А е м лития. Физические свойства лития: плотность, теплопроводность, теплоемкость

Температура кипения Теплота плавления

2,89 кДж/моль

Теплота испарения

148 кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

кубическая объёмноцентрированая

Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

(300 K) 84,8 Вт/(м·К)

3
[Не]2s 1

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος - камень). Первоначально назывался «литион», современное название было предложено Берцелиусом .

Нахождение в природе

Геохимия лития

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий , рубидий и цезий . Содержание лития в верхней континентальной коре составляет 21 / , в морской воде 0,17 мг/л .

Месторождения

Месторождения лития известны в России (более 50 % запасов страны сосредоточено в редкометальных месторождениях Мурманской области), Боливии (Солончак Уюни - крупнейшее в мире ), Аргентине, Мексике, Афганистане , Чили , США , Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве , Конго .

Получение

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl . Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси):

В дальнейшем полученный литий очищают методом вакуумной дистилляции .

Физические свойства

Литий - серебристо-белый металл, мягкий и пластичный, твёрже натрия , но мягче свинца . Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра. Кристаллическая решетка относится к пространственной группе P 6 3 /mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Карминово-красное окрашивание пламени солями лития

Химические свойства

Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6 Li (7,5 %) и 7 Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов и два ядерных изомера (4 Li − 12 Li и 10m1 Li − 10m2 Li соответственно). Наиболее устойчивый из них, 8 Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3 Li (трипротон), по-видимому, не существует как связанная система.

7 Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть вскоре после Большого Взрыва). Образование элемента лития в звездах возможно по ядерной реакции «скалывания» более тяжелых элементов.

Применение

Термоэлектрические материалы

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов .

Легирование алюминия

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Литий-6 (термояд)

Применяется в термоядерной энергетике.

При облучении нуклида 6 Li тепловыми нейтронами получается радиоактивный тритий 3 H:

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6 LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7 (теплоноситель)

Сушка газов

Смазочные материалы

Стеарат лития («литиевое мыло») используется в качестве высокотемпературной смазки. См.: литол .

Регенерация кислорода в автономных аппаратах

Цены

Литий - самый легкий металл. Он всплывает, например, в керосине .

Примечания

См. также

Ссылки

Литература

  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия.- М.-Л.: Химия, 1970.- 407 с
  • Кутолин С. А. и др. ПРЕПАРАТИВНАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ СОЕДИНЕНИЙ НИОБИЯ, ТАНТАЛА ЩЕЛОЧНЫХ МЕТАЛЛОВ
  • С. А. Кутолин, А. И. Вулих. Метаниобаты, метатанталаты щелочных металлов.- Сб. Методы получения химических реактивов и препаратов. М.:ИРЕА,1967.-вып.16.-с.17.-23;с.50-51. Chem.Abstr.,v.68, 83878v,1968

Соединения лития

Азид лития (LiN 3) Алюминат лития (LiAlO 2) Алюмогидрид лития (LiAlH 4) Амид лития (LiNH 2) Ацетат лития (CH 3 COOLi) Ацетиленид лития (Li 2 C 2) Бензиллитий (LiСH 2 С 6 H 5) Бензоат лития (C 6 H 5 COOLi) Бромат лития (LiBrO 3) Бромид лития (LiBr) Гексафторфосфат лития (LiPF 6) Гидрид лития (LiH) Гидрокарбонат лития (LiHCO 3) Гидроксид лития (LiOH) Гидроортофосфат лития (Li 2 HPO 4) Гидросульфат лития (LiHSO 4) Гидросульфид лития (LiHS) Гидрофторид лития (LiHF 2) Дигидроортофосфат лития (LiH 2 PO 4) Дисульфит лития (Li 2 S 2 O 5) Дихромат лития (Li 2 Cr 2 O 7) Имид лития (Li 2 NH) Иодат лития (LiIO 3) Иодид лития (LiI) Карбид лития (Li 2 С 2) Карбонат лития (Li 2 CO 3) Метагерманат лития (Li 2 GeO 3) Метасиликат лития (Li 2 SiO 3) Метафосфат лития (LiPO 3) Метиллитий (LiСH 3) Нитрат лития (LiNO 3) Нитрид лития (Li 3 N) Нитрит лития (LiNO 2) Оксалат лития (Li 2 C 2 O 4) Оксид лития (Li 2 O) Ортофосфат лития (Li 3 PO 4) Пербромат лития (LiBrO 4) Пероксид лития (Li 2 O 2) Пероксомоносульфат лития (Li 2 SO 5) Персульфат лития (Li 2 S 2 O 8) Перхлорат лития (LiClO 4) Силицид лития (Li 6 Si 2) Сорбат лития (C 6 H 7 LiO 2) Сульфат лития (Li 2 SO 4) Сульфид лития (Li 2 S) Сульфит лития (Li 2 SO 3) Тетрагидридоалюминат лития (Li) Тетрагидридоборат лития (Li) Тиоцианат лития (LiSCN) Фениллитий (LiС 6 H 5) Формиат лития (HCOOLi) Фталимид лития Фторид лития (LiF) Хлорат лития (LiClO 3) Хлорид лития (LiCl) Хромат лития (Li 2 CrO 4) Цианат лития (LiOCN) Цианид лития (LiCN) Цианоаурат лития (Li Этиллитий (LiС 2 H 5)

Литий был открыт в 1817 году шведским химиком Арфведсоном при анализе минерала петалита. Своё название литий получил от греческого “литос”-камень, так как в отличие от щелочных металлов калия и натрия, был обнаружен в каменной породе.

Металлический литий в очень малом количестве был получен в 1818 году, а в 1885 году металлический литий был получен в значительном количестве путём электролиза.

Литий – металл серебристо-белого цвета с жёлтым оттенком , мягок и пластичен как свинец — куётся, прокатывается и протягивается без нагревания.

Литий | 3 | — сайт

Литий — очень лёгкий металл , в два раза легче воды, он плавает в воде и даже в керосине. Очень активно реагирует с водой с бурным выделением водорода, вытесняемым литием из воды. На воздухе окисляется и покрывается белой плёнкой окиси, поэтому хранят его в вакууме или в масле. Обладает высокой теплоёмкостью и теплопроводностью, в жидком виде находится при температурах от 180 до 1327ОС.

Литий расплавляется в воздухе без заметного окисления, а при температуре выше 220ОС — загорается. В сухом воздухе, литий хорошо сохраняется, во влажном — быстро окисляется. Серый налёт при окислении лития — образовавшийся нитрид. Сухой кислород не действует на литий до температуры 200ОС. Сгорая на воздухе, при температуре выше 200ОС, литий образует оксид Li2O. При температуре500-800ОС Li образует с водородом гидрид — LiH.

В земной коре его в 800 раз меньше чем щелочных металлов калия и натрия. Минералами содержащих литий являются сподумен и лепидолит, в которых содержится от 1 до 3% оксида лития. Кристаллы сподумена достигают массы в несколько тонн. Иногда литий концентрируется в больших количествах в солёных озёрах, в водах нефтяных месторождений, в подземных горячих водах, в районе действующих вулканов. Мировые подтверждённые запасы оксида лития превышают 9 миллионов тонн, а вместе с минерализированными водами — до 30 миллионов тонн.

ПОЛУЧЕНИЕ.

Из минералов сподумена и лепидолита, литий переводится в растворимую хлористую соль (нагревание с мелом и хлористым аммонием), или в сернокислую соль (нагревание с K2SO4), которые, затем, извлекаются с водой.

Полученную соль очищают, переводя её последовательно в LiOH, Li2CO3, а затем в LiCl. Хлористый литий подвергают электролизу в расплаве, со значительным удельным расходом электроэнергии — 50 — 60 тысяч кВтч на тонну лития.

Литий рафинируется переплавкой в масле и отмывкой в бензине. Для более высокой очистки применяется процесс гидрирования лития при температурах 700-800ОС, при которых летит калий, а гидрид лития разлагается при температуре 1000ОС, в вакууме, на чистый литий и водород.

ПРИМЕНЕНИЕ.

В настоящее время литий очень широко применяется в различных отраслях промышленности.

    Металлургия. Литий является компонентом многих сплавов. В чёрной металлургии литий применяется для раскисления и легирования сплавов. В цветной металлургии литий применяется как раскислитель и дегазатор при плавке меди и её сплавов, как легирующая присадка в сплавах со свинцом и лёгкими металлами. Небольшие добавки (до 0,005%) значительно быстрее и полнее обеспечивают раскисление цветных металлов, хромоникелевой стали и чугуна. Химически активный литий реагирует с кислородом, азотом и серой растворёнными в меди, связывает их и дегазирует медь. Добавки лития к алюминию и магнию повышают их прочность и делают более стойкими к действию кислот и щелочей. В парах лития осуществляется сварка алюминия. Парами лития создают защитную атмосферу в печах для нагревания некоторых металлов, так как литий, реагирует с водяными парами, кислородом и азотом.

  • Применение карбоната лития в виде окатышей в алюминиевой промышленности повышает выход годного металла и уменьшает выделение фтора при производстве алюминия.

  • Хранение и транспортировка водорода. Гидрид лития, выделяющий под действием воды большое количество водорода (3м3/кг), является удобным материалом для хранения и транспортировки связанного водорода.

  • Аккумуляторы. Гидроокись лития применяется в качестве щёлочи в аккумуляторах. Добавка едкого лития в щелочные аккумуляторы значительно повышает их электроёмкость.

  • Вакуумная техника. Металлический литий применяется в вакуумных приборах для получения вакуума. В закрытом сосуде литий поглощает азот и кислород, создавая в нём вакуум. Таким же образом производят очистку аргона и неона от азота, при изготовлении электрических ламп.

  • Термоядерные процессы. Изотоп литий-6 используется для производства трития и применение лития в термоядерных процессах становится всё более значительным. В перспективе, литий как сырьё для производства трития, может стать значительной частью исходного горючего для термоядерных реакторов. Изотоп литий-6 применяется в атомных реакторах, как составная часть материалов защитных экранов против радиации.

  • Очистка воздуха. Хлористый и бромистый литий, а также гидроокись лития хорошо поглощают углекислоту, аммиак, дым и влагу. Кондиционирование воздуха в замкнутых помещениях (подводные лодки, космические корабли) осуществляется с применением соединений лития.

  • Производство стекла и керамики. Соединения лития заменяют свинец при производстве стёкол для кинескопов электронно-лучевых приборов. В производстве стела присадка соединений лития позволяет получать стекло с большой проницаемостью для ультрафиолетовых лучей и малым тепловым расширением. Литий применяется при производстве фарфора, фаянса, термостойкой керамики, огнеупорных и диэлектрических материалов, глазурей и эмалей.

  • Ракетно-космическая техника. Нитратные и перхлоратные соединения лития применяются в качестве окислителей твёрдого ракетного топлива, добавляются к жидкому топливу реактивных двигателей. Жаропрочные соединения лития используются для покрытия сопел и камер сгорания ракетных двигателей.

  • Медицина. Соединения лития(углекислый литий, силициловокислый литий) применяются для растворения мочевой кислоты при лечении подагры.

  • Выполнила:

    студентка 1 курса 2 лд группы

    2 мед.факультета

    Лебедь Екатерина

    Запорожье 2014

    1. Характеристика элемента

    2. История открытия Лития

    3. Получение Лития

    4. Физические и химические свойства элемента

    5. Важнейшие соединения лития.

    6. Применение

    7. Препараты Лития

    Характеристика элемента

    ЛИ́ТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента. Литий встречается в природе в виде двух стабильных нуклидов 6Li (7,52% по массе) и 7Li (92,48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов. Конфигурация электронной оболочки нейтрального атома лития 1s 22s 1. В соединениях литий всегда проявляет степень окисления +1. Металлический радиус атома лития 0,152 нм, радиус иона Li+ 0,078 нм. Энергии последовательной ионизации атома лития 5,39 и 75,6 эВ. Электроотрицательность по Полингу 0,98, самая большая у щелочных металлов. В виде простого вещества литий - мягкий, пластичный, легкий, серебристый металл.

    История открытия Лития

    Элемент №3 , названный литием (от греческого "литос" – камень), открыт в 1817 г. Когда когда проводил свои знаменитые опыты выдающийся английский ученый Хэмфри Дэви по электролизу щелочных земель, ещё не было известно о существовании в природе лития. Литиевая земля была открыта лишь в 1817 г. химиком-аналитиком Арфведсоном, шведом по национальности. В 1800 г. бразильский минералог де Андрада е Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, который был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом. После проведения полного качественного и количественного анализа, он обнаружил потерю около 4% вещества, это его конечно насторожило и дало повод для поиска недостающего вещества. Он повторил свои анализы более тщательно и щепетильно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус, учеником которого и был Арфведсон, предложил назвать ее литионом (Lithion), поскольку эта щелочь в отличие от кали и натра впервые была найдена в "царстве минералов" (камней); название зто произведено от греч.- камень. Арфведсон продолжал проводить исследования и обнаружил литиевую землю,или литину, и в некоторых других минералах. Но этот химический элемент ему выделить не удалось, он был очень активным и получить его было трудным делом. Небольшие массы металлического лития были получены Дэви и Бранде путем злектролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития злектролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс ); литиевую землю (щелочь) называли иногда литина.

    Литий получают в две основные стадии:

    1) получение чистого хлористого лития;

    2) электролиз расплавленного хлористого лития.

    Наиболее важной технической литиевой рудой является - алюмосиликат лития. Сподуменовую руду сначала обогащают, отделяя пустую породу от мине рала сподумена.

    Один из способов получения хлористого лития из сподумена - хлорирующий обжиг сподумена в смеси с СаС03 и NH4Cl при 750° С. В результате получают спек, состоящий из хлористого лития, силиката кальция, окиси алюминия, а также хлоридов калия, натрия и кальция.

    Спек выщелачивают холодной водой, при этом в раствор переходят хлориды лития, калия и натрия, а также небольшое количество СаС12 и Са(ОН)2. При помощи промышленных кондиционеров в помещении поддерживается необходимый уровень температуры. Кальций переводят в нерастворимое состояние, обрабатывая раствор поташом, отделяют осадок и чистый раствор упаривают до начала кристаллизации солей. Затем через раствор пропускают сухой хлористый водород, в результате чего резко уменьшается растворимость КСl и NaCl и они выпадают в осадок, который отделяют от раствора. Раствор выпаривают, и из него выкристаллизовывается гидрат LiCl Но, который затем обезвоживают нагреванием и далее используют как сырье для электролитического получения лития.

    Существуют и другие способы разложения сподумена (спекание с сульфатом калия или смесью известняка с хлористым кальцием) с последующей переработкой спеков для получения из них хлорида лития.

    Металлический литий получают электролизом хлористого лития при 400-500° С. В качестве электролита применяют смесь LiCl и КСl, содержащую примерно 60%. Анодное и катодное пространства разделены железной сетчатой диафрагмой. Над катодом расположен приемник для жидкого лития, всплывающего на поверхность электролита. Хлор удаляется через канал, устроенный в верхнем перекрытии электролизера. Через это же перекрытие проходят трубы для питания ванны расплавленным хлористым литием и извлечения жидкого металла.

    Технологический режим и основные показатели электролиза: анодная плотность тока 2,1, катодная 1,4 а/см2; напряжение на клеммах 6-8 в, выход по току 90%. Расход на 1 кг лития: 6,2 кг LiCl, 0,1-0,2 кг KG, электроэнергии постоянного тока 144-216 кдж.

    Литий-сырец содержит более 99% Li, основные примеси (Na, К, Mg, Al, Fe, Si) могут быть удалены рафинированием лития возгонкой, или дистилляцией в вакууме.

    Элемент №3, названный литием (от греческого λιτοσ – камень), открыт в 1817 г.

    Шведский химик И.А. Арфведсон, ученик знаменитого Берцелиуса, анализировал минерал, найденный в железном руднике Уто. Он быстро установил, что этот минерал – типичный алюмосиликат, и выяснил, сколько в нем кремния, алюминия и кислорода – на долю этих трех распространеннейших элементов приходилось 96% веса минерала.

    Теперь оставалось выяснить химическую природу веществ, составляющих оставшиеся 4%. Эти вещества, будучи отделенными от Si, Al, и O 2 и растворенными в воде, придавали раствору щелочные свойства. На этом основании Арфведсон предположил, что в минерале есть некий щелочной металл. Одна из солей этого металла растворялась в воде в шесть раз лучше, чем аналогичные соли калия и натрия. А поскольку в то время были известны лишь два щелочных металла, Арфведсон решил, что открыл новый элемент, подобный натрию и калию.

    С виду минерал, в котором нашли новый элемент, был камень как камень, и потому Берцелиус предложил Арфведсону назвать новый элемент литием. Тот, видимо, не стал спорить, ибо это название сохранилось до наших дней. В большинстве европейских языков, как и в латыни, элемент №3 называется Lithium.

    На этом история элемента №3 не заканчивается. Это очень своеобразный элемент, и не только потому, что литий – первый среди металлов по легкости и удельной теплоемкости, а также по положению в ряду напряжений металлов. Говорить о том, что история лития продолжается, можно хотя бы потому, что некоторые соединения лития, да и сам металл в последнее время приобрели исключительную важность для судеб всего мира.

    Поэтому слово «история» в подзаголовках этой статьи нам кажется оправданным.

    Древнейшая история

    Когда-то давным-давно, в доисторические времена, происходил синтез элементов Вселенной. Несколько позже, но тоже в неопределенно далеком прошлом шли процессы формирования нашей планеты. На этой стадии литий проник более чем в 150 минералов, из них около 30 стали собственными минералами лития. Промышленное значение приобрели только пять: сподумен LiAl , лепидолит Kli 1,5 Al 1,5 (F, OH) 2 , петалит – минерал, в котором литий обнаружен впервые, LiAl , амблигонит LiAl (F, OH) и циннвальдит KLi (Fe, Mg) Al· (F, OH) 2 .

    Географически промышленные запасы элемента №3 распределились довольно равномерно: промышленные месторождения минералов лития есть на всех континентах. Важнейшие из них находятся в Канаде, США, СССР, Испании, Швеции, Бразилии, Австралии, а также в странах Южной Африки.

    Древняя история

    Слово «древняя» здесь употребляется весьма условно – речь пойдет о временах, не столь отдаленных.

    Человечество знакомо с литием чуть больше полутора веков, и этот раздел нашего рассказа охватит годы с 1817 по 1920. Это время познания лития как химического индивидуума, время получения и исследования его многих соединений и не очень широкого применения некоторых из них.

    Вскоре после открытия Арфведсона новым элементом заинтересовались многие химики. В 1818 г. немецкий химик Л. Гмелин установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет. Вскоре сам Арфведсон обнаружил литий в сподумене, позже ставшем важнейшим минералом элемента №3, и в лепидолите. В 1825 г. Йенс Якоб Берцелиус нашел литий в водах германских минеральных источников. Вскоре выяснилось, что этот элемент есть и в морской воде (7·10 6 %).

    Металлический литий впервые получил выдающийся английский ученый Хэмфри Дэви в 1818 г. Тогда и выяснилось, что литий очень легок, почти вдвое легче воды, и что он обладает ярким металлическим блеском. Но этот блеск серебристо-белого лития можно увидеть только в том случае, если металл получают в вакууме: как и все щелочные металлы, литий быстро окисляется кислородом воздуха и превращается в окись – бесцветные кристаллы кубической формы. Li 2 O легко, но менее энергично, чем окислы других щелочных металлов, соединяется с водой, превращаясь в щелочь – LiOH. И эти кристаллы бесцветны. В воде гидроокись лития растворяется хуже, чем гидроокиси калия и натрия. Как бесцветные кристаллы, выглядят и литиевые соли галогеноводородных кислот.

    Иодид, бромид и хлорид лития весьма гигроскопичны, расплываются на воздухе и очень хорошо растворяются в воде. Фторид лития, в отличие от них, в воде растворяется очень слабо и практически совсем не растворяется в органических растворителях. Еще в прошлом веке это вещество начали применять в металлургии как компонент многих флюсов.

    В значительных количествах металлический литий первыми получили в 1855 г. (независимо друг от друга) немецкий химик Р. Бунзен и англичанин О. Матиссен. Как и Дэви, они получали литий электролизом, только электролитом в их опытах служил расплав не гидроокиси, а хлорида лития. Этот способ до сих пор остается главным промышленным способом получения элемента №3. Правда, теперь в электролитическую ванну помещают смесь LiCl и KCl и подбирают такие характеристики тока, чтобы на катоде осаждался только литий. Выделяющийся на аноде хлор – ценный побочный продукт.

    Есть и другие способы получения металлического лития, но всерьез конкурировать с электролитическим они пока не могут.

    Еще в XIX в. были получены соединения лития с почти всеми элементами периодической системы и с некоторыми органическими веществами. Но практическое применение нашли лишь немногие из них. В 1912...1913 гг. мировое производство лития и его соединений не превышало 40...50 т.

    В 1919 г. вышла брошюра В.С. Сырокомского «Применение редких элементов в промышленности». Есть в ней, в частности, и такие строки: «Главнейшее применение литий находит в данный момент в медицине, где углекислый и салицилово-кислый литий служат средством для растворения мочевой кислоты, выделяющейся в организме человека при подагре и некоторых других болезнях...»

    История средних веков

    «Средние века» истории лития – это всего три десятилетия, 20, 30, 40-е годы нашего века. В эти годы литий и его соединения пришли во многие отрасли промышленности, в первую очередь в металлургию, в органический синтез, в производство силикатов и аккумуляторов.

    Литий имеет сродство к кислороду, водороду, азоту. Последнее особенно важно, так как ни один элемент не реагирует с азотом так активно, как литий. Эта реакция, хотя и медленно, идет уже при комнатной температуре, а при 250°C ход ее значительно ускоряется. Литий стал эффективным средством для удаления из расплавленных металлов растворенных в них газов. Небольшими добавками лития легируют чугун, бронзы, монель-металл (монель-металл – «природный» сплав, выплавляемый из медно-никелевых руд), а также сплавы на основе магния, алюминия, цинка, свинца и некоторых других металлов.

    Установлено, что литий в принципе улучшает и свойства сталей – уменьшает размеры «зерен», повышает прочность, но трудности введения этой добавки (литий практически нерастворим в железе и к тому же он закипает при температуре 1317°C) помешали широкому внедрению лития в производство легированных сталей.

    Соединения лития нужны и в силикатной промышленности. Они делают стеклянную массу более вязкой, что упрощает технологию, и, кроме того, придают стеклу большую прочность и сопротивляемость атмосферной коррозии. Такие стекла, в отличие от обычных, частично пропускают ультрафиолетовые лучи; поэтому их применяют в телевизионной технике. А в производстве оптических приборов довольно широко стали использовать кристаллы фтористого лития, прозрачные для ультракоротких волн длиной до 1000 А.

    В химической промышленности стали применять металлический литий и литийорганические соединения. В частности, мелкодисперсный элементарный литий намного ускоряет реакцию полимеризации изопрена, а бутил литий – дивинила.

    По химическим свойствам литий напоминает не только (и не столько) другие щелочные металлы, но и магний. Литийорганические соединения применяют там же, где и магнийорганические (в реакциях Гриньяра), но соединения элемента №3 – более активные реагенты, чем соответствующие гриньяровские реактивы.

    В годы второй мировой войны стало стратегическим материалом одно соединение лития, известное еще в прошлом веке. Речь идет о гидриде лития – бесцветных кристаллах, приобретающих при хранении голубоватую окраску.

    Из всех гидридов щелочных и щелочноземельных металлов гидрид лития – самое устойчивое соединение. Однако, как и прочие гидриды, LiH бурно реагирует с водой. При этом образуются гидроокись лития и газообразный водород. Это соединение стало служить легким (оно действительно очень легкое – плотность 0,776) и портативным источником водорода – для заполнения аэростатов и спасательного снаряжения при авариях самолетов и судов в открытом море. Из килограмма гидрида лития получается 2,8 м 3 водорода...

    Примерно в то же время стал быстро расти спрос еще на одно соединение элемента №3 – его гидроокись. Как оказалось, добавка этого вещества к электролиту щелочных аккумуляторов примерно на одну пятую увеличивает их емкость и в 2...3 раза – срок службы.

    К началу второй мировой войны производство литиевых концентратов в капиталистических странах достигло 3 тыс. т. Для такого рассеянного элемента, как литий, это много. Но та же цифра покажется до смешного малой, если сравнить ее с данными 1957 г. – 250 тыс. т. (без СССР). Этот бурный рост объясняется прежде всего тем, что в 50-е годы литий стал «атомным» металлом и, если можно так выразиться, разносторонне атомным.

    Новая история

    К этому времени уже во многих странах работали ядерные реакторы или, как их тогда называли, атомные котлы. Конструкторов этих котлов по многим причинам не устраивала вода, которую приходилось применять в качестве теплоносителя.

    Появились реакторы, в которых избыточное тепло отводилось расплавленными металлами, в первую очередь натрием и калием.

    Но по сравнению с этими металлами у лития много преимуществ. Во-первых, он легче. Во-вторых, у него больше теплоемкость. В-третьих, меньше вязкость. В-четвертых, диапазон жидкого состояния – разница между температурами плавления и кипения – у лития значительно шире. Наконец, в-пятых, коррозионная активность лития намного меньше, чем натрия и калия.

    Одних этих преимуществ было бы вполне достаточно для того, чтобы сделать литий «атомным» элементом. Но оказалось, что ему суждено стать одним из незаменимых участников реакции термоядерного синтеза.

    Пожалуй, строительство завода по разделению изотопов лития – единственный в своем роде факт из истории американского предпринимательства. Контракт на строительство этого завода заключил банкрот, и, тем не менее, строительство велось буквально в бешеном темпе. Банкротом был не кто иной, как Комиссия по атомной энергии. Средства, отпущенные на создание «сверх бомбы», были израсходованы полностью, но ничего реального у физиков не получалось. Было это в июле 1951 г. А о том, что при реакции соединения ядер тяжелых изотопов водорода – дейтерия и трития – должна высвободиться энергия, во много раз большая, чем при распаде ядер урана, знали намного раньше. Но на пути этого превращения лежало одно неразрешимое, казалось, противоречие.

    Для того чтобы смогли слиться ядра дейтерия и трития, нужна температура порядка 50 млн градусов. Но для того чтобы реакция пошла, нужно еще, чтобы атомы столкнулись. Вероятность такого столкновения (и последующего слияния) тем больше, чем плотнее «упакованы» атомы в веществе. Расчеты показали, что это возможно только в том случае, если вещество находится хотя бы в жидком состоянии. А изотопы водорода становятся жидкостями лишь при температурах, близких к абсолютному нулю.

    Итак, с одной стороны, необходимы сверхвысокие температуры, а с другой – сверхнизкие. И это – в одном и том же веществе, в одном и том же физическом теле!

    Водородная бомба стала возможной только благодаря разновидности гидрида лития – дейтериду лития- 6. Это соединение тяжелого изотопа водорода – дейтерия и изотопа лития с массовым числом 6.

    Дейтерид лития-6 важен по двум причинам: он – твердое вещество и позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах, и, кроме того, второй его компонент – литий-6 – это сырье для получения самого дефицитного изотопа водорода – трития. Собственно, 6 Li – единственный промышленный источник получения трития:

    6 3 Li + 1 0 n → 3 1 H + 4 2 He.

    Нейтроны, необходимые для этой ядерной реакции, дает взрыв атомного «капсюля» водородной бомбы, он же создает условия (температуру порядка 50 млн градусов) для реакции термоядерного синтеза.

    В США идею использовать дейтерид лития-6 первым предложил доктор Э. Теллер. Но, по-видимому, советские ученые пришли к этой идее раньше: ведь не случайно первая термоядерная бомба в Советском Союзе была взорвана почти на полгода раньше, чем в США, и тем самым был положен конец американской политике ядерного и термоядерного шантажа.

    Для атомной техники важно еще одно моно изотопное соединение пития – 7 LiF. Оно применяется для растворения соединений урана и тория непосредственно в реакторах.

    Кстати, как теплоноситель в реакторах применяется именно литий-7, имеющий малое сечение захвата тепловых нейтронов, а не природная смесь изотопов элемента №3.

    Вот уже много лет ученые во всем мире работают над проблемой управляемого, мирного термоядерного синтеза, и рано или поздно эта проблема будет решена. Тогда «демилитаризуется» и литий. (Этот странный оборот – производное заголовка зарубежной статьи, попавшейся несколько лет назад на глаза одному из авторов этого рассказа: статья называлась «Литий милитаризуется».) Но независимо от того, как скоро это произойдет, бесспорна справедливость другого высказывания. Оно заимствовано нами из «Краткой химической энциклопедии»: «По значимости в современной технике литий является одним из важнейших редких элементов».

    Надеемся, что в справедливости этого высказывания у вас нет сомнений.

    Изотопы лития

    Природный литий состоит из двух изотопов с массовыми числами 6 и 7. По способности захватывать тепловые нейтроны (поперечное сечение захвата) ядра этих изотопов отличаются очень сильно. Тяжелый изотоп 7 Li имеет сечение захвата 0,033 барна, он практически прозрачен для нейтронов. Зато литнй-6 активно поглощает тепловые нейтроны, его сечение захвата – около тысячи (точнее, 912) барн. Несмотря на то, что в природе легкого лития в 12 раз меньше, чем тяжелого, сечение захвата природного лития довольно велико – 71 барн. Понятно, что «виновник» этого – изотоп 6 Li. Интересная деталь: стоимость изотопов лития совсем не пропорциональна их распространенности. В начале этого десятилетия в США относительно чистый литий-7 стоил почти в 10 раз дороже лития-6 очень высокой чистоты.

    Искусственным путем получены еще два изотопа лития. Время их жизни крайне невелико: у лития-8 период полураспада равен 0,841 секунды, а у лития-9 0,168 секунды.

    Как и прочие щелочные металлы, литий активен, мягок (режется ножом), всегда и во всех случаях проявляет строго постоянную валентность 1+. А отличается он тем, что значительно легче остальных щелочных металлов, реагирует с азотом, углеродом, водородом; зато с водой он взаимодействует менее активно: хотя и вытесняет из нее водород, но не воспламеняет его. Не только фторид, о котором рассказано в основной статье, но и карбонат, и ортофосфат лития плохо растворяются в воде – соответствующие соединения прочих щелочным металлов очень хорошо растворимы. И еще: литий – единственный щелочной металл, способный к образованию комплексных соединений.

    Окись и перекись

    С кислородом литий соединяется даже при обычной температуре, а при нагревании он воспламеняется и горит голубоватым пламенем. И в том и в другом случае образуется окись лития Li 2 O – тугоплавкое вещество, малорастворимое в воде. Другое соединение лития с кислородом – перекись лития Li 2 О 2 – в реакции между этими элементами никогда не образуется, его получают иным способом – при взаимодействии перекиси водорода с насыщенным спиртовым раствором гидрата окиси лития. При этом из раствора выпадает вещество такого состава: Li 2 O 2 ·H 2 O 2 ·3H 2 O. Если этот кристаллогидрат перекисей водорода и лития выдержать в вакууме над фосфорным ангидридом, то образуется свободная перекись лития.

    Тот факт, что это соединение получается только «окольными путями», свидетельствует, что образование перекисных соединений для лития нехарактерно.

    Для кондиционирования воздуха

    Литиевые соли галогеноводородных кислот (кроме LiF) очень хорошо растворяются в воде. Но не это их главное достоинство. Растворы этих солей способны поглощать из воздуха аммиак, амины и другие примеси и, кроме того, при изменении температуры они обратимо поглощают пары воды. Это свойство позволило применить хлорид и бромид лития в установках для кондиционирования воздуха.

    Как получают литий

    Сказать, что литий получают электролизом – значит, почти ничего не сказать. Электролиз – лишь последняя стадия производства этого рассеянного элемента. Даже в сподумене и амблигоните – самых богатых литием минералах – содержание окиси элемента №3 редко превышает 7%.

    Один из распространенных методов извлечения лития из сподумена – обработка раздробленного минерала серной кислотой. При этом образуются окиси кремния и алюминия и растворимый в воде сульфат лития. Его выщелачивают водой и превращают сначала в карбонат, а затем в хлорид, который и идет на электролиз.

    Литий и кремний

    Силицид лития – соединение, полученное еще в прошлом веке, но его формула, а, следовательно, и состав до сих пор не считаются окончательно установленными. Первым получил это вещество известный французский ученый Анри Муассан . Он нагревал в вакууме до 400...500°C смесь лития и кремния и получал легкие (чуть тяжелее воды) голубоватые кристаллы. Согласно Муассану, формула этого соединения Li 6 Si 2 . Эта формула и вызывает сомнения. Абсолютно достоверного ответа на вопрос, прав Муассан или нет, не получено не только оттого, что силицид лития не нашел пока практического применения, но и потому, что это соединение сложно получать, а исследовать еще сложнее. На воздухе силицид лития быстро разлагается.

    Литий в психотерапии

    Медики не раз наблюдали, что некоторые соединения лития (в соответствующих дозах, разумеется) оказывают положительное влияние на больных, страдающих маниакальной депрессией. Объясняют этот эффект двояко. С одной стороны, установлено, что литий способен регулировать активность некоторых ферментов, участвующих в переносе из межклеточной жидкости в клетки мозга ионов натрия и калия. С другой стороны, замечено, что ионы лития непосредственно воздействуют на ионный баланс клетки. А от баланса натрия и калия зависит в значительной мере состояние больного: избыток натрия в клетках характерен для депрессивных пациентов, недостаток – для страдающих маниями. Выравнивая натрий калиевый баланс, соли лития оказывают положительное влияние и на тех, и на других.

    Свойства лития позволяют использовать его в науке и технике, ядерной энергетике, промышленности и медицине. Вещество распространено во многих минералах земной коры, в морской воде и в составе звезд-гигантов. Человеческий организм тоже с трудом справляется без него. Металл или неметалл литий? Какова его природа и свойства? Давайте выясним это.

    Литий - металл или неметалл?

    Его название связано с греческим словом "камень" и впервые звучало как "литион". Все из-за того, что обнаружен он был в камнях или же минералах. До XIX века не было известно, металл литий или неметалл. О существовании такого элемента никто и не догадывался, пока швед Иоганн Авфердсон в 1817 году не обнаружил неизвестную щелочь в минералах сподумене и петалите.

    Из-за активности вещества ученому не удалось получить из щёлочи элемент. Зато годом позже это сделал англичанин Хэмфпри Дэви посредством электролиза. После этого его можно было изучать, и научный мир смог узнать, что такое литий. Оказалось, что это легкий и мягкий металл с довольно интересными свойствами.

    Уже через четверть века его научились получать промышленным путём и сразу нашли ему применение. Литий использовали в медицине, назначая его от головной боли, подагры и ревматизма. Хотя реальная его польза при этих недугах доказана не была. В XX веке на основе карбоната лития появился напиток с лимоном и лаймом. Сейчас он известен как 7Up, но соединения металла в него уже не входят.

    На что он способен

    Теперь, когда мы знаем металл или неметалл литий, давайте поговорим о его особенностях. Элемент литий с атомным номером 3 обычно обозначается символом Li. Как простое вещество он обладает светлым серебристым цветом и чрезвычайно маленькой массой. Среди всех металлов на планете самый легкий.

    Он также обладает самой маленькой плотностью - всего 0,534 г/см³, что почти в два раза меньше, чем у воды. Литий мягче свинца. Приложив немного усилий, его можно разрезать ножом. Он представляет группу щелочных металлов, в которой имеет самую высокую температуру кипения (1339,85 °C) и плавления (180,54 0176 °С).

    Важной характеристикой лития является его реакции на воздух. Взаимодействуя с кислородом, он окисляется и покрывается плёнкой оксидов, карбонатов. Это единственный металл, который реагирует с азотом воздуха при комнатной температуре. При этом он покрывается черным налётом нитрида лития. При плавлении с температурой от 100 до 300 градусов он перестает окисляться сразу же после образования оксидной плёнки.

    С водой металл реагирует относительно спокойно, выделяя водород и гидроксид лития. Если в ходе реакции поджечь образующийся водород, то ионы металла сделают пламя розово-красным.

    Если же просто поджечь литий, то его пламя станет белым. А вот при поджоге на песке он вступит в реакцию с кремнием и окрасит огонь оранжевым цветом. С серой, медным купоросом и деревом литий горит очень активно, взрываясь или образуя множество искр.

    В природе

    На нашей планете литий встречается только в соединениях. Он содержится в морской воде в количестве примерно 0,17 мг/л и в сильносолёных озёрах. Он также содержится в верхний слоях земной коры в количестве 21 г/т.

    Литий в основном содержится в лепидолитах, сподуменах, петалитах, литиофилитах, амблигонитах и циннвальдитах. Встречается вместе с редкими элементами в пегматитах и онгонитах. Он может образовывать самостоятельные минералы, а может замещать в них калий.

    Металл присутствует и в космосе, главным образом в звездах-гигантах. Огромное количество лития находится в объекте Торна-Житкова, который состоит из красного гиганта с нейтронной звездой внутри.

    Где его добывают

    Литиевые месторождения есть на всех материках нашей планеты. Они встречаются в Бразилии, Чили, Аргентине, Конго, Сербии, Китае, Австралии, США. Сам по себе металл не очень редкий, но во многих породах он слишком рассредоточен, и его добыча сопровождается большой стоимостью и усилиями.

    Рентабельных месторождений лития немного. Почти половина залежей металла остается неиспользованной до сих пор. Большую долю мировой добычи контролируют всего три предприятия из Австралии, Канады и Зимбабве. А вот крупнейшие месторождения находятся в Южной Америке.

    Примерно 60 % мирового лития находится в Боливии на высохшем озере Уюни. Это наибольший солончак на планете. Здесь, среди белоснежного соляного покрова, находятся лужицы, содержащие огромное количество металла.

    Применение

    Литий не используют в чистом виде, так как он слишком активный. Как правило, его сплавляют с другими металлами, например, с натрием. Свойства лития нашли применения в металлургии - он повышает прочность и пластичность сплавов. В ядерной энергетике его используют в качестве теплоносителя. Из изотопа литий-6 получают гелий-3.

    Металл используют при создании керамики, стекла, резины и сверхчистых металлов. Им наполняют щелочные аккумуляторы и газоразрядные лампочки. В текстильной промышленности при помощи лития отбеливают ткани, в фармацевтике он нужен для изготовления косметики.

    Биологическая роль

    Кроме окружающей среды, литий также содержится в растениях и животных. В организме человека он присутствует в сердце, надпочечниках, крови и плазме, печени, легких и щитовидной железе. Он необходим нам для поддержания иммунитета, защиты от аллергии и расстройств нервной системы, для обмена жиров и углеводов.

    В сутки человек нуждается примерно в 100-200 мкг лития. Его содержит картофель, морковь, листья салата, грибы подосиновики, персики, редис, минеральные воды, мясо, рыба, яйца, помидоры, паслёновые и т. д.

    Он снижает возбудимость нервной системы, благодаря чему часто используется в медицине. Препараты с литием назначают при депрессии, аффективных расстройствах, болезни Альцгеймера. Но в больших количествах металл вреден для организма. Отравление им приводит к тошноте, жажде, снижении либидо, дерматитов, головокружениям, потере координации, а в отдельных случаях и коме.

Что еще почитать