Что нужно чтоб уложить ламинат. Разбираемся как самостоятельно положить ламинат

Имея в своем доме холодильники и кондиционеры, мало кто знает - принцип работы теплового насоса реализован именно в них.

Около 80% мощности, которую дает тепловой насос, приходится на тепло окружающей среды в виде рассеянного солнечного излучения. Именно его насос просто «перекачивает» с улицы в дом. Работа теплового насоса подобна принципу работы холодильника, вот только направление переноса тепла иное.

Проще говоря…

Чтобы охладить бутылку минеральной воды, Вы ее ставите в холодильник. Холодильник должен «забрать» у бутылки часть тепловой энергии и, согласно закону сохранения энергии, ее куда-то переместить, отдать. Холодильник переносит теплоту на радиатор, обычно расположенный на задней его стенке. При этом радиатор нагревается, отдавая свое тепло в помещение. Фактически он отапливает помещение. Это особенно заметно в маленьких минимаркетах летом, при нескольких включенных холодильниках в помещении.

Предлагаем пофантазировать. Предположим, что мы будем постоянно подкладывать теплые предметы в холодильник, а он будет, охлаждая их, нагревать воздух в помещении. Пойдем на «крайности»… Расположим холодильник в оконном проеме открытой дверкой «морозилки» наружу. Радиатор холодильника будет находиться в помещении. В процессе работы холодильник будет охлаждать воздух на улице, перенося в помещение «забранную» теплоту. Так и работает тепловой насос, забирая рассредоточенное тепло у окружающей среды и перенося его в помещение.

Где насос берет тепло?

Принцип работы теплового насоса базируется на «эксплуатации» естественных низкопотенциальных источников тепла из окружающей среды.


Ими могут быть:

  • просто наружный воздух;
  • тепло водоемов (озер, морей, рек);
  • тепло грунта, грунтовых вод (термальных и артезианских).

Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур - система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Приблизительный расчет теплопроизводительности установки

В течении часа по внешнему коллектору через насос протекает до 2,5-3 м 3 теплоносителя, который земля способна нагреть на ∆t = 5-7 °C.

Для расчета тепловой мощности такого контура воспользуйтесь формулой:

Q = (T_1 — T_2)*V_тепл

V_тепл - объемный расход теплоносителя в час (м^3/час);

T_1 — T_2 - разница температур на входе и входе (°C) .


Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод - внешний контур не закольцованный, внутренняя система отопления - водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).

Преимущества и достоинства тепловых насосов

Экономичная эффективность. Принцип работы теплового насоса базируется не на производстве, а на переносе (транспортировке) тепловой энергии, то можно утверждать, что его КПД больше единицы. Что за чушь? - скажете Вы.В теме тепловых насосов фигурирует величина - коэффициент преобразования (трансформации) тепла (КПТ). Именно по этому параметру сравнивают между собой агрегаты подобного типа. Его физический смысл – показать отношение полученного количества теплоты к величине, затраченной для этого, энергии. К примеру, при КПТ = 4,8 затраченная насосом электроэнергия в 1кВт позволит получить с его помощью 4,8 кВт тепла безвозмездно, то есть даром от природы.

Универсальная повсеместность применения. Даже при отсутствии доступных линий электропередач работа компрессора теплового насоса может быть обеспечена дизельным приводом. А «природное» тепло есть в любом уголке планеты - тепловой насос «голодным» не останется.


Экологическая чистота использования. В тепловом насосе отсутствуют продукты горения, а его малое энергопотребление меньше «эксплуатирует» электростанции, косвенно снижая вредные выбросы от них. Хладагент, используемый в тепловых насосах, озонобезопасен и не содержит хлоруглеродов.


Двунаправленный режим работы. Тепловой насос может в зимнее время обогревать помещение, а в летнее - охлаждать. Отобранную из помещения «теплоту» можно использовать эффективно, например, подогревать воду в бассейне или в системе ГВС.


Безопасность эксплуатации. В принципе работы теплового насоса Вы не рассмотрите опасных процессов. Отсутствие открытого огня и вредных опасных для человека выделений, низкая температура теплоносителей делают тепловой насос «безобидным», но полезным бытовым прибором.

Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м 2) - иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

Ситуация такова, что самым популярным на данный момент способом отапливать жилище является использование котлов отопления - газовых, твердотопливных, дизельных и намного реже - электрических. А вот такие простые и в тоже время высокотехнологичные системы, как тепловые насосы, не получили повсеместного распространения, и очень зря. Для тех, кто любит и умеет просчитывать все наперед, их преимущества очевидны. Тепловые насосы для отопления не сжигают невосполнимых запасов природных ресурсов, что крайне важно не только с точки зрения охраны окружающей среды, но и позволяет экономить на энергоносителях, так как они дорожают с каждым годом. К тому же, с помощью тепловых насосов можно не только отапливать помещение, но и подогревать горячую воду для хозяйственных нужд, и кондиционировать помещение в летний зной.

Принцип действия теплового насоса

Остановимся чуть подробнее на принципе действия теплового насоса. Вспомните, как работает холодильник. Тепло помещенных в него продуктов выкачивается и выбрасывается на радиатор, расположенный на задней стенке. В этом легко убедиться, дотронувшись до него. Примерно такой же принцип у бытовых кондиционеров: они выкачивают тепло из помещения и выбрасывают его на радиатор, расположенный на наружной стене здания.

В основу работы теплового насоса, холодильника и кондиционера положен цикл Карно.

  1. Теплоноситель, двигаясь по источнику низкотемпературного тепла, например, грунту, нагревается на несколько градусов.
  2. Затем он поступает в теплообменник, называемый испаритель. В испарителе теплоноситель отдает накопленное тепло хладагенту. Хладагент - это специальная жидкость, которая превращается в пар при низкой температуре.
  3. Приняв на себя температуру с теплоносителя, нагретый хладагент превращается в пар и поступает в компрессор. В компрессоре происходит сжатие хладагента, т.е. повышение его давления, за счет чего повышается и его температура.
  4. Горячий сжатый хладагент поступает в другой теплообменник, называемый конденсатор. Здесь хладагент отдает свое тепло другому теплоносителю, который предусмотрен в системе отопления дома (вода, антифриз, воздух). При этом хладагент охлаждается и снова превращается в жидкость.
  5. Далее хладагент поступает в испаритель, где нагревается от новой порции нагретого теплоносителя, и цикл повторяется.

Для обеспечения работы теплового насоса необходимо электричество. Но это все равно намного выгоднее, чем использовать только электрообогреватель. Так как электрокотел или электрообогреватель тратит ровно столько же электроэнергии, сколько и выдает тепла. Например, если на обогревателе написана мощность 2 кВт, то он тратит 2 кВт в час и выдает 2 кВт тепла. А тепловой насос выдает тепла в 3 - 7 раз больше, чем тратит электроэнергии. Например, используется 5,5 кВт/час на работу компрессора и насоса, а тепла получается 17 кВт/час. Именно такой высокий КПД и является основным достоинством теплового насоса.

Преимущества и недостатки системы отопления «тепловой насос»

Вокруг тепловых насосов ходит много легенд и заблуждений, несмотря на то, что это не такое уж новаторское и высокотехнологичное изобретение. С помощью тепловых насосов отапливаются все «теплые» штаты в США, практически вся Европа и Япония, где технология отработана практически до идеала и уже давно. Кстати, не стоит думать, что подобное оборудование является чисто иностранной технологией и пришло к нам совсем недавно. Ведь еще в СССР такие агрегаты использовались на экспериментальных объектах. Примером тому служит санаторий «Дружба» в городе Ялта. Помимо футуристической архитектуры, напоминающей «избушку на курьих ножках», этот санаторий славен еще и тем, что еще с 80-х годов 20 века в нем используются тепловые насосы для отопления промышленные. Источником тепла является близлежащее море, а сама насосная станция не только обогревает все помещения санатория, но и обеспечивает горячей водой, греет воду в бассейне и охлаждает в знойный период. Так давайте же попытаемся развеять мифы и определить, имеет ли смысл отапливать жилище таким способом.

Преимущества систем отопления с тепловым насосом:

  • Экономия на энергоносителе. В связи с растущими ценами на газ и дизтопливо очень актуальное преимущество. В графе «ежемесячные расходы» будет значиться только электроэнергия, которой как мы уже писали необходимо намного меньше, чем реально производится тепла. При покупке агрегата необходимо обратить внимание на такой параметр, как коэффициент трансформации тепла «ϕ» (может называться еще коэффициент преобразования тепла, коэффициент трансформации мощности или температур). Он показывает отношение количества тепла на выходе к затрачиваемой энергии. Например, если ϕ=4, то при расходе 1 кВт/час мы получим 4 кВт/час тепловой энергии.
  • Экономия на техобслуживании . Тепловой насос не требует к себе никакого особенного отношения. Расходы на его обслуживание минимальны.
  • Можно устанавливать в любой местности . Источниками низкотемпературного тепла для работы теплового насоса могут служить грунт, вода или воздух. Где бы Вы ни строили дом, даже в скалистой местности, всегда найдется возможность найти «пищу» для агрегата. В местности, удаленной о газовой магистрали, это одна из самых оптимальных систем отопления. И даже в регионах без линий электропередач можно установить бензиновый или дизельный движок для обеспечения работы компрессора.
  • Нет необходимости следить за работой насоса , добавлять топливо, как в случае с твердотопливным или дизельным котлом. Вся система отопления с тепловым насосом автоматизирована.
  • Можно уехать на длительный срок и не бояться, что система замерзнет. При этом можно сэкономить, установив насос на обеспечение в жилом помещении температуры +10 °С.
  • Безопасность для окружающей среды. Для сравнения при использовании традиционных котлов, сжигающих топливо, всегда образуются различные окислы CO, СO2, NOх, SO2 , PbO2, как следствие вокруг дома на почве оседают фосфорная, азотистая, серная кислоты и бензойные соединения. При работе теплового насоса не выбрасывается ничего. А используемые в системе хладагенты абсолютно безопасны.
  • Сюда же можно отметить сохранение невосполнимых природных ресурсов планеты .
  • Безопасность для человека и имущества . В тепловом насосе ничего не нагревается до такой температуры, чтобы вызвать перегрев или взрыв. К тому же, в нем попросту нечему взрываться. Так что его можно отнести к полностью пожаробезопасным агрегатам.
  • Тепловые насосы успешно работают даже при температуре окружающей среды -15 °С . Так что если кому-то кажется, что такой системой можно обогревать дом только в регионах с теплыми зимами до +5 °С, то они ошибаются.
  • Реверсивность теплового насоса . Неоспоримым преимуществом является универсальность установки, с помощью которой можно и отапливать зимой, и охлаждать летом. В жаркие дни тепловой насос забирает тепло из помещения и направляет его в грунт на хранение, откуда снова возьмет зимой. Обратите внимание, что реверсной способностью обладают не все тепловые насосы, а только некоторые модели.
  • Долговечность . При должном уходе тепловые насосы системы отопления живут от 25 до 50 лет без капитального ремонта, и только раз в 15 - 20 лет потребуется заменить компрессор.

Недостатки систем отопления с тепловым насосом:

  • Большие первоначальные капиталовложения. Помимо того, что на тепловые насосы для отопления цены довольно высоки (от 3000 до 10000 у.е.), так еще дополнительно на обустройство геотермальной системы потребуется затратить не меньше, чем на сам насос. Исключением является воздушный тепловой насос, не требующий дополнительных работ. Окупится тепловой насос не скоро (лет через 5 - 10). Так что ответ на вопрос, использовать или не использовать тепловой насос для отопления, скорее зависит от предпочтений хозяина, его финансовых возможностей и условий строительства. Например, в регионе, где подведение газовой магистрали и подключение к ней стоит столько же, сколько и тепловой насос, имеет смысл отдать предпочтение последнему.

  • В регионах, где температура зимой опускается ниже -15 °С, необходимо использовать дополнительный источник тепла . Это называется бивалентная система отопления , в которой тепловой насос обеспечивает тепло, пока на улице до -20 °С, а когда он не справляется, подключается например, электрообогреватель или газовый котел, или теплогенератор.

  • Наиболее целесообразно использовать тепловой насос в системах с низкотемпературным теплоносителем , таких как система «теплый пол» (+35 °С) и фанкойлы (+35 - +45 °С). Фанкойлы представляют собой вентиляторный конвектор, в котором происходит передача тепла/холода от воды воздуху. Для обустройства такой системы в старом доме потребуется полная перепланировка и перестройка, что повлечет дополнительные затраты. При строительстве нового дома это не является недостатком.
  • Экологичность тепловых насосов , берущих тепло из воды и грунта, несколько относительна. Дело в том, что в процессе работы пространство вокруг труб с теплоносителем охлаждается, а это нарушает устоявшуюся экосистему. Ведь даже в глубине грунта живут анаэробные микроорганизмы, обеспечивающие жизнедеятельность более сложных систем. С другой стороны - по сравнению с добычей газа или нефти ущерб от теплового насоса минимален.

Источники тепла для работы теплового насоса

Тепловые насосы берут тепло из тех природных источников, которые накапливают солнечную радиацию в течение теплого периода. В зависимости от источника тепла различаются и тепловые насосы.

Грунт

Грунт - самый стабильный источник тепла, которое накапливается за сезон. На глубине 5 - 7 м температура грунта практически всегда постоянна и равна примерно +5 - +8 °С, а на глубине 10 м - всегда постоянна +10 °С. Способов сбора тепла с грунта два.

Горизонтальный грунтовый коллектор представляет собой уложенную горизонтально трубу, по которой циркулирует теплоноситель. Глубина расположения горизонтального коллектора высчитывается индивидуально в зависимости от условий, иногда это 1,5 - 1,7 м - глубина промерзания грунта, иногда ниже - 2 - 3 м для обеспечения большей стабильности температуры и меньшей разницы, а иногда всего 1 - 1,2 м - здесь грунт начинает быстрее прогреваться весной. Бывают случаи, когда обустраивают двухслойный горизонтальный коллектор.

Трубы горизонтального коллектора могут иметь различный диаметр 25 мм, 32 мм и 40 мм. Форма их раскладки тоже может быть разной - змейка, петля, зигзаг, различные спирали. Расстояние между трубами в змейке должно быть не менее 0,6 м, и обычно составляет 0,8 - 1 м.

Удельный теплосъем с каждого погонного метра трубы зависит от структуры грунта:

  • Песок сухой - 10 Вт/м;
  • Глина сухая - 20 Вт/м;
  • Глина более влажная - 25 Вт/м;
  • Глина с очень большим содержанием воды - 35 Вт/м.

Для отопления дома площадью 100 м2 при условии, что грунт представляет собой влажную глину, понадобится 400 м2 площади участка под коллектор. Это довольно много - 4 - 5 соток. А с учетом того, что на данном участке не должно быть никаких строений и допускается только газон и клумбы с однолетними цветами, то не каждый может себе позволить обустроить горизонтальный коллектор.

По трубам коллектора течет специальная жидкость, ее еще называют «рассол» или антифриз , например, 30% раствор этиленгликоля или пропиленгликоля. «Рассол» собирает на себя тепло грунта и направляется к тепловому насосу, где передает его хладагенту. Остывший «рассол» снова течет в грунтовый коллектор.

Вертикальный грунтовый зонд представляет собой систему труб, заглубленных на 50 - 150 м. Это может быть всего одна U-образная труба, опущенная на большую глубину 80 - 100 м и залитая бетонным раствором. А может быть система U-образных труб, опущенных на 20 м, чтобы собрать энергию с большей площади. Выполнение бурильных работ на глубину 100 - 150 м не только дорого стоит, но и требует получения специального разрешения, именно поэтому часто идут на хитрость и обустраивают несколько зондов небольшой глубины. Расстояние между такими зондами делают 5 - 7 м.

Удельный теплосъем с вертикального коллектора также зависит от породы:

  • Осадочные породы сухие - 20 Вт/м;
  • Осадочные породы, насыщенные водой, и каменистая почва - 50 Вт/м;
  • Каменистая почва с высоким коэффициентом теплопроводности - 70 Вт/м;
  • Подземные (грнутовые) воды - 80 Вт/м.

Площадь под вертикальный коллектор необходима совсем маленькая, но стоимость их обустройства выше, чем у горизонтального коллектора. Достоинством вертикального коллектора также является более стабильная температура и больший теплосъем.

Вода

Использовать воду в качестве источника тепла можно по-разному.

Коллектор на дне открытого незамерзающего водоема - реки, озера, моря - представляет собой трубы с «рассолом», притопленные с помощью груза. За счет высокой температуры теплоносителя этот способ получается самым выгодным и экономичным. Обустроить водный коллектор могут только те, от кого водоем находится не дальше 50 м, иначе теряется эффективность установки. Как Вы понимаете, такие условия есть не у всех. Но не использовать тепловые насосы жителям побережья просто недальновидно и глупо.

Коллектор в канализационных стоках или сбросовой воде после технических установок можно использовать для отопления домов и даже многоэтажек и промышленных предприятий в черте города, а также для приготовления горячей воды. Что с успехом делается в некоторых городах нашей Родины.

Скважинную или грунтовую воду используют реже, чем другие коллекторы. Такая система подразумевает строительство двух скважин, из одной забирается вода, которая передает свое тепло хладагенту в тепловом насосе, а во вторую сбрасывается остывшая вода. Вместо скважины может быть фильтрационный колодец. В любом случае сбросовая скважина должна находиться на расстоянии 15 - 20 м от первой, да еще и ниже по течению (подземные воды тоже имеют свое течение). Данная система довольно сложна в эксплуатации, так как за качеством поступаемой воды необходимо следить - фильтровать ее, и защищать детали теплового насоса (испаритель) от коррозии и загрязнения.

Воздух

Самую простую конструкцию имеет система отопления с воздушным тепловым насосом . Никакого дополнительного коллектора не нужно. Воздух из окружающей среды напрямую поступает к испарителю, где передает свое тепло хладагенту, а тот в свою очередь передает тепло теплоносителю внутри дома. Это может быть воздух для фанкойлов или вода для теплого пола и радиатора.

Затраты на установку воздушного теплового насоса самые минимальные, но зато производительность установки очень зависит от температуры воздуха. В регионах с теплыми зимами (до +5 - 0 °С) это один из самых экономичных источников тепла. А вот если температура воздуха опускается ниже -15 °С производительность падает настолько, что не имеет смысла использовать насос, а выгоднее включить обычный электрообогреватель или котел.

На воздушные тепловые насосы для отопления отзывы весьма противоречивы. Все зависит от региона их использования. Их выгодно использовать в регионах с теплыми зимами, например, в Сочи, где даже не понадобится дублирующий источник тепла на случай сильных морозов. Также можно устанавливать воздушные тепловые насосы в регионах, где относительно сухой воздух и температура зимой до -15 °С. А вот во влажном и холодном климате такие установки страдают от обледенения и обмерзания. Налипающие на вентиляторе сосульки не дают нормально работать всей системе.

Отопление тепловым насосом: стоимость системы и расходы на эксплуатацию

Мощность теплового насоса подбирается в зависимости от тех функций, которые на него будут возложены. Если только отопление, то расчеты можно произвести в специальном калькуляторе, учитывающем тепловые потери здания. Кстати, наилучшие показатели работы теплового насоса при тепловых потерях здания не более 80 - 100 Вт/м2. Для простоты примем, что для отопления дома в 100 м2 с потолками высотой 3 м и теплопотерями 60 Вт/м2 необходим насос мощностью 10 кВт. Для подогрева воды придется взять агрегат с запасом по мощности - 12 или 16 кВт.

Стоимость теплового насоса зависит не только от мощности, но и от надежности и запросов производителя. Например, агрегат мощностью 16 кВт российского производства обойдется в 7000 у.е., а иностранный насос RFM 17 мощностью 17 кВт стоит порядка 13200 у.е. со всем сопутствующим оборудованием, кроме коллектора.

Следующей строкой расходов будет обустройство коллектора . Она тоже зависит от мощности установки. Например, для дома 100 м2, в котором везде установлены теплые полы (100 м2) или радиаторы отопления 80 м2, а также для подогрева воды до +40 °С объемом 150 л/час потребуется выполнить бурение скважин под коллекторы. Такой вертикальный коллектор обойдется в 13000 у.е.

Коллектор на дне водоема обойдется чуть дешевле. При таких же условиях он будет стоить 11000 у.е. Но лучше стоимость монтажа геотермальной системы уточнять в специализирующихся компаниях, она может очень сильно отличаться. Например, обустройство горизонтального коллектора для насоса мощность 17 кВт обойдется всего в 2500 у.е. А для воздушного теплового насоса коллектор не нужен вовсе.

Итого, стоимость теплового насоса 8000 у.е. в среднем, обустройство коллектора 6000 у.е. в среднем.

В ежемесячную стоимость отопления тепловым насосом входят только расходы на электроэнергию . Рассчитать их можно так - на насосе должна быть указана потребляемая мощность. Например, для вышеупомянутого насоса мощностью 17 кВт потребляемая мощность составляет 5,5 кВт/час. Всего отопительная система работает 225 дней в году, т.е. 5400 часов. С учетом того, что тепловой насос и компрессор в нем работают циклически, то расход электроэнергии необходимо уменьшить вдвое. За отопительный сезон будет потрачено 5400ч*5,5кВт/ч/2=14850 кВт.

Умножаем количество затраченных кВт на стоимость энергоносителя в Вашем регионе. Например, 0,05 у.е. за 1 кВт/час. Итого за год будет потрачено 742,5 у.е. За каждый месяц, в котором работал тепловой насос на отопление, приходится по 100 у.е. расходов на электроэнергию. Если же поделить расходы на 12 месяцев, то в месяц получится 60 у.е.

Обратите внимание, что чем меньше потребляемая мощность теплового насоса, тем меньше ежемесячные расходы. Например, есть насосы 17 кВт, которые за год потребляют всего 10000 кВт (расходы 500 у.е.). Также немаловажно, что производительность теплового насоса тем больше, чем меньше разница температур между источником тепла и теплоносителем в системе отопления . Именно поэтому говорят, что выгоднее устанавливать теплый пол и фанкойлы. Хотя стандартные радиаторы отопления с высокотемпературным теплоносителем (+65 - +95 °С) тоже можно устанавливать, но с дополнительным аккумулятором тепла, например, бойлером косвенного нагрева. Для донагрева воды в ГВС также используется бойлер.

Тепловые насосы выгодны при использовании в бивалентных системах. В дополнение к насосу можно установить солнечный коллектор, который сможет полностью обеспечивать насос электроэнергией летом, когда тот будет работать на охлаждение. Для зимней подстраховки можно добавить теплогенератор, который будет догревать воду для ГВС и высокотемпературных радиаторов.

1.
2.
3.
4.
5.
6.

Такой агрегат как тепловой насос принцип работы имеет сходный с бытовыми приборами – холодильником и кондиционером. Примерно 80% своей мощности он заимствует у окружающей среды. Насос перекачивает тепло с улицы в помещение. Его работа подобна принципу функционирования холодильника, отличается только направление переноса тепловой энергии.

Например, для охлаждения бутылки с водой люди ставят ее в холодильник, затем бытовой прибор частично «забирает» у этого предмета тепло и теперь, по закону сохранения энергии должен его отдать. Но куда? Все просто, для этого в холодильнике имеется радиатор, как правило, находящийся на его задней стенке. В свою очередь радиатор, нагреваясь, отдает тепло помещению, в котором стоит. Таким образом, холодильник отапливает комнату. До какой степени она прогревается, можно почувствовать в небольших магазинах жарким летом, когда включено несколько холодильных установок.

А теперь немного фантазии. Предположим, что в холодильник постоянно подкладываются теплые предметы, и он обогревает комнату или его расположили в оконном проеме, открыли дверцу морозильной камеры наружу, при этом радиатор находился в помещении. В процессе своей работы, бытовой прибор, охлаждая воздух на улице, одновременно будет переносить тепловую энергию, которая есть снаружи, в здание. Точно такой имеет тепловой насос принцип действия.

Откуда насос берет тепло?

Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:
  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды.

Система отопления с тепловым насосом

Когда для обогрева используется тепловой насос - принцип работы его основан на интеграции в отопительную систему. Она состоит из двух контуров, к которым добавляется третий, представляющий собой конструкцию насоса.

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C. В результате хладагент закипает и дальше переходит в газообразное состояние. Уже охлажденный теплоноситель во внешнем контуре направляется на следующий виток для набора температуры.

Состоит функциональный контур теплового насоса из:

Процесс, как работает тепловой насос, выглядит примерно так:
  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии. Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;
  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться.

Примерный расчет теплопроизводительности

На протяжении часа через насос по внешнему коллектору проходит 2,5-3 кубометра теплоносителя, который земля в состоянии нагреть на ∆t = 5-7 °C (прочитайте также: " "). Чтобы рассчитать тепловую мощность данного контура, следует воспользоваться формулой:

Q = (T 1 - T 2) x V, где:
V – расход теплоносителя в час (м 3 /час);
T 1 - T 2 - разница температуры на входе и входе (°C) .

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:
  • грунт-вода - для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине (подробнее: " ");
  • вода-вода - принцип работы в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса (прочитайте: " "). При этом внешний контур не закольцован, а система отопления в доме – водяная;
  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома.

Преимущества тепловых насосов

  1. Экономичность и эффективность. Принцип действия тепловых насосов, изображенных на фото, основан не на производстве тепловой энергии, а на переносе ее. Таким образом, КПД теплового насоса должен быть больше единицы. Но как такое возможно? В отношении работы тепловых насосов используется величина, которая называется коэффициентом преобразования тепла или сокращенно КПТ. Характеристики агрегатов данного типа сравнивают именно по этому параметру. Физический смысл величины заключается в определении соотношения между количеством полученного тепла и затраченной на его получение энергии. Например, если коэффициент КПТ равен 4,8, это означает, что электроэнергия в 1кВт, затраченная насосом, позволяет получить 4,8 кВт тепла, причем безвозмездно от природы.
  2. Универсальное повсеместное применение. В случае отсутствия доступных для потребителей линий электропередач работу компрессора насоса обеспечивают при помощи дизельного привода. Поскольку природное тепло есть повсюду, принцип работы этого устройства позволяет использовать его повсеместно.
  3. Экологичность. Принцип работы теплового насоса основан на малом потреблении электроэнергии и отсутствии продуктов горения. Используемый агрегатом хладагент не содержит хлоруглеродов и полностью озонобезопасен.
  4. Двунаправленный режим функционирования. В отопительный период тепловой насос способен обогревать здание, а в летнее время охлаждать его. Тепло, отобранное у помещения, можно применять для обеспечения дома горячим водоснабжением, а, если имеется бассейн, подогревать в нем воду.
  5. Безопасная эксплуатация. В работе тепловых насосов отсутствуют опасные процессы – нет открытого огня, и не выделяются вредные для здоровья человека вещества. Теплоноситель не имеет высокой температуры, что делает устройство безопасным и одновременно полезным в быту.
  6. Автоматическое управление процессом обогрева помещений.

Принцип работы теплового насоса, достаточно подробное видео:

Некоторые особенности эксплуатации насосов

Чтобы обеспечить эффективную работу теплового насоса, необходимо соблюдать ряд условий:
  • помещение должно быть качественно утепленным (теплопотери не могут превышать 100 Вт/ м²);
  • тепловой насос выгодно использовать для низкотемпературных отопительных систем. Данному критерию соответствует система теплого пола, поскольку ее температура 35-40°C. КПТ во многом зависит от соотношения между температурой входного контура и выходного.

Принцип работы тепловых насосов заключается в переносе тепла, что позволяет получать коэффициент преобразования энергии величиной от 3 до 5. Другими словами каждый 1 кВт использованной электроэнергии приносит в дом 3-5 кВт тепла.

Попробуем объяснить на языке простого обывателя, что же такое «ТЕПЛОВОЙ НАСОС «:

Тепловой насос – это специальное устройство, которое совмещает в себе котел, источник горячего водоснабжения и кондиционер для охлаждения. Главным отличием теплового насосаот других источников тепла является возможность использования возобновляемой низкопотенциальной энергии, взятой с окружающей среды (земли, воды, воздуха, сточных вод) для покрытия нужд в тепле во время отопительного сезона, нагрева воды для горячего водоснабжения и охлаждения дома. Поэтому тепловой насос обеспечивает высокоэффективное энергоснабжение без газа и других углеводородов.

Тепловой насос – это устройство, которое работает по принципу обратной холодильной машины, передавая тепло от низкотемпературного источника к среде с более высокой температурой, например системе отопления вашего дома.

Каждая теплонасосная система имеет следующие основные компоненты:

— первичный контур – закрытая циркуляционная система, которая служит для передачи тепла от грунта, воды или воздуха к тепловому насосу.
— вторичный контур – закрытая система, которая служит для передачи тепла от теплового насоса к системе отопления, горячего водоснабжения или вентиляции (подогрев притока) в доме.

Принцип работы теплового насоса похож на работу обыкновенного холодильника, только наоборот. Холодильник отбирает тепло от пищевых продуктов и переносит его наружу (на радиатор, размещенный на его задней стенке). Тепловой насос же переносит тепло, накопленное в почве, земле, водоеме, подземных водах или воздухе, в Ваш дом. Как и холодильник, этот энергоэффективный теплогенератор имеет следующие основные элементы:

— конденсатор (теплообменник, в котором происходит передача тепла от хладагента к элементам системы отопления помещения: низкотемпературным радиаторам, фанкойлам, теплому полу, панелям лучистого отопления/охлаждения);
— дроссель (устройство, которое служит для снижения давления, температуры и, как следствие, замыкания теплофикационного цикла в тепловом насосе);
— испаритель (теплообменник, в котором происходит отбор тепла от низкотемпературного источника к тепловому насосу);
— компрессор (устройство, в которое повышает давление и температуру паров хладагента).

Тепловой насос обустроен таким образом, чтобы заставить тепло двигаться в различных направлениях. Например, во время нагрева дома, тепло отбирается от какого-нибудь холодного наружного источника (земли, реки, озера, наружного воздуха) и передается в дом. Для охлаждения (кондиционирования) дома тепло отбирается от более теплого воздуха в доме и передается наружу (сбрасывается). В этом отношении тепловой насос похож на обычный гидравлический насос, который перекачивает жидкость с нижнего уровня на верхний, тогда как в обыкновенных условиях жидкость всегда двигается с верхнего уровня на нижний.

На сегодняшний день наиболее распостраненными есть парокомпрессионные тепловые насосы. В основу принципа их действия лежат два явления: во-первых, поглощение и выделение тепла жидкостью при смене агрегатного состояния – испарение и конденсация, соответственно; во-вторых, изменение температуры испарения (и конденсации) при изменении давления.

В испарителе теплового насоса рабочим телом есть — хладагент, который не содержит хлора, — он находится под низким давлением и кипит при низкой температуре, поглощая тепло низкопотенциального источника (например, грунт). Потом рабочее тело сжимается в компрессоре, который приводится в движение с помощью электрического или другого двигателя, и попадает в конденсатор, где при высоком давлении конденсируется при более высокой температуре, отдавая тепло конденсации приемнику тепла (например, теплоносителю системы отопления). С конденсатора рабочее тело через дроссель опять попадает в испаритель, где его давление понижается, и процесс кипения хладагента начинается заново.

Тепловой насос способен отбирать тепло от различных источников, например, воздух, вода, грунт. Также, он может сбрасывать тепло в воздух, воду или землю. Более теплая среда, которая воспринимает тепло, называется теплоприемником.

Тепловой насос X/Y использует в качестве источника тепла среду Х, носитель тепла Y. Различают насосы «воздух-вода», «грунт-вода», «вода-вода», «воздух-воздух», «грунт-воздух», «вода-воздух».

Тепловой насос «грунт-вода»:

Тепловой насос «воздух-вода»:

Регулирование работы системы отопления с использованием тепловых насосов в большинстве случаях осуществляется с помощью его включения и выключения по сигналу датчика температуры, который установлен в приемнике (при нагревании) или источнике (при охлаждении) тепла. Настройка теплового насоса обычно осуществляется сменой сечения дросселя (терморегулирующего вентиля).

Как и холодильная машина, тепловой насос использует механическую (электрическую или другую) энергию для реализации термодинамического цикла. Эта энергия используется на привод компрессора (современные тепловые насосы мощностью до 100 кВт комплектируются высокоэффективными скролл компрессорами).

(коэффициент трансформации или эффективности) теплового насоса – это соотношение количества тепловой энергии которую производит тепловой насос до количества электрической энергии, которую он потребляет.

Коэффициент преобразования COP зависит от уровня температур в испарителе и конденсаторе теплового насоса. Это значение колеблется для различных теплонасосных систем в диапазоне от 2,5 до 7, то есть на 1 кВт затраченной электрической энергии тепловой насос вырабатывает от 2,5 до 7 кВт тепловой энергии, что не под силу ни конденсационному газовому котлу, ни любому другому генератору тепла.

Поэтому можно утверждать, что тепловые насосы производят тепло, используя минимальное количество дорогой электрической энергии.

Энергосбережение и эффективность использования теплового насоса в первую очередь зависит от того, откуда вы решите черпать низкотемпературное тепло, во вторую – от способа отопления вашего дома (водой или воздухом) .

Дело в том, что тепловой насос работает как «перевалочная база» между двумя тепловыми контурами: одним, греющим на входе (на стороне испарителя) и вторым, отапливаемым, на выходе (конденсатор).

Для всех типов тепловых насосов характерен ряд особенностей, о которых нужно помнить при выборе модели:

Во-первых, тепловой насос оправдывает себя лишь в хорошо утепленном доме. Чем более теплый дом, тем больше выгода при использовании данного устройства. Как вы понимаете, отапливать улицу с помощью теплового насоса, собирая из нее же крохи тепла – не совсем разумно.

Во-вторых, чем больше разница температур теплоносителей во входном и выходном контурах, тем меньший коэффициент преобразования тепла (СОР), то есть меньшая экономия электрической энергии. Именно поэтому более выгодное подключение теплового насоса к низкотемпературным системам отопления . Прежде всего, речь идет об отоплении водным теплым полом или инфракрасными водяными потолочными или стеновыми панелями. А вот чем более горячую воду тепловой насос готовит для выходного контура (радиаторов или душа), тем меньшую мощность он развивает и тем больше потребляет электричества.

В-третьих, для достижения большей выгоды практикуется эксплуатация теплового насоса с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления ).

<<< к разделу ТЕПЛОВОЙ НАСОС

<<< выбор вентиляционного оборудования

<<< назад к СТАТЬЯМ

Тепловые насосы для отопления дома: плюсы и минусы

1. Особенности работы тепловых насосов
2. Виды тепловых насосов
3. Тепловые насосы геотермального вида
4. Преимущества и недостатки тепловых насосов

Одним из высокоэффективных способов отопления загородного дома является использование тепловых насосов.

Принцип работы тепловых насосов основан на извлечении тепловой энергии из грунта, водоемов, подземных вод, воздуха. Тепловые насосы для отопления дома не оказывают вредного воздействия на окружающую среду. Как выглядят подобные отопительные системы, можно посмотреть на фото.

Такая организация обогрева дома и горячего водоснабжения возможна уже много лет, но распространение начала получать совсем недавно.

Особенности работы тепловых насосов

Принцип работы таких устройств похож на холодильное оборудование.

Тепловые насосы забирают тепло, аккумулируют его и обогащают, а затем передают его теплоносителю. В качестве выделяющего тепло устройства применяется конденсатор, а для утилизации теплоты с низким потенциалом используется испаритель.

Постоянное повышение стоимости электричества и предъявление жестких требований к охране окружающей среды становится причиной поиска альтернативных методов получения тепла для отопления домов и подогрева воды.

Одним из них является использование тепловых насосов, поскольку количество получаемой тепловой энергии в несколько раз превышает затраченное электричество (подробнее: «Экономное отопление электричеством: за и против»).

Если сравнить отопление газом, твердым или жидким топливом, с тепловыми насосами, то последние окажутся более экономичными. Однако само обустройство системы отопления с такими агрегатами обходится гораздо дороже.

Тепловые насосы потребляют электроэнергию, необходимую для работы компрессора. Поэтому такой вид обогрева зданий не подходит в том случае, если в местности наблюдаются частые проблемы с электроснабжением.

Отопление частного дома тепловым насосом может иметь разную эффективность, главным ее показателем является преобразование теплоты — разница между потребленной электроэнергией и полученным теплом.

Разница между температурой испарителя и конденсатора присутствует всегда.

Чем она больше, тем меньше КПД устройства. По этой причине, пользуясь тепловым насосом, нужно иметь немалый источник низко потенциального тепла. Исходя из этого, следует, что чем больше размер теплообменника, тем меньше энергопотребление. Но в то же время, устройства с большими габаритами имеют гораздо более высокую стоимость.

Отопление с помощью теплового насоса встречается во многих развитых странах.

Причем они используются и для обогрева многоквартирных и общественных зданий – это намного экономнее привычной в нашей стране системы отопления.

Виды тепловых насосов

Эти устройства можно использовать в широком диапазоне температур. Обычно они нормально работают при температуре от – 30 до + 35 градусов.

Самыми популярными являются абсорбционные и компрессионные тепловые насосы.

Последние из них используют для передачи тепла механическую и электрическую энергию. Абсорбционные насосы устроены сложнее, но они способны передавать тепло, используя для этого сам источник, благодаря чему значительно снижаются затраты электроэнергии.

Что касается источников тепла, то данные агрегаты делятся на следующие виды:

  • воздушные;
  • геотермальные;
  • вторичного тепла.

Воздушные тепловые насосы для отопления забирают тепло из окружающего воздуха.

Геотермальные пользуются тепловой энергией земли, подземных и наземных вод (детальнее: «Геотермальное отопление: принцип работы на примерах»). Тепловые насосы вторичного тепла забирают энергию канализационных стоков, центрального отопления – эти устройства в основном используются для обогрева промышленных зданий.

Это особенно выгодно в том случае, если имеются источники тепла, которое подлежит утилизации (прочитайте также: «Используем тепло земли для отопления дома»).

Тепловые насосы классифицируются и по видам теплоносителя, им может служить воздух, грунт, вода, а также их сочетания.

Тепловые насосы геотермального вида

Системы отопления, в которых используются тепловые насосы, делятся на два вида – открытые и закрытые. Открытые конструкции предназначены для нагрева проходящей через тепловой насос воды. После того, как теплоноситель проходит по системе, он выводится обратно в землю.

Подобная система идеально работает лишь при наличии значительного объема чистой воды, учитывая тот факт, что ее потребление не станет наносить окружающей среде вред и не вступит в противоречие с действующим законодательством. Поэтому, прежде чем воспользоваться отопительной системой, получающей энергию из грунтовых вод, следует проконсультироваться с соответствующими организациями.

Закрытые системы делятся на несколько видов:

  1. Геотермальные с горизонтальным расположением подразумевают укладку коллектора в траншее ниже глубины промерзания почвы.

    Это – примерно 1,5 метра. Коллектор укладывают кольцами с той целью, чтобы уменьшить площадь земляных работ до минимума и обеспечить на небольшой площади достаточный контур (прочитайте: «Геотермальные тепловые насосы для отопления: принцип устройства системы»).

    Данный метод подходит лишь в том случае, если имеется в распоряжении достаточно свободной площади участка.

  2. Геотермальные конструкции с вертикальным расположением предусматривают размещение коллектора в скважине глубиной до 200 метра. Такой метод применяется при отсутствии возможности расположить теплообменник на большой площади, что необходимо для горизонтальной скважины.

    Также геотермальные системы с вертикальными скважинами делают в случае неровного ландшафта участка.

  3. Геотермальные водные подразумевают помещение коллектора в водоем на глубину ниже уровня промерзания. Укладка выполняется кольцами. Такие системы не могут использоваться, если водоем имеет небольшие размеры или недостаточную глубину.

    Необходимо учитывать, что в случае промерзания водоема на том уровне, где находится коллектор, насос работать не сможет.


Тепловой насос воздух вода — особенности, детали на видео:

Преимущества и недостатки тепловых насосов

Отопление загородного дома тепловым насосом имеет как положительные, так и отрицательные стороны. Одним из основных преимуществ отопительных систем является экологичность.

Также тепловые насосы экономичны, в отличие от других обогревателей, потребляющих электроэнергию. Так, количество вырабатываемой тепловой энергии в несколько раз больше потребляемого электричества.

Тепловые насосы отличаются повышенной пожаробезопасностью, их можно использовать и без создания дополнительной вентиляции.

Так как система имеет замкнутый контур, финансовые траты при эксплуатации сведены к минимуму – платить приходится лишь за потребляемую электроэнергию.

Применение тепловых насосов также позволяют охлаждать помещение летом – это возможно благодаря подключению к коллектору фэн-койлов и системы «холодный потолок».

Эти устройства надежны, а управление процессами работы полностью автоматическое. Поэтому для эксплуатации тепловых насосов не требуются особые навыки.

Немало значение имеют и компактные размеры устройств.

Основной недостаток тепловых насосов:

  • высокая стоимость и значительные затраты на монтажные работы. Сконструировать отопление тепловым насосом своими руками вряд ли получится, не имея специальных знаний. Чтобы вложения окупились, потребуется не один год;
  • срок эксплуатации устройств составляет примерно 20 лет, после этого высока вероятность того, что потребуется проводить капитальный ремонт.

    Это тоже обойдется недешево;

  • цена тепловых насосов в несколько раз превышает стоимость котлов, работающих на газу, твердом или жидком топливе. Немало денег придется выложить и за бурение скважин.

Но с другой стороны, тепловым насосам не требуется регулярное обслуживание, как в случае с многими другими отопительными приборами.

Несмотря на все достоинства тепловых насосов, они до сих пор мало распространены. Это связано, в первую очередь, с высокой стоимостью самого оборудования и его установки. Удастся сэкономить лишь в случае создания системы с горизонтальным теплообменником, если выкапывать траншеи самостоятельно, но на этой уйдет не один день. Что же касается эксплуатации, то оборудование оказывается весьма выгодным.

Тепловые насосы – это экономичный способ обогрева зданий, который не наносит вреда окружающей среде.

Они не могут получить широкого распространения из-за высокой стоимости, но в будущем ситуация может измениться. В развитых странах тепловыми насосами пользуются многие владельцы частных домов – там правительство поощряет заботу об экологии, и стоимость такого вида отопления невысока.

Тепловой грунтовый или геотермальный насос – одна из наиболее энергоэффективных систем альтернативной энергетики. Его работа не зависит от времени года и температуры окружающей среды, как для насоса воздух-воздух, не ограничена наличием рядом с домом водоема или колодца с грунтовыми водами, как система вода-вода.

Тепловой насос грунт-вода, использующий для нагрева теплоносителя в системе отопления тепло, отбираемое у почвы, имеет самый высокий и постоянный КПД, а также коэффициент преобразования энергии (СОР).

Его значение составляет 1:3,5-5, то есть каждыйзатраченный на работу насоса киловатт электричества возвращается 3,5-5 киловаттами тепловой энергии. Таким образом, отопительная мощность грунтового насоса вполне позволяет использовать его как единственный источник тепла даже в доме с большой площадью, конечно, при установке агрегата соответствующей мощности.

Погружной грунтовый насос требует оборудования почвенного контура с циркулирующим хладоносителем для отбора тепла земли.

Возможны два варианта его размещения: горизонтальный грунтовой коллектор (система труб на небольшой глубине, но остаточно большой площади) и вертикальный зонд, размещаемый в скважине от 50 до 200 м глубиной.

Эффективность теплообмена с почвой существенно зависит от того, какой залегает грунт – грунт влагонаполненный отдает намного больше тепла, чем, к примеру, песчаная почва.

Больше всего распространены насосы, работающие по принципу грунт-вода, в которых хладоноситель запасает энергию почвы и в результате прохождения через компрессор и теплообменник передает ее воде как теплоносителю в системе отопления. Цены на грунтовые насосы такого типа соответствуют их высокой эффективности и производительности.


Погружной грунтовый насос

Любые сложные высокотехнологичные агрегаты, такие как грунтовые насосы ГрАТ, а также почвенные тепловые насосы требуют к себе внимания профессионалов.

Тепловой насос

Мы предлагаем полный спектр услуг по реализации, монтажу и обслуживанию систем отопления и горячего водоснабжения на основе тепловых насосов.

На сегодняшний день среди представленных на рынке стран-производителей таких агрегатов особо популярны европейские страны и Китай.

Самые известные модели тепловых насосов: Nibe, Stiebel Eltron, Mitsubishi Zubadan, Waterkotte. Не менее востребован также и отечественный грунтовый тепловой насос.

Наша компания предпочитает работать только с оборудованием надежных европейских производителей: Viessmann и Nibe.

Тепловой насос извлекает накопленную энергию из различных источников – грунтовых, артезианских и термальных вод – вод рек, озер, морей; очищенных промышленных и бытовых стоков; вентиляционных выбросов и дымовых газов; грунта и земных недр – переносит и превращает в энергию более высоких температур.

Теплонасос – высокоэкономичная, экологически чистая технология обогрева и комфорта

Тепловая энергия существует вокруг нас, проблема в том, как ее извлечь, не затрачивая при этом значительных энергоресурсов.

Тепловые насосы извлекает накопленную энергию из различных источников – грунтовых, артезианских и термальных вод – вод рек, озер, морей; очищенных промышленных и бытовых стоков; вентиляционных выбросов и дымовых газов; грунта и земных недр – переносит и превращает в энергию более высоких температур.

Выбор оптимального теплового источника зависит от многих факторов: размера энергетических потребностей Вашего дома, установленной отопительной системы, природных условий региона Вашего проживания.

Устройство и принцип работы теплового насоса

Теплонасос функционирует как холодильник- только наоборот.

Холодильник переносит тепло изнутри во вне.

Теплонасос переносит тепло, накопленное в воздухе, почве, недрах или воде, в ваш дом.

Теплонасос состоит из 4 основных агрегатов:

Испаритель,

Конденсатор,

Расширительный вентиль (разряжающий вентиль-
дроссель, понижает давление),

Компрессор (повышает давление).

Эти агрегаты связаны замкнутым трубопроводом.

В системе трубопровода циркулирует хладагент, который в одной части цикла представляет собой жидкость, а в другой- газ.

Земные недра как глубинный теплоисточник

Земные недра являются бесплатным теплоисточником, поддерживающим одинаковую температуру круглый год.

Использование тепла земных недр является экологически чистой, надежной и безопасной технологией обеспечивания теплом и горячим водоснабжением всех типов зданий, больших и малых, общественных и частных. Уровень капиталовложений достаточно высокий, но взамен Вы получите безопасную в работе, с минимальными требованиями к сервисному обслуживанию альтернативную обогревательную систему с максимально длительным сроком эксплуатации. Коэффициент преобразования тепла (см.

стр. 6) высок, достигает 3. Установка не требует много места и может быть внедрена на участке земли малой плошади. Объем восстановительных работ после бурения незначителен, влияние пробуренной скважины на окружающую среду минимально. На уровень грунтовых вод воздействие не оказывается, так как грунтовые воды не потребляются. Тепловая энергия переносится к конвекционной системе водяного отопления и применяется для горячего водоснабжения.

Грунтовое тепло – близкозалегающая энергия

В поверхностном слое земли накапливается тепло в течение лета.

Использование этой энергии для обогрева целесообразно для зданий с высокими энергорасходами. Наибольшее количество энергии извлекается из почвы с большим содержанием влаги.

Грунтовый теплонасос

Водные теплоисточники

Солнце нагревает воду в морях, озерах и других водных источниках.

Солнечная энергия накапливается в воде и донных слоях. Редко температура снижается ниже +4 °С. Чем ближе к поверхности, тем температура больше варьируется в течение года, а в глубине – она относительно стабильна.

Теплонасос с водным источником тепла

Шланг для передачи тепла укладывается на дне или в грунте дна, где температура еще немного выше,
чем температура воды.

Важно, чтобы шланг снабжался отягощающим грузом для предотвращения
всплытия шланга на поверхность. Чем ниже он залегает, тем меньше риск повреждения.

Водный источник как источник тепла очень эффективен для зданий с относительно высокими потребностями в теплоэнергии.

Тепло грунтовых вод

Даже грунтовые воды могут использоваться для обогрева зданий.

Для этого требуется пробуренный колодец, откуда вода закачивается в теплонасос.

При использовании грунтовой воды к ее качеству предъявляются высокие требования.

Теплонасос с грунтовой водой в качестве источника тепла

После прохождения теплонасоса вода может транспортироваться в отводной канал или колодец. Такое решение может привести к нежелательному снижению уровня грунтовых вод, а также снизить эксплуатационную надежность установки и оказать негативное воздействие на близрасположенные колодцы.

Сейчас данный метод используется все меньше.

Грунтовая вода также может быть возвращена в землю также путем частичной или полной инфильтрации.

Такой выгодный теплонасос

Коэффициент преобразования тепла

Чем выше эффективность теплонасоса, тем выгоднее он.

Эффективность определяется так называемым коэффициентом преобразования тепла или коэффициентом температурной трансформации, который представляет собой отношение количества энергии, генерируемой теплонасосом, к количеству энергии, затрачиваемой на процесс переноса тепла.

Например: Коэффициент температурной трансформации равен 3.

Это означает, что теплонасос поставляет в 3 раза больше энергии, чем потребляет. Другими словами, 2/3 получено «бесплатно» от теплоисточника.

Как сделать тепловой насос для отопления дома своими руками: принцип работы и схемы

Чем выше энергопотребности Вашего жилища, тем больше вы экономите денежных средств.

Примечание На значение коэффициента температурной трансформации влияет присутсвие/игнорирование в расчетах параметров дополнительного оборудования (циркуляционных насосов), а также различные температурные режимы.

Чем ниже температурное распределение, тем выше становится коэффициент температурной трансформации, теплонасосы наиболее эффективны в отопителных системах с низкотемпературными характеристиками.

При подборе теплонасоса к Вашей обогревательной системе невыгодно ориентировать
мощностные показатели теплонасоса на максимальные требования к мощности (на покрытие энергорасходов в отопительном контуре в самый холодный день года).

Опыт показывает, что теплонасос должен генерировать около 50-70% от этого максимума, теплонасос должен покрывать 70-90% (в зависимости от теплоисточника) от общей годовой потребности в энергии для отопления и го-рячеговодоснабжения. При низких внешних температурах теплонасос применяется с имеющимся в наличии котельным оборудованием или пиковым доводчиком, которым укомплектован теплонасос.

Сравнение затрат на устройство системы отопления индивидуального дома на основе теплового насоса и жидкотопливного котла.

Для анализа возьмем дом площадью в 150-200 кв.м.

Наиболее распространенный сегодня вариант современного загородного дома постоянного пользования.
Применение современных строительных материалов и технологий обеспечивает величину теплопотерь здания на уровне 55 вт./кв.м пола.
Для покрытия суммарных потребностей в тепловой энергии, расходуемой на отопление и горячее водоснабжение такого дома, необходимо установить тепловой насос или котел тепловой мощностью примерно 12 квт/ч.
Стоимость самого теплового насоса или котла на дизельном топливе составляет всего лишь часть затрат, которые необходимо произвести для ввода в эксплуатацию системы отопления в целом.

Ниже приведен далеко неполный список основных сопутствующих затрат по устройству системы отопления «под ключ» на основе котла на жидком топливе, отсутствующих в случае применения теплового насоса:

фильтр- воздухоотводчик, фикспакет, группа безопасности, горелка, система обвязки котла, панель управления с погодозависимой автоматикой, аварийный электрокотел, топливный бак, дымовая труба, бойлер.

Все это в сумме составляет не менее 8000-9000 евро. Принимая во внимание необходимость устройства самого помещения котельной как таковой, стоимость которого учитывая все требования надзорных органов составляет еще несколько тысяч евро, мы приходим к парадоксальному на первый взгляд выводу, а именно – о практической сопоставимости первоначальных капитальных затрат при устройстве системы отопления «под ключ» на основе теплового насоса и котла на жидком топливе.

В обоих случаях сумма затрат приближается к 15 тыс.евро.

Учитывая следующие неоспоримые преимущества теплового насоса, такие как:
Экономичность. При стоимости 1 кВт электроэнергии 1руб 40коп, 1 кВт тепловой мощности нам обойдется не более 30-45 коп, в то время как 1кВт тепловой энергии от котла обойдется уже в 1 руб 70 коп (при цене солярки 17 руб/л);
Экология. Экологически чистый метод отопления как для окружающей среды, так и для людей находящихся в помещении;
Безопасность. Нет открытого пламени, нет выхлопа, нет сажи, нет запаха солярки, исключена утечка газа, разлив мазута.

Нет пожароопасных хранилищ для угля, дров, мазута или солярки;

Надежность. Минимум подвижных частей с высоким ресурсом работы. Независимость от поставки топочного материала и его качества. Практически не требует обслуживания. Срок службы теплового насоса составляет 15 – 25 лет;
Комфорт. Тепловой насос работает бесшумно (не громче холодильника);
Гибкость. Тепловой насос совместим с любой циркуляционной системой отопления, а современный дизайн позволяет устанавливать его в любых помещениях;

все большее количество владельцев индивидуальных домов выбирают тепловой насос для отопления как в новом строительстве, так и при модернизации существующей системы отопления.

Устройство теплового насоса

Приповерхностную технологию использования низкопотенциальной тепловой энергии с помощью теплового насоса можно рассматривать как некоторый технико-экономический феномен или реальную революцию в системе теплообеспечения.

Устройство теплового насоса. Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока – дроссель, детандер или вихревая труба (Рис.16).

Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором - хладагент (вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику), в третьем - теплоприемник (вода в системах отопления и горячего водоснабжения здания).

16. Устройство теплового насоса

Внешний контур (коллектор) представляет собой уложенный в землю или в воду трубопровод, в котором циркулирует незамерзающая жидкость - антифриз. Следует отметить, что в качестве источника низкопотенциальной энергии может выступать как тепло естественного (наружный воздух; тепло грунтовых, артезианских и термальных вод; воды рек, озер, морей и других незамерзающих природных водоемов), так и техногенного происхождения (промышленные сбросы, очистные сооружения, тепло силовых трансформаторов и любое другое бросовое тепло).

Температура, необходимая для работы насоса обычно составляет 5-15 .

Во второй контур, где циркулирует хладагент, встроены теплообменники - испаритель и конденсатор, а также устройства, которые меняют давление хладагента - распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.

Рабочий цикл. Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды.

Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл повторяется.

Чтобы компрессор работал (поддерживал высокое давление и циркуляцию), его надо подключить к электричеству.

Но на каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 киловатт-часов тепловой энергии.

Теполовой насос для отопления: принцип работы и преимущества использования

Это соотношение называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса.

Значение данной величины зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем она меньше. По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения.

Виды тепловых насосов.

Тепловые насосы бывают двух основных типов – с закрытым и открытым контуром.

Насосы с открытым контуром используют в качестве источника тепла воду поземных источников – она закачивается по пробуренной скважине в тепловой насос, где происходит теплообмен, и охлажденная выводится обратно в подводный горизонт через другую скважину.

Такой тип насосов выгоден тем, что подземная вода сохраняет стабильную и достаточно высокую температуру круглый год.

Насосы с закрытым циклом бывают нескольких типов: вертикальные и горизонтальные (Рис.17).

Насосы с горизонтальным теплообменником имеют замкнутый внешний контур, основная часть которого вкопана горизонтально в землю, или прокладывается по дну близлежащего озера или пруда.

Глубина пролегания труб под землей в таких установках – до метра. Этот способ получения геотермальной энергии самый дешевый, но для его использования необходим ряд технических условий, которые не всегда есть на обустраиваемой территории.

Главное из них – трубы должны пролегать так, чтобы не мешать росту деревьев, земледельческим работам, чтобы была низкая вероятность повреждения подводных труб при сельскохозяйственной или другой деятельности.


Рис. 17. Приповерхностная геотермальная система с теплообменом

Насосы с вертикальным теплообменником включают в себя внешний контур, вкопанный глубоко в землю – на 50-200 м.

Это самый эффективный тип насоса, который производит самое дешевое тепло, но его установка намного дороже предыдущих типов. Выгода в этом случае связана с тем, что на глубине больше 20 метров, температура земли стабильна круглый год и составляет 15-20 градусов, а с увеличением глубины только растет.

Кондиционирование с помощью тепловых насосов. Одним из важных качеств тепловых насосов является возможность переключения из режима отопления зимой в режим кондиционирования летом: только вместо радиаторов используются фанкойлы.

Фанкойл — это внутренний блок, в который подаются тепло- или хладоноситель и прогоняемый с помощью вентилятора воздух, который в зависимости от температуры воды либо нагревается, либо охлаждается.

Включает в себя: теплообменник, вентилятор, фильтр для очистки воздуха и пульт управления.

Так как фанкойлы могут работать и на нагрев и на охлаждение, возможны несколько вариантов обвязки:
— S2 – трубная – когда роль тепло- и хладоносителя выполняет вода и допускается их смешение (и, как вариант, устройство с электронагревателем и теплообменником, работающим только на охлаждение);
— S4 – трубная – когда хладоноситель (например, этиленгликоль) не может смешиваться с теплоносителем (водой).

Мощность фанкойлов по холоду колеблется от 0,5 до 8,5 кВт, а по теплу – от 1,0 до 20,5 кВт.

В них устанавливаются малошумные (от 12 до 45 дБ) вентиляторы, имеющие до 7 скоростей вращения.

Перспективы. Широкому распространению тепловых насосов мешает недостаточная информированность населения. Потенциальных покупателей пугают довольно высокие первоначальные затраты: стоимость насоса и монтажа системы составляет 300-1200$ на 1 кВт необходимой мощности отопления. Но грамотный расчет убедительно доказывает экономическую целесообразность применения этих установок: капиталовложения окупаются, по ориентировочным подсчетам, за 4-9 лет, а служат тепловые насосы по 15-20 лет до капитального ремонта.

Что еще почитать