Расчет теплопотерь. Какой толщины должен быть утеплитель, сравнение теплопроводности материалов Теплоизолирующие свойства строительных материалов таблица

Чтобы правильно организовать , и помещений нужно знать определённые особенности и свойства материалов. От качественного подбора необходимых значений напрямую зависит тепловая устойчивость вашего дома, ведь ошибившись, в первоначальных расчётах вы рискуете сделать здания неполноценным. В помощь вам предоставляется подробная таблица теплопроводности строительных материалов, описанная в этой статье.

Читайте в статье

Что такое теплопроводность и её значимость?

Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.


Подробная таблица теплопроводности строительных материалов

Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

Вид материала Коэффициенты теплопроводности, Вт/(мм*°С)
Сухие Средние условия тепловой отдачи Условия повышенной влажности
Полистирол 36 — 41 38 — 44 44 — 50
Эструдированный полистирол 29 30 31
Войлок 45
Раствор цемент+песок 580 760 930
Раствор известь+песок 470 700 810
из гипса 250
Каменная вата 180 кг/м 3 38 45 48
140-175 кг/м 3 37 43 46
80-125 кг/м 3 36 42 45
40-60 кг/м 3 35 41 44
25-50 кг/м 3 36 42 45
Стекловата 85 кг/м 3 44 46 50
75 кг/м 3 40 42 47
60 кг/м 3 38 40 45
45 кг/м 3 39 41 45
35 кг/м 3 39 41 46
30 кг/м 3 40 42 46
20 кг/м 3 40 43 48
17 кг/м 3 44 47 53
15 кг/м 3 46 49 55
Пеноблок и газоблок на основе 1000 кг/м 3 290 380 430
800 кг/м 3 210 330 370
600 кг/м 3 140 220 260
400 кг/м 3 110 140 150
и на извести 1000 кг/м 3 310 480 550
800 кг/м 3 230 390 450
400 кг/м 3 130 220 280
Дерево сосны и ели в распиле поперек волокон 9 140 180
сосны и ели в распиле вдоль волокон 180 290 350
Древесина дуба поперек волокон 100 180 230
Древесина дуб вдоль волокон 230 350 410
Медь 38200 — 39000
Алюминий 20200 — 23600
Латунь 9700 — 11100
Железо 9200
Олово 6700
Сталь 4700
Стекло 3 мм 760
Снежный слой 100 — 150
Вода обычная 560
Воздух средней температуры 26
Вакуум 0
Аргон 17
Ксенон 0,57
Арболит 7 — 170
35
Железобетон плотность 2,5 тыс. кг/м 3 169 192 204
Бетон на щебне с плотностью 2,4 тыс. кг/м 3 151 174 186
с плотностью 1,8 тыс. кг/м 3 660 800 920
Бетон на керамзите с плотностью 1,6 тыс. кг/м 3 580 670 790
Бетон на керамзите с плотностью 1,4 тыс. кг/м 3 470 560 650
Бетон на керамзите с плотностью 1,2 тыс. кг/м 3 360 440 520
Бетон на керамзите с плотностью 1 тыс. кг/м 3 270 330 410
Бетон на керамзите с плотностью 800 кг/м 3 210 240 310
Бетон на керамзите с плотностью 600 кг/м 3 160 200 260
Бетон на керамзите с плотностью 500 кг/м 3 140 170 230
Крупноформатный блок из керамики 140 — 180
из керамики плотный 560 700 810
Силикатный кирпич 700 760 870
Кирпич из керамики полый 1500 кг/м³ 470 580 640
Кирпич из керамики полый 1300 кг/м³ 410 520 580
Кирпич из керамики полый 1000 кг/м³ 350 470 520
Силикат на 11 отверстий (плотность 1500 кг/м 3) 640 700 810
Силикат на 14 отверстий (плотность 1400 кг/м 3) 520 640 760
Гранитный камень 349 349 349
Мраморный камень 2910 2910 2910
Известняковый камень, 2000 кг/м 3 930 1160 1280
Известняковый камень, 1800 кг/м 3 700 930 1050
Известняковый камень, 1600 кг/м 3 580 730 810
Известняковый камень, 1400 кг/м 3 490 560 580
Тюф 2000 кг/м 3 760 930 1050
Тюф 1800 кг/м 3 560 700 810
Тюф 1600 кг/м 3 410 520 640
Тюф 1400 кг/м 3 330 430 520
Тюф 1200 кг/м 3 270 350 410
Тюф 1000 кг/м 3 210 240 290
Сухой песок 1600 кг/м 3 350
Фанера прессованная 120 150 180
Отпрессованная 1000 кг/м 3 150 230 290
Отпрессованная доска 800 кг/м 3 130 190 230
Отпрессованная доска 600 кг/м 3 110 130 160
Отпрессованная доска 400 кг/м 3 80 110 130
Отпрессованная доска 200 кг/м 3 6 7 8
Пакля 5 6 7
(обшивочный), 1050 кг/м 3 150 340 360
(обшивочный), 800 кг/м 3 150 190 210
380 380 380
на утеплителе 1600 кг/м 3 330 330 330
Линолеум на утеплителе 1800 кг/м 3 350 350 350
Линолеум на утеплителе 1600 кг/м 3 290 290 290
Линолеум на утеплителе 1400 кг/м 3 200 230 230
Вата на эко основе 37 — 42
Перлит пескообразный с плотностью 75 кг/м 3 43 — 47
Перлит пескообразный с плотностью 100 кг/м 3 52
Перлит пескообразный с плотностью 150 кг/м 3 52 — 58
Перлит пескообразный с плотностью 200 кг/м 3 70
Вспененное стекло плотность которого 100 — 150 кг/м 3 43 — 60
Вспененное стекло плотность которого 51 — 200 кг/м 3 60 — 63
Вспененное стекло плотность которого 201 — 250 кг/м 3 66 — 73
Вспененное стекло плотность которого 251 — 400 кг/м 3 85 — 100
Вспененное стекло в блоках плотность которого 100 — 120 кг/м 3 43 — 45
Вспененное стекло плотность которого 121 — 170 кг/м 3 50 — 62
Вспененное стекло плотность которого 171 — 220 кг/м 3 57 — 63
Вспененное стекло плотность которого 221 — 270 кг/м 3 73
Керамзитная и гравийная насыпь плотность которого 250 кг/м 3 99 — 100 110 120
Керамзитная и гравийная насыпь плотность которого 300 кг/м 3 108 120 130
Керамзитная и гравийная насыпь плотность которого 350 кг/м 3 115 — 120 125 140
Керамзитная и гравийная насыпь плотность которого 400 кг/м 3 120 130 145
Керамзитная и гравийная насыпь плотность которого 450 кг/м 3 130 140 155
Керамзитная и гравийная насыпь плотность которого 500 кг/м 3 140 150 165
Керамзитная и гравийная насыпь плотность которого 600 кг/м 3 140 170 190
Керамзитная и гравийная насыпь плотность которого 800 кг/м 3 180 180 190
Гипсовые плиты плотность которого 1350 кг/м 3 350 500 560
плиты плотность которого 1100 кг/м 3 230 350 410
Перлитовый бетон плотность которого 1200 кг/м 3 290 440 500
МТПерлитовый бетон плотность которого 1000 кг/м 3 220 330 380
Перлитовый бетон плотность которого 800 кг/м 3 160 270 330
Перлитовый бетон плотность которого 600 кг/м 3 120 190 230
Вспененный полиуретан плотность которого 80 кг/м 3 41 42 50
Вспененный полиуретан плотность которого 60 кг/м 3 35 36 41
Вспененный полиуретан плотность которого 40 кг/м 3 29 31 40
Сшитый вспененный полиуретан 31 — 38

Важно! Для достижения более эффективного утепления нужно компоновать разные материалы. Совместимость поверхностей между собой указана в инструкции от производителя.

Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация

В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.


Вы можете ознакомиться с уровнем теплопроводности , таблично представленного на фото ниже.


Классификация теплоизоляции

По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

  • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
  • Утеплитель, умеющий отражать все виды воздействия на него;

По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

  • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
  • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
  • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

Примечание! Не все утеплители имеют стойкость к высоким температурам. Например, эковата, соломит, ДСП, ДВП и торф нуждаются в надёжной защите от внешних условий.

Основные виды коэффициентов теплопередачи материала. Таблица + примеры

Расчёт необходимого , если это касается внешних стен дома исходит от регионального размещения здания. Чтобы объяснить наглядно как он происходит, в таблице ниже, приведённые цифры будут касаться Красноярского края.

Вид материала Теплопередача, Вт/(м*°С) Толщина стен, мм Иллюстрация
5500
Лиственные породы деревьев с 15% 0,15 1230
Бетон на основе керамзита 0,2 1630
Пеноблок с плотностью 1 тыс. кг/м³ 0,3 2450
Хвойные породы деревьев вдоль волокон 0,35 2860
Дубовая вагонка 0,41 3350
на растворе из цемента и песка 0,87 7110
Железобетонные

Каждое здание имеет разные сопротивления теплопередачи материалов. Таблица ниже, которая является выдержкой из СНиПа, ярко это демонстрирует.


Примеры утепления зданий в зависимости от теплопроводности

В современном строительстве нормой стали стены, состоящие из двух и даже трёх слоёв материала. Один слой состоит из , который подбирается после определённых расчётов. Дополнительно необходимо выяснить, где находится точка росы.

Чтобы организовать необходимо комплексно использовать несколько СниПов, ГОСТов, пособий и СП:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Редакция от 2012 года;
  • СНиП 23-01-99 (СП 131.13330.2012). «Строительная климатология». Редакция от 2012 года;
  • СП 23-101-2004. «Проектирование тепловой защиты зданий»;
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие»;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях»;

Производя вычисления по этим документам, определяют тепловые особенности строительного материала, ограждающего конструкцию, сопротивление тепловой передачи и степень совпадений с нормативными документами. Параметры расчёта исходя из таблицы теплопроводности строительного материала приведены на фото ниже.

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.


    Особенность климата Плесень на стенах Затяжка пенопласта гидроизоляцией

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Понятие теплопроводности

Теплопроводность - процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:


  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал - кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
  • с показателем 0,035-0,042Вт/м*К.

Таблица показателей

Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный снизит по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.

Теплопроводность – это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).

Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.

Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины , чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:

От чего зависит теплопроводность?

Значения данной величины могут зависеть от нескольких факторов . Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.

  • Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
  • На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
  • Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
  • Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.

Коэффициент теплопроводности

Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности , строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.

Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов , таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.

  • Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
  • Различные типы бетона.
  • Различные виды строительного и декоративного кирпича.

Расчёт толщины утеплителя

Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула , которая связывает толщину утеплителя и коэффициент его теплопроводности.

R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.

Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.

Теперь приведём примеры некоторых наиболее популярных утеплителей и их технических характеристик.

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления . Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Понятие теплопроводности

Теплопроводность – это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:

Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.

Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.

Таблица 1

Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.

Классификация строительных материалов и их теплопроводность

Теплопроводность железобетона, кирпичной кладки, керамзитобетонных блоков, обычно используемых для возведения ограждающих конструкций, отличается самыми высокими нормативными показателями. В строительной отрасли деревянные конструкции применяются значительно реже.

В зависимости от значения показателя теплопроводности , строительные материалы делятся на классы:

  • конструкционно-теплоизоляционные (от 0,210);
  • теплоизоляционные (до 0,082 – А, от 0,082 до 0,116 – Б и т.д.).

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении.

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м °С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Таблица 3.2

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Вопрос утепления квартир и домов весьма важен – постоянно повышающаяся стоимость энергоносителей обязывает бережно относиться к теплу в помещении. Но как правильно выбрать материал изоляции и рассчитать его оптимальную толщину? Для этого необходимо знать показатели теплопроводности.

Что такое теплопроводность

Эта величина характеризует способность проводить тепло внутри материала. Т.е. определяет отношение количества энергии, проходящей через тело площадью 1 м² и толщиной 1 м за единицу времени – λ (Вт/м*К). Проще говоря – сколько тепла будет передано от одной поверхности материала к другой.

В качестве примера рассмотрим обыкновенную кирпичную стену.

Как видно на рисунке, температура в помещении составляет 20°С, а на улице – 10°С. Для соблюдения такого режима в комнате необходимо, чтобы материал, из которого сделана стена, был с минимальным коэффициентом теплопроводности. Именно при таком условии можно говорить об эффективном энергосбережении.

Для каждого материала существует свой определенный показатель этой величины.

При строительстве принято следующее разделение материалов, которые выполняют определенную функцию:

  • Возведение основного каркаса зданий – стен, перегородок и т.д. Для этого применяются бетон, кирпич, газобетон и т.д.

Их показатели теплопроводности довольно велики, а это значит, что для достижения хорошего энергосбережения необходимо увеличивать толщину наружных стен. Но это не практично, так как требует дополнительных затрат и возрастание веса всего здания. Поэтому принято использовать специальные дополнительные изоляционные материалы.

  • Утеплители. К ним относятся , пенопласт, пенополистирол и любой другой материал с низким коэффициентом теплопроводности.

Именно они обеспечивают должную защиту дома от быстрой потери тепловой энергии.

В строительстве требованиями к основным материалам являются – механическая прочность, пониженный показатель гигроскопичности (сопротивление влаги), и менее всего – их энергетические характеристики. Поэтому особое внимание уделяется теплоизоляционным материалам, которые должны компенсировать этот «недостаток».

Однако применение на практике величины теплопроводности затруднительно, так как она не учитывает толщину материала. Поэтому используют обратное ей понятие – коэффициент сопротивления теплопередачи.

Эта величина является отношением толщины материала к его коэффициенту теплопроводности.

Значение этого параметра для жилых зданий прописаны в СНиП II-3-79 и СНиП 23-02-2003. Согласно этим нормативным документам коэффициент сопротивления теплопередачи в разных регионах России не должен быть менее тех значений, которые указаны в таблице.

СНиП .

Эта процедура расчета является обязательно не только при планировании постройки нового здания, но и для грамотного и эффективного утепления стен уже возведенного дома.

Что еще почитать