Бойлерная установка. Введение

Как устроена ТЭЦ? Агрегаты ТЭЦ. Оборудование ТЭЦ. Принципы работы ТЭЦ. ПГУ-450.

Здравствуйте , дорогие дамы и уважаемые господа!

Когда я учился в Московском Энергетическом Институте, мне не хватало практики. В институте имеешь дело в основном с "бумажками", а мне уже скорей хотелось видеть "железки". Часто было трудно понять, как устроен тот или иной агрегат, никогда ранее его не видя. Предлагаемые студентам эскизы не всегда позволяют понять полную картину, и мало кто себе мог представить истинную конструкцию, например, паровой турбины, рассматривая только картинки в книжке.

Данная страница призвана заполнить существующий пробел и предоставить всем интересующимся пусть не слишком подробную, но зато наглядную информацию о том как "изнутри" устроено оборудование Тепло-Электро Централи (ТЭЦ). В статье рассмотрен достаточно новый для России тип энергоблока ПГУ-450, использующий в своей работе смешанный цикл - парогазовый (большинство ТЭЦ используют пока только паровой цикл).

Преимущество данной страницы в том, что фотографии, представленные на ней, выполнены в момент строительства энергоблока, что позволило отснять устройство некоторого технологического оборудования в разобранном виде. На мой взгляд, данная страница окажется наиболее полезна для студентов энергетических специальностей - для понимания сути изучаемых вопросов, а также для преподавателей - для использования отдельных фотографий в качестве методического материала.

Источником энергии для работы данного энергоблока является природный газ. При сгорании газа выделяется тепловая энергия, которая затем используется для работы всего оборудования энергоблока.

Всего в схеме энергоблока работают три энергетические машины: две газовые турбины и одна паровая. Каждая из трех машин рассчитана на номинальную электрическую вырабатываемую мощность 150МВт.

Газовые турбины по принципу действия схожи с двигателями реактивных самолетов.

Для работы газовых турбин необходимы два компонента: газ и воздух. Воздух, с улицы, поступает через воздухозаборники. Воздухозаборники закрыты решетками, чтобы защитить газотурбинную установку от попадания птиц и всякого мусора. В них же смонтирована антиоблединительная система, предотвращающая намерзание льда в зимний период времени.

Воздух поступает на вход компрессора газотурбинной установки (осевого типа). После этого, в сжатом виде, он попадает в камеры сгорания, куда кроме воздуха подводится природный газ. Всего на каждой газотурбинной установке установлено по две камеры сгорания. Они расположены по бокам. На первой фотографии ниже воздуховод еще не смонтирован, а левая камера сгорания закрыта целлофановой пленкой, на второй - вокруг камер сгорания уже смонтирован помост, установлен электрогенератор:

На каждой камере сгорания установлено по 8 газовых горелок:

В камерах сгорания происходит процесс горения газовоздушной смеси и выделение тепловой энергии. Вот как выглядят камеры сгорания "изнутри" - как раз там, где непрерывно горит пламя. Стенки камер выложены огнеупорной футеровкой:

В нижней части камеры сгорания расположено маленькое смотровое окошечко, позволяющее наблюдать происходящие в камере сгорания процессы. Видеоролик ниже демонстрирует процесс горения газовоздушной смеси в камере сгорания газотурбинной установки в момент ее запуска и при работе на 30% номинальной мощности:

Воздушный компрессор и газовая турбина находятся на одном и том же валу, и часть крутящего момента турбины используется для привода компрессора.

Турбина производит больше работы, чем требуется для привода компрессора, и избыток этой работы используется для привода "полезной нагрузки". В качестве такой нагрузки используется электрогенератор электрической мощностью 150МВт - именно в нем вырабатывается электроэнергия. На фотографии ниже "серый сарай" - это как раз и есть электрогенератор. Электрогенератор также находится на одном валу с компрессором и турбиной. Все вместе вращается с частотой 3000 об/мин.

При прохождения газовой турбины продукты сгорания отдают ей часть своей тепловой энергии, однако далеко не вся энергия продуктов сгорания используется для вращения газовой турбины. Значительная часть этой энергии не может быть использована газовой турбиной, поэтому продукты сгорания на выходе газовой турбины (выхлопные газы) несут с собой еще очень много тепла (температура газов на выходе газовой турбины составляет порядка 500 ° С). В самолетных двигателях это тепло расточительно выбрасывается в окружающую среду, но на рассматриваемом энергоблоке оно используется далее - в паросиловом цикле. Для этого, выхлопные газы с выхода газовой турбины "вдуваются" снизу в т. н. "котлы-утилизаторы" - по одному на каждую газовую турбину. Две газовых турбины - два котла-утилизатора.

Каждый такой котел представляет собой сооружение высотой в несколько этажей.

В этих котлах тепловая энергия выхлопных газов газовой турбины используется для нагревания воды и превращения ее в пар. В последствии этот пар используется при работе в паровой турбине, но об этом чуть позже.

Для нагревания и испарения вода проходит внутри трубок диаметром примерно 30мм, расположенных горизонтально, а выхлопные газы от газовой турбины "омывают" эти трубки снаружи. Так происходит передача тепла от газов к воде (пару):

Отдав большую часть тепловой энергии пару и воде, выхлопные газы оказываются вверху котла-утилизатора и выводятся с помощью дымохода через крышу цеха:

С внешней стороны здания дымоходы от двух котлов-утилизаторов сходятся в одну вертикальную дымовую трубу:

Следующие фотографии позволяют оценить размеры дымоходов. На первой фотографии представлен один из "уголков", которыми дымоходы котлов-утилизаторов подсоединяются к вертикальному стволу дымовой трубы, на остальных фотографиях - процесс монтажа дымовой трубы.

Но вернемся к конструкции котлов-утилизаторов. Трубки, по которым проходит вода внутри котлов, разделены на множество секций - трубных пучков, которые образуют несколько участков:

1. Экономайзерный участок (который на данном энергоблоке имеет особое название - Газовый Подогреватель Конденсата - ГПК);

2. Испарительный участок;

3. Пароперегревательный участок.

Экономайзерный участок служит для подогрева воды от температуры порядка 40 ° С до температуры, близкой к температуре кипения. После этого вода поступает в деаэратор - стальную емкость, где параметры воды поддерживаются такими, что из нее начинают интенсивно выделятся растворенные в ней газы. Газы собираются вверху емкости и удаляются в атмосферу. Удаление газов, особенно кислорода, необходимо для предотвращения быстрой коррозии технологического оборудования, с которым контактирует наша вода.

Пройдя деаэратор, вода приобретает название "питательная вода" и поступает на вход питательных насосов. Вот как выглядели питательные насосы, когда их только что привезли на станцию (всего их 3шт.):

Питательные насосы имеют электропривод (асинхронные двигатели питаются от напряжения 6кВ и имеют мощность 1.3МВт). Между самим насосом и электромотором находится гидромуфта - агрегат , позволяющий плавно изменять частоту вращения вала насоса в широких пределах.

Принцип действия гидромуфты схож с принципом действия гидромуфты в автоматических коробках передач автомобилей.

Внутри находятся два колеса с лопатками, одно "сидит" на валу электромотора, второе - на валу насоса. Пространство между колесами может быть заполнено маслом на разный уровень. Первое колесо, вращаемое двигателем, создает поток масла, "ударяющийся" в лопатки второго колеса, и вовлекающий его во вращение. Чем больше масла будет залито между колесами, тем лучшее "сцепление" будут иметь валы между собой, и тем большая механическая мощность будет передана через гидромуфту к питательному насосу.

Уровень масла между колесами изменяется с помощью т. н. "черпаковой трубы", откачивающей масло из пространства между колес. Регулирование положения черпаковой трубы осуществляется с помощью специального исполнительного механизма.

Сам по себе питательный насос центробежный, многоступенчатый. Заметьте, этот насос развивает полное давление пара паровой турбины и даже превышает его (на величину гидравлических сопротивлений оставшейся части котла-утилизатора, гидравлических сопротивлений трубопроводов и арматуры).

Конструкцию рабочих колес нового питательного насоса увидеть не удалось (т. к. он уже был собран), но на территории станции удалось обнаружить части старого питательного насоса схожей конструкции. Насос состоит из чередующихся вращающихся центробежных колес и неподвижных направляющих дисков.

Неподвижный направляющий диск:

Рабочие колеса:

С выхода питательных насосов питательная вода подается в т. н. "барабаны-сепараторы" - горизонтальные стальные емкости, предназначенные для разделения воды и пара:

На каждом котле-утилизаторе установлены по два барабана-сепаратора (всего 4 на энергоблоке). В совокупности с трубками испарительных секций внутри котлов-утилизаторов, они образуют контуры циркуляции пароводяной смеси. Работает это следующим образом.

Вода с температурой, близкой к температуре кипения, поступает внутрь трубок испарительных секций, протекая по которым догревается до температуры кипения и затем частично превращается в пар. На выходе испарительного участка мы имеем пароводяную смесь, которая поступает в барабаны-сепараторы. Внутри барабанов-сепараторов смонтированы специальные устройства

Которые помогают отделить пар от воды. Пар затем подается на пароперегревательный участок, где его температура еще более увеличивается, а отделенная в барабане-сепараторе (отсепарированная) вода смешивается с питательной водой и снова поступает в испарительный участок котла-утилизатора.

После пароперегревательного участка пар из одного котла-утилизатора смешивается с таким же паром второго котла-утилизатора и поступает на турбину. Его температура столь высока, что трубопроводы, по которым он проходит, если снять с них теплоизоляцию, - светятся в темноте темно-красным свечением. И теперь этот пар подается на паровую турбину, чтобы отдать в ней часть своей тепловой энергии и совершить полезную работу.

Паровая турбина имеет 2 цилиндра - цилиндр высокого давления и цилиндр низкого давления. Цилиндр низкого давления - двухпоточный. В нем пар разделяется на 2 потока, работающих параллельно. В цилиндрах находятся роторы турбины. Каждый ротор, в свою очередь, состоит из ступеней - дисков с лопатками. "Ударяясь" в лопатки, пар заставляет роторы вращаться. Фотография ниже отражает общую конструкцию паровой турбины: ближе к нам - ротор высокого давления, дальше от нас - двухпоточный ротор низкого давления

Вот так выглядел ротор низкого давления, когда его только распаковали из заводской упаковки. Заметьте, он имеет только 4 ступени (а не 8):

А вот ротор высокого давления при ближайшем рассмотрении. Он имеет 20 ступеней. Обратите также внимание на массивный стальной корпус турбины, состоящий из двух половинок - нижней и верхней (на фото только нижняя), и шпильки, с помощью которых эти половинки соединяется друг с другом. Чтобы при пуске корпус быстрее, но, в то же время, более равномерно прогревался, используется система парового обогрева "фланцев и шпилек" - видите специальный канал вокруг шпилек? Именно через него проходит специальный поток пара для прогрева корпуса турбины при ее пуске.

Чтобы пар "ударялся" в лопатки роторов и заставлял их вращаться, этот пар сначала нужно направить и ускорить в нужном направлении. Для этого используются т. н. сопловые решетки - неподвижные секции с неподвижными лопатками, размещенные между вращающимися дисками роторов. Сопловые решетки НЕ вращаются - они НЕподвижны, и служат только для направления и ускорения пара в нужном направлении. На фотографии ниже пар проходит "из за этих лопаток на нас" и "раскручивается" вокруг оси турбины против часовой стрелки. Далее, "ударяясь" во вращающиеся лопатки дисков ротора, которые находятся сразу за сопловой решеткой, пар передает свое "вращение" ротору турбины.

На фотографии ниже можно видеть части сопловых решеток, подготовленные для монтажа

А на этих фотографиях - нижнюю часть корпуса турбины с уже установленными в нее половинками сопловых решеток:

После этого в корпус "вкладывается" ротор, монтируются верхние половинки сопловых решеток, затем верхняя часть корпуса, далее различные трубопроводы, теплоизоляция и кожух:

Пройдя через турбину, пар поступает в конденсаторы. У данной турбины два конденсатора - по числу потоков в цилиндре низкого давления. Посмотрите на фотографию ниже. На ней хорошо видна нижняя часть корпуса паровой турбины. Обратите внимание на прямоугольные части корпуса цилиндра низкого давления, закрытые сверху деревянными щитами. Это - выхлопы паровой турбины и входы в конденсаторы.

Когда корпус паровой турбины оказывается полностью собран, на выходах цилиндра низкого давления образуется пространство, давление в котором при работе паровой турбины примерно в 20 раз ниже атмосферного, поэтому корпус цилиндра низкого давления проектируется не на сопротивление давлению изнутри, а на сопротивление давлению снаружи - т. е. атмосферному давлению воздуха. Сами конденсаторы находятся под цилиндром низкого давления. На фото ниже - это прямоугольные емкости с двумя люками на каждой.

Конденсатор устроен схоже с котлом-утилизатором. Внутри него находится множество трубок диаметром примерно 30мм. Если мы откроем один из двух люков каждого конденсатора и заглянем внутрь, мы увидим "трубные доски":

Сквозь эти трубки протекает охлаждающая вода, которая называется технической водой. Пар с выхлопа паровой турбины оказывается в пространстве между трубками снаружи них (за трубной доской на фото выше), и, отдавая остаточное тепло технической воде через стенки трубок, конденсируется на их поверхности. Конденсат пара стекает вниз, накапливается в конденсатосборниках (в нижней части кондесаторов), после чего попадает на вход конденсатных насосов. Каждый конденсатный насос (а всего их 5) приводится во вращение трехфазным асинхронным электродвигателем, рассчитанным на напряжение 6кВ.

С выхода конденсатных насосов вода (конденсат) снова поступает на вход экономайзерных участков котлов-утилизаторов и, тем самым, паросиловой цикл замыкается. Вся система является почти герметичной и вода, являющаяся рабочим телом, многократно превращается в пар в котлах-утилизаторах, в виде пара совершает работу в турбине, чтобы снова превратиться в воду в конденсаторах турбины и т. д.

Эта вода (в виде воды или пара) постоянно контактирует с внутренними деталям технологического оборудования, и чтобы не вызывать их быструю коррозию и износ - специальным образом химически подготавливается.

Но вернемся к конденсаторам паровой турбины.

Техническая вода, нагретая в трубках конденсаторов паровой турбины, по подземным трубопроводам технического водоснабжения выводится из цеха и подается в градирни - чтобы в них отдать тепло, отнятое у пара из турбины, окружающей атмосфере. На фотографиях ниже приведена конструкция градирни, возведенной для нашего энергоблока. Принцип ее работы основан на разбрызгивании внутри градирни теплой технической воды с помощью душирующих устройств (от слова "душ"). Капли воды падают вниз и отдают свое тепло воздуху, находящемуся внутри градирни. Нагретый воздух поднимается вверх, а на его место снизу градирни приходит холодный воздух с улицы.

Вот как выглядит градирня у своего основания. Именно через "щель" снизу градирни приходит холодный воздух для охлаждения технической воды

Снизу градирни находится водосборный бассейн, куда падают и где собираются капли технической воды, выпущенные из душирующих устройств и отдавшие свое тепло воздуху. Над бассейном расположена система раздающих труб, по которым теплая техническая вода подводится к душирующим устройствам

Пространство над и под душирующими устройствами заполняется специальной набивкой из пластмассовых жалюзи. Нижние жалюзи предназначены для более равномерного распределения "дождя" по площади градирни, а верхние жалюзи - для улавливания мелких капелек воды и предотвращения излишнего уноса технической воды вместе с воздухом через верх градирни. Однако, на момент отснятия представленных фотографий, пластмассовые жалюзи еще не были установлены.

Бо "льшая же по высоте часть градирни ничем не заполнена и предназначена только для создания тяги (нагретый воздух поднимается вверх). Если мы встанем над раздающими трубопроводами, мы увидим, что выше ничего нет и остальная часть градирни - пустая

Следующий видеоролик передает впечатления от нахождения внутри градирни

На тот момент, когда были отсняты фотографии этой странички, градирня, построенная для нового энергоблока - еще не функционировала. Однако, на территории данной ТЭЦ были другие градирни, которые работали, что позволило запечатлеть похожую градирню в работе. Стальные жалюзи внизу градирни предназначены для регулирования потока холодного воздуха и предотвращения переохлаждения технической воды в зимний период времени

Охлажденная и собранная в бассейне градирни техническая вода снова подается на вход трубок конденсатора паровой турбины, чтобы отнять у пара новую порцию тепла и т. д. Кроме того, техническая вода используется для охлаждения прочего технологического оборудования, например, электрогенераторов.

Следующий видеоролик показывает, как в градирне охлаждается техническая вода.

Поскольку техническая вода непосредственно контактирует с окружающим воздухом, в нее попадает пыль, песок, трава и прочая грязь. Поэтому на входе этой воды в цех, на входном трубопроводе технической воды, установлен самоочищающийся фильтр. Этот фильтр состоит из нескольких секций, укрепленных на вращающемся колесе. Через одну из секций, время от времени, организуется обратный поток воды для ее промывки. Затем колесо с секциями поворачивается, и начинается промывка следующей секции и т. д.

Вот так выглядит этот самоочищающийся фильтр изнутри трубопровода технической воды:

А так снаружи (приводной электромотор еще не смонтирован):

Здесь следует сделать отступление и сказать, что монтаж всего технологического оборудования в турбинном цехе осуществляется с помощью двух мостовых кранов. Каждый кран имеет по три отдельных лебедки, предназначенных для работы с грузами разных масс.

Теперь я бы хотел немного рассказать об электрической части данного энергоблока.

Электроэнергия вырабатывается с помощью трех электрогенераторов, приводимых во вращение двумя газовыми и одной паровой турбиной. Часть оборудования для монтажа энергоблока была привезена автотранспортом, а часть железнодорожным. Прямо в турбинный цех проложена железная дорога, по которой при строительстве энергоблока подвозили крупногабаритное оборудование.

На фотографии ниже запечатлен процесс доставки статора одного из электрогенераторов. Напомню, что каждый электрогенератор имеет номинальную электрическую мощность 150МВт. Заметьте, что железнодорожная платформа, на которой привезли статор электрогенератора, имеет 16 осей (32 колеса).

Железная дорога имеет в месте въезда в цех небольшое закругление, и учитывая, что колеса каждой колесной пары жестко закреплены на своих осях, при движении на закругленном участке железной дороги одно из колес каждой колесной пары вынуждено проскальзывать (т. к. на закруглении рельсы имеют разную длину). Приведенный ниже видеоролик показывает, как это происходило при движении платформы со статором электрогенератора. Обратите внимание на то, как подпрыгивает песок на шпалах в моменты проскальзывания колес по рельсам.

Ввиду большой массы, монтаж статоров электрогенераторов осуществлялся с применением обоих мостовых кранов:

На фотографии ниже приведен внутренний вид статора одного из электрогенераторов:

А вот так осуществлялся монтаж роторов электрогенераторов:

Выходное напряжение генераторов составляет порядка 20кВ. Выходной ток - тысячи ампер. Эта электроэнергия выводится из турбинного цеха и поступает на повышающие трансформаторы, находящиеся снаружи здания. Для передачи электроэнергии от электрогенераторов к повышающим трансформаторам используются вот такие электропроводы (ток течет по центральной алюминиевой трубе):

Для измерения тока в этих "проводах" используются вот такие трансформаторы тока (на третьей фотографии выше такой же трансформатор тока стоит вертикально):

На фотографии ниже представлен один из повышающих трансформаторов. Выходное напряжение - 220кВ. С их выходов электроэнергия подается в электросеть.

Кроме электрической энергии, ТЭЦ вырабатывает также тепловую энергию, используемую для отопления и горячего водоснабжения близлежащих районов. Для этого, в паровой турбине выполнены отборы пара, т. е. часть пара выводится из турбины не дойдя до конденсатора. Этот, еще достаточно горячий пар, поступает в сетевые подогреватели. Сетевой подогреватель - это теплообменник. По конструкции он очень похож на конденсатор паровой турбины. Отличие состоит в том, что в трубках течет не техническая вода, а сетевая вода. Сетевых подогревателей на энергоблоке два. Давайте снова рассмотрим фотографию с конденсаторами провой турбины. Прямоугольные емкости - конденсаторы, а "круглые" - этот как раз и есть сетевые подогреватели. Напоминаю, что все это расположено под паровой турбиной.

Подогретая в трубках сетевых подогревателей сетевая вода подается по подземным трубопроводам сетевой воды в тепловую сеть. Обогрев здания районов, расположенных вокруг ТЭЦ, и отдав им свое тепло, сетевая вода снова возвращается на станцию, чтобы снова быть подогретой в сетевых подогревателях и т. д.

Работа всего энергоблока контролируется АСУ ТП "Овация" американской корпорации "Эмерсон"

А вот как выглядит кабельный полуэтаж, находящийся под помещением АСУ ТП. По этим кабелям в АСУ ТП поступают сигналы от множества датчиков, а также уходят сигналы на исполнительные механизмы.

Спасибо за то, что посетили эту страницу !

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.

March 23rd, 2013

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.

Интерактивное приложение «Как работает ТЭЦ»

На картинке слева - электростанция « Мосэнерго» , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо - природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.

Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других - до уровня обессоленной воды и идет на подпитку энергоблоков.

Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

Высококлассные специалисты « Мосэнерго» круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

Как работает парогазовый энергоблок


Одним из самых важных вопросов в энергетике была и остается водоподготовка на ТЭЦ. Для предприятий энергетики вода - основной источник их работы и потому к ее содержанию предьявляются очень высокие требования. Поскольку Россия - страна с холодным климатом, постоянными сильными морозами, то работа ТЭЦ - это, то от чего зависит жизнь людей. Качество воды, подаваемой на теплоэгергоцентраль влияет очень сильно на ее работу. Жесткая вода выливается в очень серьезную проблему для паровых и газовых котельных, а также паровых турбин ТЭЦ, которые обеспечивают город теплом и горячей водой. Чтобы четко понимать, как и на что именно отрицательно влияет жесткая вода, не мешало бы сперва разобраться, что такое ТЭЦ? И с чем ее "едят"? Итак, ТЭЦ - теплоэнергоцентраль - это разновидность тепловой станции, которая не только обеспечивает теплом город, но и поставляет в наши дома и на предприятия горячую воду. Такая электростанция устроена как конденсационная электростанция, но отличается от нее тем, что может отобрать часть теплового пара, уже после того, как он отдал свою энергию.

Паровые турбины бывают разными. В зависимости от вида турбины и отбирается пар с различными показателями. Турбины на энергоцентрали позволяют регулировать количество отбираемого пара. Пар, который был отобран, проходит конденсацию в сетевом подогревателе или подогревателях. Вся энергия из него передается сетевой воде. Вода в свою очередь идет на пиковые водогрейные как котельные, так и тепловые пункты. Если на ТЭЦ перекрываются пути отбора пара, она становится обычной КЭС. Таким образом, теплоэнергоцентраль может работать по двум различным графикам нагрузки:

  • · тепловой график - прямопропорциональная зависимость электрической нагрузки от тепловой;
  • · электрический график - тепловой нагрузки либо нет вообще, либо электрическая нагрузка от нее не зависит. Достоинство ТЭЦ состоит в том, что она совмещает как тепловую энергию, так и электрическую. В отличии от КЭС, оставшееся тепло не пропадает, а идет на отопление. В результате растет коэффициент полезного действия электростанции. У водоподготовки на ТЭЦ он составляет 80 процентов против 30 процентов у КЭС. Правда, об экономичности теплоэнергоцентрали это не говорит. Здесь в цене другие показатели - удельная выработка электричества и КПДцикла. К особенностям расположения ТЭЦ следует отнести тот факт, что строить ее следует в черте города. Дело в том, что передача тепла на расстояния нецелесообразна и невозможна. Поэтому водоподготовка на ТЭЦ всегда строят рядом с потребителями электроэнергии и тепла. Из чего состоит оборудование водоподготовки для ТЭЦ? Это турбины и котлы. Котлы производят пар для турбин, турбины из энергии пара производят энергию электричества. Турбогенератор включает в себя паровую турбину и синхронный генератор. Пар в турбинах получают за счет применения мазута и газа. Эти вещества и нагревают воду в котле. Пар под давлением прокручивает турбину и на выходе получается электроэнергия. Отработанный пар поступает в дома в виде горячей воды для бытовых нужд. Потому то, отработанный пар и должен иметь определенные свойства. Жесткая вода со множеством примесей не даст получить качественный пар, который к тому же можно потом поставить людям для использования в быту. Если пар не отправляют на поставку горячей воды, то его тут же в ТЭЦ охлаждают в градирнях. Если вы видели когда-нибудь огромные трубы на тепловых станциях и как их них валит дым, то это и есть градирни, а дым, вовсе не дым, а пар, который подымается от них, когда происходит конденсация и охлаждение. Как работает водоподготовка на ТЭ? Больше всего влиянию жесткой воды здесь поддается турбина и, конечно же, котлы, которые преобразовывают воду в пар. Главная задача любой ТЭЦ получить в котле чистую воду. Чем так плоха жесткая вода? Каковы ее последствия и почему они обходятся нам так дорого? Жесткая вода отличается от обычной высоким содержанием солей кальция и магния. Именно эти соли под воздействием температуры оседают на нагревательном элементе и стенках бытовых приборов. То же относится и к паровым котлам. Накипь образовывается в месте нагрева и точке кипения по краям самого котла. Удаление накипи в теплообменнике в таком случае затруднено, т.к. накипь нарастает на огромном оборудовании, внутри труб, всевозможных датчиков, систем автоматизации. Промывка котла от накипи на таком оборудовании - это целая многоэтапная система, которая может даже проводится при разборе оборудования. Но это в случае высокой плотности накипи и больших ее залежей. Обычное средство от накипи в таких условиях конечно не поможет. Если говорить о последствиях жесткой воды для быта, то это и влияние на здоровье человека и удорожание использования бытовых приборов. К тому же жесткая вода очень плохо контактирует с моющими средствами. Вы станете использовать на 60 процентов больше порошка, мыла. Расходы будут расти как на дрожжах. Умягчение воды потому и было придумано, чтобы нейтрализовать жесткую воду, ставишь себе в квартиру один умягчитель воды и забываешь, что есть очистка от накипи, средство от накипи.

Накипь отличается еще и плохой теплопроводимостью. Этот ее недостаток главная причина поломок дорогой бытовой техники. Покрытый накипью тепловой элемент просто перегорает, силясь отдать тепло воде. Плюс из-за плохой растворимости моющих средств, стиральную машинку нужно дополнительно включать на полоскание. Это расходы воды, электричества. С любой стороны, умягчение воды - самый верный и экономически выгодный вариант предотвращения образования накипи. А теперь представьте что такое водоподготовка на ТЭЦ в промышленных масштабах? Там средство от накипи используется галлонами. Промывка котла от накипи проводится периодически. Бывает регулярной и ремонтной. Чтобы удаление накипи проходило более безболезненно и нужна водоподготовка. Она поможет предотвратить образование накипи, защитит и трубы и оборудование. С ней жесткая вода не будет оказывать свое разрушительное воздействие в таких угрожающихмасштабах. Если говорить о промышленности и энергетике, то больше всего жесткая вода приносит неприятностей ТЭЦ и котельным. То есть в тех областях, где происходит непосредственно водоподготовка и нагрев воды и перемещение этой теплой воды по трубам водоснабжения. Умягчение воды здесь необходимо, как воздух. Но поскольку водоподготовка на ТЭЦ это работа с огромными обьемами воды, водоподготовка должна быть тщательно просчитана и продумана с учетом всевозможным нюансов. От анализа химического состава воды да места расположения того или иного умягчителя воды. В ТЭЦ водоподготовка - это не только умягчитель воды, это еще и обслуживание оборудования после. Ведь удаление накипи все равно в этом производственном процессе придется делать, с определенной периодичностью. Здесь применяется не одно средство от накипи. Это может быть и муравьиная кислота, и лимонная, и серная. В различной концентрации, обязательно в виде раствора. И применяют тот или иной раствор кислот в зависимости от того из каких составных частей сделан котел, трубы, контроллер и датчики. Итак, на каких обьектах энергетики нужна водоподготовка? Это котельные станции, котлы, это тоже часть ТЭЦ, водонагревательные установки, трубопроводы. Самыми слабыми местами и ТЭЦ в том числе, остаются трубопроводы. Накапливающаяся здесь накипь может привести и к истощению труб и их разрыву. Когда накипь не удаляется во время, то она просто не дает воде нормально проходить по трубам и перегревает их. Наряду с накипью второй проблемой оборудования в ТЭЦ является коррозия. Ее также нельзя спускать на самотек. К чему может привести толстый слой накипи в трубах, которые подводят воду на ТЭЦ? Это сложный вопрос, но ответим на него мы теперь зная, что такое водоподготовка на ТЭЦ. Поскольку накипь - отменный теплоизолятор, то и расход тепла резко растет, а теплоотдача наоборот снижается. КПД котельного оборудования падает в разы, все это в результате может привести и к разрыву труб и взрыву котла.

Водоподготовка воды на ТЭЦ, это то, на чем нельзя экономить. Если в быту, вы все же подумаете, купить ли умягчитель воды или выбрать средство от накипи, то для теплового оборудования такой торг недопустим. На теплоэнергоцентралях подсчитывают каждую копейку, поэтому очистка от накипи при отсутствии системы умягчения обойдется куда дороже. Да и сохранность приборов, их долговечность и надежная эксплуатация тоже играют свою роль. Очищенное от накипи оборудование, трубы, котлы работают на 20-40 процентов эффективнее, чем оборудование не прошедшее очистку или работающее без системы умягчения. Главная особенность водоподготовки воды на ТЭЦ состоит в том, что здесь требуется глубоко обессоленная вода. Для этого нужно использовать точное автоматизированное оборудование. На таком производстве чаще всего применяют установки обратного осмоса и нанофильтрации, а также электродеионизации. Какие этапы включает в себя водоподготовка в энергетике в том числе и на теплоэнергцентрали? Первый этап включает в себя механическую очистку от всевозможных примесей. На этом этапе из воды удаляются все взвешенные примеси, вплоть до песка и микроскопических частиц ржавчины и т.п. Это так называемая грубая очистка. После нее вода выходит чистой для глаз человека. В ней остаются только растворенные соли жесткости, железистые соединения, бактерии и вирусы и жидкие газы.

Разрабатывая систему водоподготовки воды нужно учитывать такой нюанс, как источник водопоставки. Это водопроводная вода из систем централизованного водоснабжения или это вода из первичного источника? Разница в водоподготовке состоит в том, что вода из систем водоснабжения уже прошла первичную очистку. Из нее нужно убирать только соли жесткости, и обезжелезивать при необходимости. Вода из первичных источников - это вода абсолютно не обработанная. То есть, имеем дело с целым букетом. Здесь обязательно нужно проводить химический анализ воды, чтобы понимать с какими примесями имеем дело и какие фильтры ставить для умягчения воды и в какой последовательности. После грубой очистки в системе идет следующий этап под названием ионообменное обезсоливание. Здесь устанавливают ионообменный фильтр. Работает на основе ионообменных процессов. Главный элемент - ионообменная смола, которая включает в себя натрий. Он образует со смолой непрочные соединения. Как только жесткая вода на ТЭЦ попадает в такой умягчитель, то соли жесткости мгновенно выбивают натрий из структуры и прочно встают на его место. Восстанавливается такой фильтр очень просто. Картридж со смолой перемещается в бак регенерации, где находится насыщенный соляной раствор. Натрий снова занимает свое место, а соли жесткости вымываются в дренаж. Следующий этап - это получение воды с заданными характеристиками. Здесь применяют установку водоподготовки воды на ТЭЦ. Главное ее достоинство - получение 100-процентно чистой воды, с заданными показателями щелочности, кислотности, уровнем минерализации. Если предприятию нужна техническая вода, то установка обратного осмоса создавалась именно на такие случаи.

Главной составляющей частью этой установки является полунепроницаемая мембрана. Селективность мембраны меняется, в зависимости от ее сечения можно получить воду с разными характеристиками. Эта мембрана разделяет бак на два части. В одной части находится жидкость с высоким содержанием примесей, в другой части жидкость с низким содержанием примесей. Воду запускают в высококонцентрированный раствор, она медленно просачивается через мембрану. На установку подается давление, под воздействием его вода останавливается. Потом давление резко увеличивают, и вода начинает течь обратно. Разность этих давлений называют осматическим давлением. На выходе получается идеально чистая вода, а все отложения остаются в менее концентрированном растворе и выводятся в дренаж.

Нанофильтрация по сути тот же обратный осмос, только низконапорный. Поэтому принцип действия тот же, только напор воды меньше. Следующий этап - устранение из воды, растворенных в ней газов. Поскольку в ТЭЦ нужен чистый пар без примесей, очень важно удалить из воды, растворенные в ней кислород, водород и углекислый газ. Устранение примесей жидких газов в воде называется декарбонацией и деаэрацией. После этого этапа вода готова для подачи в котлы. Пар получается именно той концентрации и температуры, которая необходима.

Как видно, из всего вышеописанного, водоподготовка воды в ТЭЦ - один самых главных составляющих производственного процесса. Без чистой воды, не будет качественного хорошего пара, а значит, не будет электричества в нужном обьеме. Поэтому водоподготовкой в теплоэнергоцентралях нужно заниматься плотно, доверять эту службу исключительно профессионалам. Правильно спроектированная система водоподготовки - это гарантия долгосрочной службы оборудования и получения качественных услуг энергопоставок.

Что еще почитать