Диоксид кремния в еде. Диоксид кремния

Самой распространенной добавкой в составе соли является Е535 – антислеживающий агент, который признан высокотоксичным. Однако это далеко не единственный элемент, который может быть введен в обычную соль – например, там нередко встречается добавка Е 551. Какой вред для человека она представляет, зачем используется, в каком объеме может попадать в рацион без тяжелых последствий для организма?

Диоксид кремния: общие характеристики

Существует немало названий у вещества, спрятанного под кодом «Е551» – кварц, аэросил, биосил и даже «белая сажа», хотя официальным является «диоксид кремния». Этот элемент встречается в природе, причем, самый привычный для большинства людей его вид это… песок. Множество оксидов кремния присутствует в горных породах и коре планеты Земля. Форма у вещества кристаллическая, аромат и цвет отсутствуют. В пищевой промышленности оно представлено белым порошком, который синтезируется искусственно, обязательно проводя через процедуру очистки.

Пищевая добавка Е 551 – стабилизатор, эмульгатор, сохраняющий исходную структуру. На вкусовые качества продуктов она не оказывает влияния.

Некоторые специалисты добавку Е 551 называют «улучшителем сыпучести», хотя в действительности она почти не улучшает, а только сохраняет изначальное состояние той же соли или сахарного песка. По принципу действия она родственна добавке Е 535, но не отличается такими же сильными токсическими свойствами. Правда, об абсолютной безопасности диоксида кремния это еще не говорит.

Некоторые компании используют добавку Е 535 (но прописывая её по официальному названию – диоксид кремния) в фармакологии: она входит в состав энтеросорбентов, препаратов от изжоги и метеоризма. Немаловажен тот факт, что подобные медикаменты разрешены даже к использованию у новорожденных.

Вещество используется производителями продуктов питания для изготовления не только обычной пищи, попадающей на стол человека, но и кормов для животных. Обнаружить добавку Е 551 можно в соли и сахаре, муке, специях, сухом молоке, какао, яичном порошке, где благодаря ей не теряется «сыпучесть». С целью удержания изначальной структуры и как загуститель она может вводиться в чипсы, кисломолочные продукты, сладости и даже алкоголь.

Важным плюсом диоксида кремния является то, что попадая в желудок и кишечник, он не абсорбируется (процесс всасывания стенками), а выводится вместе с калом и через почки. Соответственно, он не склонен накапливаться, как это делает добавка Е 535, а значит, меньше вредит организму. Хотя бы в этом вопросе поваренная соль, где антислеживающий агент имеет код «Е551», намного лучше.

Также стоит принять во внимание, что диоксид кремния входит в состав энтеросорбентов, поскольку помогает выводить вредные вещества из организма (преимущественно соли тяжелых металлов и токсинов), поэтому от него есть определенная польза. Правда здесь же имеется обратная сторона медали: слишком большое употребление добавки Е 551 приводит к ухудшению функционирования гепатобилиарной системы (в частности, печени).

Вдобавок, врачи акцентируют внимание потребителей на том, что:

  • пищевая добавка Е 551 изменяет pH (нейтрализуя щелочь) и, вступая в контакт с веществами, присутствующими в организме, способна создавать токсичные элементы;
  • при активном употреблении диоксида кремния повышается риск появления конкрементов (камней).

При этом есть вероятность, что диоксид кремния может понижать вероятность развития болезни Альцгеймера, но не исключен его канцерогенный эффект. В итоге, мнения специалистов противоречивы, и даже то, что вещество признали разрешенным к применению в ЕС и России, не говорит об его безопасности.

В статье описана пищевая добавка (антислеживатель и антикомкователь) диоксид кремния аморфный (Е551), ее применение, влияние на организм, вред и польза, состав, отзывы потребителей
Другие названия добавки: silicon dioxide, E551, Е-551, E-551

Выполняемые функции

антислеживатель и антикомкователь

Законность использования

Украина ЕС Россия

Диоксид кремния аморфный, Е551 – что это такое?

Аморфный диоксид кремния Е551 применяется как добавка против слеживания и комкования при производстве смесей различных специй

Диоксид кремния – это неорганическое соединение, обладающее небольшой активностью при нормальных условиях. При комнатной температуре оно не растворяется в воде, не взаимодействует с ней и с другими веществами. Данный оксид относится к кислотным и при определенных условиях может образовывать соли кремниевой кислоты, которые называются силикатами.

Диоксид кремния широко распространен в природе, входит в состав многих горных пород, минералов. В каждодневной жизни известен всем как обычный (кварцевый) песок. Существует несколько видов кристаллических модификаций данного вещества.

Аморфная форма диоксида кремния используется в фармацевтике как вспомогательное и основное вещество. Аморфный диоксид кремния представляет собой пищевую добавку Е551, которая применяется в пищевой промышленности для предотвращения слеживания и комкования сухих порошкообразных продуктов.

В промышленности диоксид кремния применяется при производстве строительных материалов, керамической продукции, абразивов, волоконно-оптических кабелей. Для технических целей используют продукт из природных источников. В пищевой и фармацевтической промышленности в качестве добавки Е551 применяют диоксид кремния, синтезированный окислением кремния при очень высокой температуре.

Диоксид кремния аморфный, E551 – влияние на организм, вред или польза?

Добавка Е551 – одно из самых безопасных для здоровья соединений. Данное вещество абсолютно не растворяется в пищеводе и выводится из организма в неизменном виде. Помимо положительного влияния на качество пищевых продуктов добавка E551 может оказывать очищающее воздействие на кишечник. Не случайно диоксид кремния применяют в практической медицине как энтеросорбент. Данное вещество присутствует в составе многих зубных паст и способствует механической и микробиологической очистке полости рта.

Учитывая нерастворимость диоксида кремния, злоупотреблять пищевыми продуктами с добавкой Е551 не стоит людям, имеющим проблемы с выделительной системой. При поступлении в организм больших количеств данного вещества нельзя полностью исключить его накапливание в протоках мочевыводящей системы, особенно в тех случаях, когда они деформированы или спазмированы.

Пищевая добавка Е551, диоксид кремния аморфный – применение в продуктах питания

Добавка Е551 препятствует слеживанию сухих пищевых продуктов, образованию в них комков. Применяется при расфасовке пряностей, других смесей. Добавление аморфного диоксида кремния особенно актуально в случае, если сухие пищевые продукты обернуты в фольгу. Максимальная концентрация E551 в одном килограмме пищевых смесей не должна превышать 30 граммов. Диоксид кремния разрешен к применению как добавка к пище во всех странах.

Физико-химические свойства аэросила (диоксида кремния)

Аэросил (от латинского слова - Aerosilum), оксилы (от латинского слова - Oxylum) кремния диоксид , Silica colloidalis anhydrica (Ph. Eur.), Colloidal silicon dioxide (USP), Colloidal anhydrous silica (BP), Silica (CAS № 7631-86-9) - аморфный диоксид кремния безводный , относится к группе синтетических активных высокодисперсных минеральных наполнителей. В фармации аэросил (диоксид кремния) используется как вспомогательное вещество, стабилизатор, гелеобразователь, адсорбент , улучшает текучесть таблетированных, мазевых, гелевых и других смесей. Иногда диоксид кремния используется как активный фармакологичекий ингридиент (обладает бактерицидными свойствами, детоксикант, сорбент).

Получают диоксид кремния путем гидролиза паров кремния тетрахлорида в пламени водорода при температуре> 1000 ° С (1100-1400 ° С). Полученный продукт - белый, аморфный, непористый, индифферентный порошок распыляется, содержит 99,3% SiO2; имеет высокую дисперсность (диаметр частиц 4-40 мкм, имеют сферическую или почти сферическую форму), удельная адсорбционная поверхность составляет 50-450 м2/г; насыпной объем приблизительно 50 г/л, плотность - 2,36 г/см3; рН водной суспензии - 4,0; показатель преломления n20D = 1,46. Аэросил не растворяется в воде, кислотах и разбавленных щелочах. При концентрации аэросила в воде в количестве 10-12% образуется маловязкая текучая суспензия, при 17% - полужесткая масса, при 20% - крупчатая, которая при растирании превращается в гомогенную мазеобразный массу. В связи с большим сродством к воде аеросил относят к гидрофильным веществам. Зато диоксид кремния (аэросил) марки R972 имеет гидрофобные свойства.

Существует несколько торговых марок аэросила (диоксида кремния) , которые различаются в основном по величине удельной поверхности, степенью гидрофильности или гидрофобности, а также наличием других веществ-наполнителей. Согласно определению номенклатурной комиссии аморфный диоксид кремния получил название оксида. В Украине химико-металлургическим комбинатом по лицензии фирмы «Degussa» производятся немодифицированный стандартный аэросил марок 175; 300 380 с гидрофильной поверхностью; метилаэросил АМ-1/175 и АМ-1/300, модифицированный диметилдихлорсиланом; эфироорганоаэросил марок АДЕГ-175 и АДЕГ-300, модифицированных этиленгликолем и диэтиленгликолем, и АМ-2, модифицированный аминоспиртами. В США производят модифицированный аэросил - органосил и кебосил (фирма «Cabot»), в России - бутосил, аэросил-К, который составляет сочетание 85% диоксида кремния и 15% крахмала, аэросил марки СОК-84, который является коагулянтом 85% диоксида кремния и 14% оксида аммония. В Германии фирма «Degussa» производит гидратированные марки аэросила , содержащих связанную воду (дуросил, вулкасин, сифлокс, ультрасил и др.), которые отличаются содержанием SiO2, диаметром частиц, плотностью и свойствами), аэросил в виде суспензий (К-314, содержит 14% А., К-328, содержит 28% А.). В Японии производится микросил и носил, во Франции - франсил, в Англии - маносил. Для косметики может производиться в виде пасты. Недавно аэросил внесен в фармакопеи различных стран (Венгрии, Дании, Австрии и др.). В США диоксид кремния (аэросил) разрешен также как добавка к пищевым продуктам в количестве 2%.

Аэросил относят к теории «чистых» веществ, которые высвобождают активные ингредиенты без затраты энергии. Электронно-микроскопические исследования показали, что каждая основная частица аэросила состоит из четырех отдельных слоев (рисунок). Ядро этой частицы является трехмерным полимером из элементов SiO2. Имея на поверхности частиц Силан Si-OН и силоксановые Si-O-Si группы, аэросил способен за счет водородных связей создавать узороподобный каркас, позволяющий ограничивать температурное расширение загущенной жидкости. Силоксановые и силановые группы в аэросиле являются функциональными, а связь кремний - кислород характеризуется высокой прочностью (достигает 372,5 Дж / моль), что объясняется его полярностью, благодаря которой ковалентная связь приближается к ионной связи.

Таблица – Основные свойства диоксида кремния (аэросила)


Рисунок. Структура пространственной сетки аэросила в гидрогеле

Силаноловые группы распределены неравномерно. Различают поверхностные силановые группы, которые могут быть свободными или соединенными водородными мостиками, и силанола группы внутри молекулы, которых также могут быть соединены между собой водородными мостиками. В результате создается разветвленная объемная структура, в результате чего аэросил относят к неорганическим полимерам. Силоксановые группы имеют гидрофобные свойства, они стабильны (ОН силaноловои группы отщепляются при температуре> 300 ° С), обусловливают кислую реакцию; имеют гидроксильные группы как на поверхности, так и внутри молекулы аэросила . При равномерном распределении каждый второй атом кремния имеет гидроксильную группу на поверхности.

Это и обуславливает три вида взаимодействия аэросила: физическую адсорбцию , химическую адсорбцию (образование водородных мостиков группами силанола с водой, спиртами, кислотами и другими веществами) и химические реакции на поверхности молекулы. Так, группы силанола взаимодействуют со спиртами, образуя эфиры.

Аэросил (диоксид кремния) имеет хорошие сорбционные свойства, поглощает от 15 до 60% различных жидкостей в зависимости от их природы, не меняя внешнего вида и сыпучести порошка. Первый слой воды абсорбируется аэросилом за счет создания водородных мостиков (химическая адсорбция), а последующие слои - за счет физической адсорбции. Физически адсорбированная вода высвобождается при температуре 25-150 ° С, тогда как химически адсорбированная - при 800 ° С.

Аэросил, который используется для производства лекарств, должен иметь высокую чистоту. В таблице 1 приведен химический состав различных торговых марок аэросила, которые могут иметь определенные примеси, образующиеся при производственных процессах, например, следы соляной кислоты, которая вызывает рН 4% водной суспензии полимера (3,6-4,3). Итак, аэросил (диоксид кремния) ведет себя как слабая кислота.

Таблица 1 - Химический состав различных марок аэросила (в пересчете на сухое вещество, по М.М. Астраханову)

Содержание, % Марки аэросила, состав, %
200; 300; 380 0 СОК84 R972 Комбинированный
SiO2 >99,87 >99,8 82–86 >98,3 85
Al2O2 14–18
Fe2O3
TiO2 0,03
Na2O
As
B2O3
Bi2O3
P2O5
HCl 0,05
Крахмал

В таблице 2 приведены важнейшие физико-химические свойства разных марок аэросила , которые нашли широкое использование при производстве лекарств

Таблиця 2. Физико-химические свойства разных марок аэросила

Показатель Марки аэросила
200 300 380 0 СОК-84 R-972
Удельная поверхность, м2/г 200±25 300±30 380±30 200±25 170±30 120±30
Потери при прокаливании,% 1 2 2,5 1 1 2
Средний размер частиц 12 7 7 12 16
Содержание влаги, % (высушенный при 105 °С) 1,5 1,5 1,5 0,5 2,5
Насыщенная масса, г/л, стандарт (непрессованый) прессованный ≈60≈120
Пористость Пористый Непористый
рН 4% водной дисперсии 3,6–4,3 3,6–4,3
3,5–4,1 (в метаноле)

В производстве лекарств аэросил используют в качестве стабилизатора суспензионных маслянных линиментов. Обладает высокой способностью к адсорбции различных жидкостей. Добавление аэросила в состав масляных и водно-спирто-глицериновых суспензионных линиментов способствует повышению седиментационной, агрегационной и агрегативной устойчивости этих систем, созданию достаточно прочной пространственной структуры, способной удерживать в ячейках иммобилизованные жидкую фазу со взвешенными частицами фармацевтических субстанций. В водных и водно-спиртовых суспензиях стабилизирующее действие аэросила обусловлена главным образом электростатическими силами. Оседания частиц твердой фазы в стабилизированных водно-спиртовых суспензиях происходит в 3 раза медленнее, чем в нестабилизированных системах. Стабилизирующая действие аэросила возрастает при наличии небольшого количества ПАВ, например, твина-80. Наличие аэросила (в концентрации 1,0-5,0%) в эмульсиях и суспензиях повышает их стабильность, способность к лучшей фиксации на коже и эффективность терапевтического действия. С водой и спиртом диоксид кремния в концентрации 3% создает мутные суспензии, доли которых имеют отрицательный заряд.

Одним из свойств аэросила является его загустительная (загуститель) способность (табл. 3).

Таблица 3. Загустительный эффект аэросила-200

Это свойство используется для получения аэросилсодержащих гелей и мазевых основ, в состав которых входит аэросил. Как жидкую фазу для их композиций используют полиэтилсилоксановую жидкость под названием Эсилон-5 или Эсилон-4, рыбий жир, ПЭГ-400, касторовое масло, жирные масла и тому подобное. Эсилон-5 загущенный 16% аэросила известный как Вазелин КВ-Е / 16, не раздражает кожу, не препятствует всасыванию действующих веществ. В качестве загустителя жидкой фазы используют аэросил (диоксид кремния) в количестве 8-16%. Полученные гели имеют мягкую пластичную консистенцию, хорошо распределяются и фиксируются на коже. Они имеют хорошую коллоидную стабильность при повышенной температуре (≥40 ° С), сохраняют необходимую консистенцию, которая не меняется даже при 100 ° С, а потому аэросилсодержащие гели и мази могут применяться в условиях тропического климата. По структурно-механическим свойствам гели, в состав которых входит аэросил, составляют тиксотропные пластические термостабильные системы и обладают антимикробной устойчивостью. Количественное содержание аэросила в системе влияет на реологические и биофармацевтические свойства гелей. Увеличение диоксида кремния в составе гелей приводит к росту их пластической вязкости и тиксотропных свойств, при этом заметно замедляется высвобождение активного фармакологического ингридиента.

Применение аэросила (диоксида кремния) в медицинской и ветеринарной фармацевтической промышлености

В производстве таблеток аэросил используется в концентрации 0,1-0,5% как скользящее и взрыхляющее (0,1-2,0%) вещество, что сокращает время их распада, облегчает процесс грануляции, улучшает текучесть таблетированной массы. Адсорбционные свойства аэросила используют в производстве порошков, экстрактов и других фармацевтических препаратов.

Аэросилсодержащие фармацевтические системы не проявляют раздражающего и токсического действия. Такие же свойства присущи мазям при использовании эсилона и аэросила как основы (композиция эсилона-5, загущенная 15% аэросилом при изготовлении мазей с антибиотиками и кортикостероидами). Мази с аэросилом (диоксидом кремния) легко выдавливаются из туб, хорошо фиксируются на коже, обладают пролонгированным действием.

Литература

Жогло Ф., Возняк В., Попович В., Богдан Я. Вспомогательные вещества и их применение в технологии лекарственных форм. - Львов, 1996; Перцев И.М., Котенко А.М., Чуешов А.В., Халеева Е.Л. Фармацевтические и биологические аспекты мазей: Монография. - Х., 2003; Печковская К.А. Наполнение резин. В кн.: Энциклопедия полимеров. В 3 т. - М., 1974.


Кремния диоксид (кремнезем) SiO 2 , бесцветное кристаллическое, аморфное или стеклообразное вещество.

Структура. Кремния диоксид существует в нескольких полиморфных модификациях (см. табл.). Температуры перехода при нормальном . α-кварц → β-кварц 575 °С (ΔH 0 перехода 0,41 кДж/моль), β-кварц → β-кристобалит 927 °С (2,26 кДж/моль), β-кварц → α-тридимит 867 °С (0,50 кДж/моль), α-тридимит → β-тридимит 115°С (0,27 кДж/моль), β-тридимит → γ-тридимит 160°С (0,15 кДж/моль), γ-тридимит → α-кристобалит 1470 °С (0,21 кДж/моль), α-кристобалит → β-кристобалит 270 °С. Температура плавления β-кварца 1610°С (ΔH 0 пл 8,53 кДж/моль), α-тридимита 1680 °С, β-кристобалита 1723°С (ΔH 0 пл 9,6 кДж/моль). Полиморфные превращения кварца, тридимита и кристобалита сопровождаются изменением объема. Кристаллические формы диоксида кремния построены из тетраэдров SiO 4 , αa- и β-формы отличаются небольшим смещением и поворотом тетраэдров. Для низкотемпературных тридимитов приводятся данные и для других кристаллических модификаций, однако все они в качестве основной структурной единицы содержат β-тридимит, но различно искаженный. Например, описаны триклинный и моноклинный тридимиты. В природе встречается также кубическая модификация SiO 2 - меланфлогит (a = 1,3402 нм, z = 48, пространств. группа Рт 3п ). При высоких давлениях образуются китит (80-130 МПа, 400-500 °C), коэсит (1,5-4 ГПа, 300-1700 °C), стишовит (16-18 ГПа, 1200-1400 °С). Стишовит - единственная модификация диоксида кремния, построенная из октаэдров SiO 6 . Устойчивость тридимита, вероятно, определяется примесями Na и Аl. Неустойчивая форма диоксид кремния - ромбо-дипирамидальный "волокнистый кремнезем".

Кроме кристаллических для диоксида кремния характерны и другие формы существования. Скрытокристаллические формы (халцедоны) по структуре аналогичны кварцу. При кислотой из некоторых получают гидратированные кристаллические кремнеземы. Они наследуют текстуру исходных . образуя волокнистые, чешуйчатые (лепидоидальныe) и листоподобные слоистые структуры. Известны аморфные анизотропные и изотропные (опал) образования, тонкодисперсный природный кремнезем (трепел, синтетический коллоидный кремнезем и кремнеземные порошки). Гидратированный аморфный кремнезем, осаждаемый из растворов силиката Na и др., полимеризован до сферических частиц диаметром менее 100 нм, обычно 2-3 нм. Получен аморфный кремнезем в форме листочков, ленточек и волокон. При высоких температурах из газовой фазы выделяются тонкодисперсные пирогенного безводного кремнезема - и др. О стеклообразном кремнеземе .

Распространение в природе. Содержание свободного диоксида кремния в земной коре 12%; он входит также в состав горных пород в виде различных или в виде смесей с другими минералами (граниты). Кварц - один из наиболее распространенных . намного реже встречаются тридимит, кристобалит, халцедоны, опалы. Мелкие, различно ориентированные образуют "жильный" кварц. При разрушении горных пород возникают кварцевые пески, уплотнение которых приводит к образованию песчаников и кварцитов.

Hаиболее чистый кварц - горный хрусталь, которого могут достигать несколько метров и весить десятки тонн. прозрачны, бесцветны (горный хрусталь) или окрашены примесями в фиолетовый (аметист), черный (марион), желтый (цитрин), дымчатый (раух-топаз) цвета. Разновидности скрытокристаллической формы кварца: розово-красный сердолик, синеватый сапфирин, яблочно-зеленый хризопраз, полосчатые агаты и ониксы, тонко-окрашенная яшма, кремни и роговики. Уникален аморфный "благородный" опал, состоящий из однородных коллоидных частиц диаметром 0,1-0,3 мкм, плотно упакованных в упорядоченные агломераты; содержание воды в нем менее 1% по массе (для большинства рядовых опалов 4-9%). Природные месторождения кремнезема образуют также трепел, диатомит и др.

Из кремнезема построены панцири диатомовых водорослей, скелеты некоторых губок; он упрочняет стебли растений - хвощей, бамбука, тростника, содержится в соломе. Диоксид кремния ответствен за окремнение форм живых организмов растений. В крови и человека кремнезема составляет 0,001% по массе.

Получение. Синтетический диоксид кремния получают: действием кислот (H 2 SO 4 , HCl, СО 2) на силикат Na, реже - на другие растворимые силикаты (основной способ производства в капиталистических странах); из коллоидного кремнезема под действием Na + , NH 4 , F - или замораживанием; SiCl 4 , SiF 4 , (NH 4) 2 SiF 6 , (C 2 H 5 O) 4 Si в водных, водно-аммиачных растворах (иногда с добавлением или орг. оснований) и в газовой фазе. Аморфный диоксид кремния получают также из трепела и диатомита, прокаливанием рисовой шелухи, размалыванием плавленого кварцевого песка. Безводные диоксида кремния с высокой удельной поверхностью получают химическим из газовой фазы путем сжигания паров SiCl 4 в смеси Н 2 и О 2 (аэросилы, в США - кабосил), и гидролиза паров Si (пирогенный кремнезем), а также SiF 4 (флуосил). Первично конденсируемые частицы диоксида кремния диаметром 1 нм плотно упакованы во вторичных конгломератах, объединенных в рыхлую структуру с удельной поверхностью 200-400 м 2 /г. a-кварца выращивают из щелочных растворов диоксида кремния в автоклавах высокого давления (35-120 МПа) при 300-420 °С. В производстве используемых в технике материалов на основе диоксида кремния применяют след. процессы:

Химическое осаждение из газовой фазы при высокотемпературном сжигании SiCl 4 , предварительно очищенного ректификацией. Частицы диоксида кремния, образующиеся в кислородно-водородном пламени или плазме, осаждаются давая массивные кварцевые стекла или слои заготовок волоконных световодов;

Окисление поверхности монокристаллич. Si с образованием гетероструктур (в производстве интегральных схем);

Спекание мелкодисперсного диоксид кремнияв кварцевую керамику;

Золь-гель процесс, включающий гидролиз органических соединений Si, медленную дегидратацию образовавшегося геля и умеренное нагревание. Используется для получения кварцевых и высококремнеземистых стекол;

Получение особо чистого диоксида кремния и пористых стекол (типа "викор") путем термической обработки лидирующего боросиликатного стекла, выщелачивания кислотой и отмывки кремнеземистого каркаса.

Природный кремнезем используют в производстве силикатных стекол, изделий из фарфора и фаянса, абразивов, бетона, силикатного кирпича, динаса, керамики. Синтетический диоксид кремния ("белая сажа") - наполнитель в производстве резин (до 70% производимого диоксида кремния). Преимущественно используют осажденные гидратированные кремнеземы (содержащие 85-95% SiO 2) с удельной поверхностью 60-300 м 2 /г, в меньшей степени - безводные кремнеземы типа аэросила. Аэросил - также адсорбент в хроматографии, загуститель смазочных материалов, клеев, красок. применяют в радиотехнике (пьезоэлектрич. стабилизаторы частоты, фильтры, резонаторы и др.), в акустооптике и акустоэлекронике, в оптическом приборостроении (призмы для спектрографов, монохроматоров, линзы для УФ оптики и др.), в ювелирном деле (прозрачные, красиво окрашенные разновидности - полудрагоценные камни). Силикагели с эффективным диаметром пор 2-15 нм используют как промышленные сорбенты и носители катализаторов. Синтетический диоксид кремния и горный хрусталь являются сырьем для производства монокристаллов кварца, кварцевого стекла, керамики и кварцевых волокон. Кварцевое стекло и керамика - конструкционный материал в авиационной промышленности (например, для обтекателей окон и иллюминаторов летательных аппаратов), в оптике (для входных окон оптических приборов УФ и ИК диапазонов), в электронике (линии задержки) и др. Кварцевая ткань - теплозащитный материал. Кварцевые волокна используют для создания волоконно-оптических (световодных) линий связи и систем передачи информации. Производство синтетического диоксида кремния в капиталистических странах 600-700 тыс. т/год (1980).

Аморфный (некристаллический) диоксид кремния с высокой удельной поверхностью в природе в чистом виде почти не встречается. Его можно получить только технологическим способом. Выпускаемый нами высокочистый синтетический кремнезем (аморфный диоксид кремния) под торговой маркой КОВЕЛОС представляет собой очень легкий микронизированный (размер частиц в зависимости от марки от 6 до 40 микрон) порошок белого цвета без вкуса и запаха с нанопористой структурой частиц, с выраженными сорбционными свойствами. Его удельная площадь поверхности составляет 350-400 кв.м. на 1 грамм. Маслоемкость - 300-340 г/100 г.

Среди твёрдых тел аморфный диоксид кремния отличается самыми низкими теплопроводностью (0,02 Вт/(м. К)), скоростью распространения звука (100 м/с) и диэлектрической проницаемостью. Аморфный кремнезем нагреванием (при температуре свыше 1000 градусов по С) переходит в кристаллическую форму.

Синтетический кремнезем (аморфный диоксид кремния) является незаменимым во многих отраслях современной мировой экономики благодаря тому, что

  • нейтрален и химически стоек почти ко всем существующим на нашей планете минеральным и органическим веществам. То есть он безвреден для живых организмов, не токсичен, пожаро- и взрывобезопасен во внешней среде.
  • имеет высокую площадь удельной поверхности, из-за того, что частица аморфного диоксида кремния содержит огромное количество наноразмерных пор. Эта сложнопространственная нанопоровая структура (высокоразвитая поверхность) частицы обуславливает прекрасные сорбционные свойства синтетического кремнезема. Он может избирательно поглощать из окружающей среды или связывать газы, пары и растворённые вещества. Интересно, что при синтезе аморфного диоксида кремния можно заранее задавать параметры поверхности (модифицировать поверхность), и тем самым получать продукт с избирательной сорбцией.

Таким образом, химическая нейтральность и огромная площадь удельной поверхности (высокоразвитая поверхность) аморфного (некристаллического) диоксида кремния способны придавать новые характеристики различным составам, материалам, продуктам, не меняя их химических свойств. В частности, высокочистый тонкодисперсный синтетический кремнезем с развитой поверхностью может:

  • загущать (повышать вязкость) текучие составы вплоть до сыпучего состояния (в зависимости от требуемой степени загущения в состав вводится от 1,5% до 33% синтетического кремнезема). Данное свойство используется при производстве краскок, лаков, клеев, герметиков, паст, мазей, смазок и т.д.;
  • увеличивать сыпучесть измельченных и/или порошкообразных твердых тел (специи, чипсы, сухарики, хлебцы, сухое молоко, сухие строительные смеси, комбикорма, стиральные порошки, тонеры, лекарственные средства и т.д.) и предохранять их от комкования,тем самым повышая срок их хранения.
  • повышать прочностные характеристики и износостойкость материалов (пластики, смолы, резины, каучуки, бетон, асфальт и пр.)
  • улучшать термодинамические характеристики (термостойкость, теплопроводность) материалов;
  • улучшать трибологические характеристики (повышает устойчивость к истиранию);

    ​​использоваться в качестве добавки в масла и смазки для любых узлов и механизмов, где есть металлические пары трения. В этом случаеиз аморфного диоксида кремния в процессе работы механизмов на поверхности трущихся пар о бразуются силикатные пленки, которые восстановливают геометрические размеры узлов и механизмов до их первоначального состояния, что в несколько раз снижает степень износа.

    быть носителем активных веществ в фармацевтических и косметических средствах;

    применяться в роли щадящего абразива в парфюмерии и косметике (пиллинг кожи, сорбирование грязи на коже), при производстве кремниевых полупроводниковых пластин и пр. (как полировальная суспензия);

    для выращивания кристаллов больших размеров, которые не могут быть выращены в воде. В этом случае длявыращивания используется среда геля кремнезема. Структура геля диоксида кремния предотвращает конвекцию и позволяет равномерно протекать процессу диффузии компонентов;

    для приготовления синтетических глинистых материалов. Так, каолин в присутствии аморфного диоксида кремния образуется в гидротермальных условиях при 200-300 °С.

    связывать и выводить из организма животных и человека различные токсины, соли тяжелых металлов, радионуклеиды;

    использоваться в качестве сырья для производства специальных кварцевых стекол с прозрачностью более 99,5% для оптического излучения с длиной волны 248 нм и более 98% для оптического излучения с длиной волны 193 нм, для производства волоконных световодов;

  • использоваться в качестве сырья для изготовления высокочистых силикатов , применяемых для покрытия телевизионных и осветительных трубок;
  • в производстве микросхем и пр. электронных компонентов использоваться в качестве изолятора, наносимого путем напыления или в виде спец. пленки;
  • служить исходным материалом для получения кремния высокой чистоты, применяемого в производстве солнечных батарей и в синтезе кремнийорганических соединений;
  • применяться как теплоизолятор и шумопоглотитель в ракетных и реактивных двигателях. Это хороший теплоизолятор для различного рода проводящих систем с температурой нагрева до 1000 °С;
  • использоваться в огнетушащих порошках для тушения пожаров классов А (тлеющие материалы), В (легковоспламеняющиеся жидкости), С (горючие газы), а также электроустановок, находящихся под напряжением до 1000 В.

Так же использование аморфного диоксида кремния ускоряет производственный процесс (за счет упрощения технологических циклов, сокращения времени производственного цикла) и требует меньших энергозатрат. Например, для загущения жидких составов синтетическим кремнеземом достаточно комнатной температуры.

Сфера применения высокочистого аморфного диоксида кремния в мировой экономике с каждым годом расширяется, растет его роль в развитии современных отраслей, в создании новых материалов.

Что еще почитать