робота, ищущего источник света, заключенного в прозрачную сферу (шар). Затем, в более недавнее время, Дейв Хранкиу из Калгари,

Из книги автора

Глава 15 Роботизованная рука-манипулятор, интерфейс IBM PC и система голосового управления Данный проект представляет собой многоуровневую модульную задачу. Первый этап проекта – сборка модуля роботизованной руки-манипулятора, поставляемой в виде набора деталей. Вторым

Из книги автора

Роботизованная рука-манипулятор Рука-манипулятор (см. рис. 15.1) имеет три степени свободы движения. Локтевое сочленение может перемещаться вертикально вверх-вниз по дуге примерно 135°. Плечевой «сустав» перемещает захват вперед и назад по дуге примерно 120°. Рука может

Из книги автора

Робот-интерьер Как часто мы страдаем из-за того, что окружающие не замечают нашего состояния! Да и сами мы его не всегда адекватно оцениваем, а когда спохватываемся, может быть уже поздно. В космическом полете ситуация резко осложняется: организм космонавта - важнейшая

Из книги автора

Танковозы типа «900» О «900–й» же модели (6x4) с собственным верхнеклапанным 130–сильным двигателем, 4–ступенчатой коробкой передач и всеми односкатными 22–дюймовыми колесами следует рассказать чуть подробнее. Такие машины использовались для перевозки орудий и легких

Из книги автора

Робот-стеноход …Огонь так разбушевался, что даже видавшие виды бойцы пожарной охраны не рисковали приблизиться к «очагу возгорания» – огромному резервуару с нефтью. Меж тем пламя грозило перекинуться на другие сооружения нефтеперерабатывающего завода. И тут вперед

Из книги автора

Робот-«муха» Робот-«муха» может взлететь на высоту 20-30-этажного дома, а затем зависнуть, прилипнув к стенке или потолку. Такую конструкцию предложил и запатентовал старший преподаватель промышленного дизайна механико-машиностроительного факультета

Из книги автора

Робот строит дом Пожалуй, самые прочные на сегодняшний день дома – кирпичные и бетонные. Однако при сооружении кирпичных стен никак не обойтись без ручного труда. Куда быстрее с помощью механизмов можно построить «коробку» из железобетонных панелей. Но и тут есть своя

Из книги автора

Ропот про арбузный робот Одна из наиболее трудоемких работ в сельском хозяйстве – уборка бахчевых культур. Попробуйте-ка потаскать по августовской жаре массивные – весом до 10 кг, а то и более – шары арбузов, эллипсоиды дынь. Тут поневоле задумаешься о механизации…

Что еще почитать