Спутник Ганимед: история открытия, физические характеристики. Спутник планеты Юпитер

Но и во всей Солнечной системе. По размеру (5268 км) он на 8% больше Меркурия, хоть и уступает ему в массе. Масса Ганимеда равна 1.48 * 10 23 кг, что в 2 раза больше массы Луны. Он вращается вокруг Юпитера по правильной круговой орбите на расстоянии 1.07 млн.км и делает один оборот за 7.155 земных суток. С такого расстояния Юпитер выглядит в 15.2 раза больше Луны в земном небе.
Как и вращение всех остальных галилеевых спутников Юпитера, вращение Ганимеда синхронизировано приливными силами с его орбитальным движением, так что он повернут к Юпитеру только одной стороной.

Древняя поверхность Ганимеда усеяна многочисленными ударными кратерами. Молодые глубокие кратеры обнажают чистый лед глубин и выглядят ярко белыми (их альбедо близко к 100%). Однако поверхность спутника несет на себе и явные следы активных тектонических процессов. Примерно половина поверхности своей древностью, темным цветом и обилием кратеров напоминают поверхность Каллисто , ее возраст оценивается в 3 млрд. лет. Более светлые области значительно моложе, их возраст оценивается в 0.5-1 млрд. лет. Ледяная поверхность светлых областей пересекается многочисленными хребтами и разломами.




Поверхность Ганимеда испытывает резкие температурные контрасты. В приэкваториальных широтах после полудня температура поднимается до 160К (-113С), опускается до 120К на закате и быстро падает после заката солнца до 85-90К. На полюсах, где солнце стоит низко над горизонтом, даже дневные температуры не поднимаются выше 120К. И день, и ночь на Ганимеде длятся по 3.6 земных суток.

Ледяная поверхность спутника непрерывно бомбардируется высокоэнергичными заряженными частицами из магнитосферы Юпитера и освещается ультрафиолетовым светом Солнца. Выбивание молекул водяного пара и их фотодиссоциация под действием солнечного ультрафиолета приводят к появлению эфемерной атмосферы Ганимеда, состоящей в основном из молекул кислорода. Ее интегральная плотность составляет всего 10 14 - 10 15 молекул на квадратный сантиметр. Для сравнения, в одном кубическом сантиметре воздуха при нормальных условиях (0С, 1 атм.) содержится 2.68 * 10 19 молекул (таким образом, чтобы атмосфера Ганимеда имела плотность, сравнимую с плотностью земного воздуха, ее всю придется сжать в слой толщиной ~0.4 мкм). Температура атмосферы близка к 150К.

Еще одним сюрпризом, преподнесенным АМС Галилео, явилось открытие у Ганимеда магнитного поля и собственной магнитосферы, полностью погруженной в магнитосферу Юпитера. Величина поля невелика, она составляет всего 750 нТ на экваторе спутника, однако это почти в 6 раз больше напряженности магнитного поля Юпитера на орбите Ганимеда (107-118 нТ). Ось магнитного диполя наклонена на 10 градусов к оси вращения спутника. Магнитосфера Ганимеда простирается примерно на 2 радиуса Ганимеда вокруг этого спутника (таким образом, в магнитосфере Юпитера образуется каверна диаметром ~4 радиуса Ганимеда).
В настоящий момент существуют две гипотезы относительно происхождения магнитного поля Ганимеда. Согласно одной из них, магнитное поле наводится динамо-механизмом при вращении расплавленного железного (или в смеси с сульфидом железа) ядра Ганимеда (этот же механизм отвечает за возникновение магнитного поля Земли). В пользу этого предположения говорит "правильный", дипольный характер магнитного поля спутника. Согласно второй гипотезе, магнитное поле Ганимеда наводится в соленом океане, расположенном под толстой (130-150 км) ледяной корой. Возможно, действуют оба этих механизма.

Внутренее строение Ганимеда.
В отличие от Каллисто, Ганимед прошел гравитационную дифференциацию и состоит из нескольких слоев.


В центре этого спутника находится расплавленное ядро, состоящее из смеси железа и сульфида железа. Выше простирается мантия из горных пород, еще выше - обширная мантия из частично расплавленного льда. Последние 130-150 км составляет твердая ледяная кора.

Ганимед в цифрах:
Большая полуось орбиты вокруг Юпитера: 1 070 000 км.
Орбитальный эксцентриситет: 0.002
Наклон орбиты к экватору Юпитера: 0.195 градуса
Период обращения: 7.155 земных суток
Экваториальный радиус: 2634 км (1,516 лунного радиуса).
Масса: 1.48 * 10 23 кг (2,014 массы Луны)
Средняя плотность: 1.94 г/куб.см
Ускорение свободного падения на поверхности: 1.42 м/с 2 (примерно в 6,9 раза меньше, чем на Земле)
Вторая космическая скорость: 2.74 км/сек
Альбедо: 0.42
Температура поверхности: 85-160 К

Карта Ганимеда (осторожно, 4.5 Мб!)

Источники:
"Discovery of Ganymede`s magnetic field by the Galileo spacecraft", Nature, vol. 384, 12 december 1996
Cratering Rates on the Galilean Satellites

Ганимед в Фотожурнале НАСА
Ганимед в Информационном справочнике НАТСАТ

Спутник Юпитера Ганимед был открыт Галилео Галилеем 7 января 1610 года с помощью его первого в истории телескопа. В этот день Галилей увидел около Юпитера 3 «звезды»: Ганимед, Каллисто и «звезду», впоследствии оказавшуюся двумя спутниками - Европой и Ио (только на следующую ночь угловое расстояние между ними увеличилось достаточно для раздельного наблюдения). 15 января Галилео пришел к выводу, что все эти объекты на самом деле являются небесными телами, движущимися по орбите вокруг Юпитера. Галилей назвал четыре открытые им спутника «планетами Медичи» и присвоил им порядковые номера.
Французский астроном Никола-Клод Фабри де Пейреск предложил дать спутникам отдельные имена по именам четырёх членов семьи Медичи, но его предложение не было принято. На открытие спутника претендовал также немецкий астроном Симон Марий, который наблюдал Ганимед в 1609 году, но вовремя не опубликовал данные об этом. Марий попытался дать спутникам имена «Сатурн Юпитера», «Юпитер Юпитера» (это был Ганимед), «Венера Юпитера» и «Меркурий Юпитера», которые также не завоевали популярность. В 1614 году он вслед за Иоганном Кеплером предложил для них новые названия по именам приближённых Зевса.
Однако название «Ганимед», как и наименования, предложенные Марием для других галилеевых спутников, практически не использовалось вплоть до середины 20 века, когда оно стало общеупотребительным. В большой части более ранней астрономической литературы Ганимед обозначен (по системе, введённой Галилео) как Юпитер III или «третий спутник Юпитера». После открытия спутников Сатурна для спутников Юпитера стала использоваться система обозначения, основанная на предложениях Кеплера и Мария.
В настоящее время известно, что Ганимед является самым большим спутником в системе Юпитера, а также самым большим спутником в Солнечной системе. Его диаметр составляет 5262 км, что превышает размеры планеты Меркурий на 8%. Его масса составляет 1,482*10 23 кг - более чем втрое больше массы Европы и вдвое больше массы Луны, но это всего 45% массы Меркурия. Средняя плотность Ганимеда меньше, чем у Ио и Европы - 1,94 г/см 3 (всего вдвое больше, чем у воды), что указывает на увеличенное содержание льда в этом небесном теле. По расчетам, водяной лед составляет не менее 50% общей массы спутника.

КА "GALILEO": ГАНИМЕД

ХАРАКТЕРИСТИКИ ГАНИМЕДА
Другие названия Юпитер III
Открытие
Первооткрыватель Галилео Галилей
Дата открытия 7 января 1610
Орбитальные характеристики
Перийовий 1 069 200 км
Апойовий 1 071 600 км
Средний радиус орбиты 1 070 400 км
Эксцентриситет орбиты 0,0013
Сидерический период обращения 7,15455296 д
Орбитальная скорость 10,880 км/с
Наклонение 0,20° (к экватору Юпитера)
Физические характеристики
Средний радиус 2 634,1 +/- 0,3 км (0,413 земного)
Площадь поверхности 87,0 миллионов км 2 (0,171 земной)
Объём 7,6*10 10 км 3 (0,0704 земного)
Масса 1,4819*10 23 кг (0,025 земной)
Средняя плотность 1,936 г/см 3
Ускорение свободного падения на экваторе 1,428 м/с 2 (0,146 g)
Вторая космическая скорость 2,741 км/с
Период вращения синхронизирован (повёрнут к Юпитеру одной стороной)
Наклон оси 0-0,33°
Альбедо 0,43 +/- 0,02
Видимая звёздная величина 4,61 (в противостоянии) / 4,38 (в 1951)
Температура
Поверхностная мин. 70 K / ср. 110 K / макс. 152 K
Атмосфера
Атмосферное давление следовое
Состав: кислород
ХАРАКТЕРИСТИКИ ГАНИМЕДА

Ганимед находится на расстоянии 1 070 400 километров от Юпитера, что делает его третьим по удалённости галилеевым спутником. Ему требуется семь дней и три часа (7,155 земных суток), чтобы совершить полный оборот вокруг Юпитера. Как и у большинства известных спутников, вращение Ганимеда синхронизировано с обращением вокруг Юпитера, и он всегда повернут одной и той же стороной к планете. Его орбита имеет небольшие наклонение к экватору Юпитера и эксцентриситет, которые квазипериодически изменяются по причине вековых возмущений от Солнца и планет. Эксцентриситет меняется в диапазоне 0,0009-0,0022, а наклонение - в диапазоне 0,05°-0,32°. Эти орбитальные колебания заставляют наклон оси вращения (угол между этой осью и перпендикуляром к плоскости орбиты) изменяться от 0 до 0,33°.
В результате такой орбиты в недрах небесного тела выделяется значительно меньше тепловой энергии, чем у более близких к Юпитеру Ио и Европе, что приводит к крайне незначительной активности в ледяной коре Ганимеда. Совершая облёт орбиты, Ганимед также участвует в орбитальном резонансе 1:2:4 с Европой и Ио.

Орбитальный резонанс возникает, когда некие силы препятствуют тому, чтобы объект зафиксировался на стабильной орбите. Европа и Ио по сей день регулярно резонируют орбиты друг друга, и нечто подобное, похоже, происходило с Ганимедом в прошлом. В настоящее время у Европы уходит вдвое больше времени на один виток вокруг Юпитера, а у Ганимеда в четыре раза больше.
Максимальное сближение Ио и Европы происходит, когда Ио находится в перицентре, а Европа в апоцентре. С Ганимедом Европа сближается, находясь в своём перицентре. Таким образом, выстраивание в одну линию всех этих трёх спутников невозможно. Такой резонанс называется резонансом Лапласа.
Современный резонанс Лапласа неспособен увеличить эксцентриситет орбиты Ганимеда. Нынешнее значение эксцентриситета составляет около 0,0013, что может быть следствием его увеличения за счёт резонанса в прошлые эпохи. Но если он не увеличивается в настоящее время, то возникает вопрос, почему он не обнулился из-за приливной диссипации энергии в недрах Ганимеда. Возможно, последнее увеличение эксцентриситета произошло недавно - несколько сотен миллионов лет назад. Поскольку эксцентриситет орбиты Ганимеда относительно низок, приливный разогрев этого спутника сейчас незначителен. Однако, в прошлом Ганимед, возможно, мог один или несколько раз пройти через резонанс, подобный лапласовому, который был способен увеличить эксцентриситет орбиты до значений 0,01-0,02. Это, вероятно, вызвало существенный приливный разогрев недр Ганимеда, что могло стать причиной тектонической активности, сформировавшей неровный ландшафт.
Есть две гипотезы происхождения лапласовского резонанса Ио, Европы и Ганимеда: то, что он существовал со времён появления Солнечной системы или что он появился позже. Во втором случае вероятно такое развитие событий: Ио поднимала на Юпитере приливы, которые привели к её отдалению от него, пока она не вступила в резонанс 2:1 с Европой; после этого радиус орбиты Ио продолжал увеличиваться, но часть углового момента была передана Европе и она также отдалилась от Юпитера; процесс продолжался, пока Европа не вступила в резонанс 2:1 с Ганимедом. В конечном счете радиусы орбит этих трёх спутников достигли значений, соответствующих резонансу Лапласа.

Современная модель Ганимеда предполагает, что под ледяной корой простирается силикатно-ледяная мантия вплоть до небольшого металлического ядра с размером порядка 0,2 радиуса Ганимеда. По данным космического аппарата «Галилео» в недрах Ганимеда между слоями льда может существовать огромный океан жидкой воды. Вывод о существовании железного ядра сделан на основе открытия магнитосферы Ганимеда аппаратурой «Галилео» в 1996-1997 гг. Оказалось, что собственное дипольное магнитное поле спутника имеет напряженность около 750 нТл, что превышает напряженность магнитного поля Меркурия. Таким образом, после Земли и Меркурия Ганимед является третьим в Солнечной системе твердым телом, обладающим собственным магнитным полем. Небольшая магнитосфера Ганимеда заключена в пределах намного большей магнитосферы Юпитера и лишь немного деформирует её силовые линии.
На поверхности Ганимеда наблюдаются два типа ландшафта. Треть поверхности спутника занимают тёмные области, испещрённые ударными кратерами. Их возраст доходит до четырёх миллиардов лет. Остальную площадь занимают более молодые светлые области, покрытые бороздами и хребтами. Причины сложной геологии светлых областей понятны не до конца. Вероятно, она связана с тектонической активностью, вызванной приливным нагревом.
На поверхности коричневого цвета находится большое количество светлых ударных кратеров, окруженных ореолами светлых лучей выброшенного при ударах материала. Две крупные темные области на поверхности Ганимеда названы Галилей и Симон Мариус (в честь исследователей, независимо и почти одновременно открывших галилеевы спутники Юпитера). Возраст поверхности небесных тел определяется по количеству ударных кратеров, которые интенсивно образовывались в Солнечной системе 2...3 млрд лет назад. Абсолютная шкала возраста выстроена по Луне, где непосредственно (по результатам радиоизотопного изучения образцов доставленного на Землю грунта из лавовых участков) выполнена датировка. Судя по числу метеоритных кратеров, наиболее древние участки поверхности Ганимеда имеют возраст в 3...4 млрд лет.
На более светлой ледяной поверхности Ганимеда наблюдаются ряды многочисленных субпараллельных борозд и хребтов, отчасти напоминающих поверхность Европы. Глубина светлых борозд - несколько сотен метров, ширина десятки километров, протяженность доходит до тысяч километров. Борозды наблюдаются на некоторых, сравнительно молодых локальных участках поверхности. Судя по всему, борозды образовались в результате растяжений коры. Особенности некоторых участков поверхности напоминают следы вращения больших ее блоков, подобно тектоническим процессам на Земле.

Для обозначения образований на Ганимеде используются земные географические названия, а также имена персонажей древнегреческого мифа о Ганимеде и персонажей из мифов Древнего Востока.
Анализ особенностей сохранившейся до настоящего времени древней поверхности Ганимеда позволяет допустить, что на начальном этапе своего существования молодой Юпитер излучал в окружающее пространство значительно больше энергии, чем сейчас. Излучение Юпитера могло приводить к частичному плавлению поверхностных льдов на близких к нему спутниках, включая Ганимед. Морфологию некоторых участков коры спутника можно интерпретировать как следы плавления. Такие темные области (своеобразные моря), видимо, образованы продуктами водяных извержений.
У спутника есть тонкая атмосфера, в состав которой входят такие аллотропные модификации кислорода, как O (атомарный кислород), O 2 (кислород) и, возможно, O 3 (озон). Количество атомарного водорода (H) в атмосфере незначительно. Есть ли у Ганимеда ионосфера, неясно.
Первым космическим аппаратом, изучавшим Ганимед, стал «Пионер-10» в 1973 году. Намного более детальные исследования провели аппараты программы «Вояджер» в 1979 году. Космический аппарат «Галилео», изучавший систему Юпитера начиная с 1995 года, обнаружил подземный океан и магнитное поле Ганимеда.

Эволюция Ганимеда


Ганимед, вероятно, сформировался из аккреционного диска или газопылевой туманности, окружавшей Юпитер некоторое время после его образования. Формирование Ганимеда, вероятно, заняло приблизительно 10 000 лет (на порядок меньше оценки для Каллисто). В туманности Юпитера при формировании галилеевых спутников, вероятно, было относительно мало газа, что может объяснять очень медленное формирование Каллисто. Ганимед образовался ближе к Юпитеру, где туманность была более плотной, что и объясняет более быстрое его формирование. Оно, в свою очередь, привело к тому, что тепло, выделяемое при аккреции, не успевало рассеиваться. Это, возможно, вызвало таяние льда и отделение от него скальных пород. Камни обосновались в центре спутника, формируя ядро. В отличие от Ганимеда, при формировании Каллисто тепло успевало отводиться прочь, льды в её недрах не таяли и дифференциации не происходило. Эта гипотеза объясняет, почему два спутника Юпитера столь разные, несмотря на схожесть массы и состава. Альтернативные теории объясняют более высокую внутреннюю температуру Ганимеда приливным нагревом или более интенсивным воздействием на него поздней тяжелой бомбардировки.
Ядро Ганимеда после формирования сохранило большую часть тепла, накопленного во время аккреции и дифференцирования. Оно медленно отдаёт это тепло ледяной мантии, работая как своеобразная тепловая батарея. Мантия, в свою очередь, переносит это тепло на поверхность конвекцией. Распад радиоактивных элементов в ядре продолжил его разогревать, вызывая дальнейшую дифференциацию: были сформированы внутреннее ядро из железа и сульфида железа и силикатная мантия. Так Ганимед стал полностью дифференцированным телом. Для сравнения, радиоактивный нагрев недифференцированной Каллисто вызвал только конвекцию в её ледяных недрах, что эффективно их охладило и предотвратило крупномасштабное таяние льда и быструю дифференциацию. Процесс конвекции на Каллисто вызвал только частичное отделение камней ото льда. В настоящее время Ганимед продолжает медленно охлаждаться. Тепло, идущее от ядра и силикатной мантии, позволяет существовать подземному океану, а медленное охлаждение жидкого ядра из Fe и FeS вызывает конвекцию и поддерживает генерацию магнитного поля. Текущий тепловой поток из недр Ганимеда, вероятно, выше, чем у Каллисто.

Физические характеристики


Средняя плотность Ганимеда составляет 1,936 г/см 3 . Предположительно, он состоит из равных частей скальных пород и воды (в основном замёрзшей). Массовая доля льда лежит в интервале 46-50%, что немного ниже, чем у Каллисто. Во льдах могут присутствовать некоторые летучие газы, такие как аммиак. Точный состав скальных пород Ганимеда не известен, но он, вероятно, близок к составу обыкновенных хондритов групп L и LL, которые отличаются от H-хондритов меньшим полным содержанием железа, меньшим содержанием металлического железа и большим - окиси железа. Соотношение масс железа и кремния на Ганимеде составляет 1,05-1,27 (для сравнения, у Солнца оно равно 1,8).
Альбедо поверхности Ганимеда составляет около 43%. Водяной лёд есть практически на всей поверхности и его массовая доля колеблется в пределах 50-90%, что значительно выше, чем на Ганимеде в целом. Ближняя инфракрасная спектроскопия показала наличие обширных абсорбционных полос водяного льда на длинах волн 1,04, 1,25, 1,5, 2,0 и 3,0 мкм. Светлые участки менее ровные и имеют большее количество льда по сравнению с тёмными. Анализ ультрафиолетового и ближнего инфракрасного спектра с высоким разрешением, полученных космическим аппаратом «Галилео» и наземными инструментами, показал наличие и других веществ: углекислого газа, диоксида серы и, возможно, циана, серной кислоты и различных органических соединений. По результатам миссии «Галилео» предполагается наличие на поверхности некоторого количества толинов. Результаты «Галилео» также показали наличие на поверхности Ганимеда сульфата магния (MgSO 4) и, возможно, сульфата натрия (Na 2 SO 4). Эти соли могли образоваться в подземном океане.
Поверхность Ганимеда асимметрична. Ведущее полушарие (повёрнутое в сторону движения спутника по орбите) светлее, чем ведомое. На Европе ситуация такая же, а на Каллисто - противоположная. На ведомом полушарии Ганимеда, видимо, больше диоксида серы. Количество углекислого газа на обоих полушариях одинаково, но его нет вблизи полюсов. Ударные кратеры на Ганимеде (кроме одного) не показывают обогащения углекислым газом, что также отличает этот спутник от Каллисто. Подземные запасы углекислого газа на Ганимеде были, вероятно, исчерпаны ещё в прошлом.

Внутреннее строение
Предположительно Ганимед состоит из трёх слоёв: расплавленного железного или состоящего из сульфида железа ядра, силикатной мантии и внешнего слоя льда толщиной 900-950 километров. Эта модель подтверждается малым моментом инерции, который был измерен во время облета Ганимеда «Галилео» - (0,3105 +/- 0,0028)*mr 2 (момент инерции однородного шара равен 0,4*mr 2). У Ганимеда коэффициент в этой формуле самый низкий среди твёрдых тел Солнечной системы. Существование расплавленного богатого железом ядра даёт естественное объяснение собственного магнитного поля Ганимеда, которое было обнаружено «Галилео». Конвекция в расплавленном железе, которое обладает высокой электропроводностью, - самое разумное объяснение происхождения магнитного поля.
Точная толщина различных слоёв в недрах Ганимеда зависит от принятого значения состава силикатов (доли оливина и пироксенов), а также от количества серы в ядре. Наиболее вероятное значение радиуса ядра - 700-900 км, а толщины внешней ледяной мантии - 800-1000 км. Остаток радиуса приходится на силикатную мантию. Плотность ядра - предположительно 5,5-6 г/см 3 , а силикатной мантии - 3,4-3,6 г/см 3 . Некоторые модели генерирования магнитного поля Ганимеда требуют наличия твёрдого ядра из чистого железа внутри жидкого ядра из Fe и FeS, что схоже со структурой земного ядра. Радиус этого ядра может достигать 500 километров. Температура в ядре Ганимеда предположительно составляет 1500-1700 К, а давление - до 10 ГПа.

Исследования магнитного поля Ганимеда указывают на то, что под его поверхностью может быть океан жидкой воды.


Доказательства существования океана на Ганимеде Диаграмма показывает пару поясов авроральных сияний на спутнике Юпитера Ганимеде. Их смещение/движение дает представление о внутреннем устройстве Ганимеда. Ганимед имеет магнитное поле, создаваемое железным ядром. Поскольку спутник располагается близко к Юпитеру, то он полностью включён в магнитное поле планеты-гиганта. Под действием магнитного поля Юпитера пояса сияний на Ганимеде смещаются. Колебания менее выраженные, если под поверхностью существует жидкий океан. Многочисленные наблюдения подтвердили существование под ледяной корой Ганимеда большого количества соленой воды, которая оказывает влияние на его магнитное поле.

Космический телескоп им. Хаббла, наблюдая за поясами сияний на Ганимеде в ультрафиолетовом свете, подтвердил существование океана на Ганимеде. Местоположение поясов определяется магнитным полем Ганимеда, а их смещение обусловлено взаимодействием с огромной магнитосферой Юпитера.
КА "GALILEO": ГАНИМЕД

Численное моделирование недр спутника, выполненное в 2014 году сотрудниками Лаборатории реактивного движения НАСА, показало, что этот океан, вероятно, многослойный: жидкие слои разделены слоями льда разных типов (лёд I, III, V, VI). Количество жидких прослоек, возможно, достигает 4; их солёность растёт с глубиной.

Сэндвичная модель строение Ганимеда (2014 год)
Предыдущие модели строения Ганимеда показывали океан, зажатый между верхним и нижним слоем льда. Новая модель, основанная на лабораторных экспериментах по имитации соленых морей и жидкостей, показывает, что океаны Ганимеда и лед могут образовывать несколько слоев. Лед в этих слоях зависит от давления. Т.о. "Лед I" представляет собой наименее плотную форму льда, его можно сравнить с ледяной смесью в охлажденных напитках. С увеличением давления молекулы льда располагаются ближе друг к другу и, следовательно, увеличивается плотность. Океаны Ганимеда достигают глубины в 800 км, соответственно они испытывают гораздо большее давление, чем на Земле. Самый глубокий и плотный слой льда назван "Лед VI". При наличии достаточного количества солей жидкость может быть достаточно плотной, чтобы опуститься на самое дно и даже ниже уровня "Лед VI". Более того модель показывает, что в самом верхнем жидком слое могут протекать довольно странные явления. Жидкость, охлаждаясь от верхнего ледяного слоя (коры), опускается вниз в виде холодных течений, которые формируют слой "Лед III". В данном случае при охлаждении соль выпадает в осадок, а затем опускаются вниз, в то время как на уровне "Лед III" формируется ледяная/снежная каша.
По мнению другой группы ученых такая структура Ганимеда не может быть устойчивой, но она вполне могла предшествовать модели с одним огромным океаном.
КА "GALILEO": ГАНИМЕД

Изображение противоюпитерианского полушария Ганимеда, сделанное КА «Галилео». Светлые поверхности, следы недавних ударных столкновений, изборождённая поверхность и белая северная полярная шапка (в верхнем правом углу изображения) богаты водяным льдом

Ганимед (др.-греч. Γανυμήδης) - один из галилеевых спутников , седьмой по расстоянию от него среди всех его и крупнейший спутник в . Его диаметр равен 5268 километрам, что на 2 % больше, чем у (второго по величине спутника в Солнечной системе) и на 8 % больше, чем у . При этом масса Ганимеда составляет всего 45 % массы Меркурия, но среди спутников она рекордная. Ганимед превышает по массе в 2,02 раза. Совершая облёт орбиты примерно за семь дней, Ганимед участвует в орбитальном резонансе 1:2:4 с двумя другими спутниками Юпитера - и .

Ганимед состоит из примерно равного количества силикатных пород и водяного льда. Это полностью дифференцированное тело с жидким ядром, богатым железом. Предположительно в его недрах на глубине около 200 км между слоями льда есть океан жидкой воды. На поверхности Ганимеда наблюдаются два типа ландшафта. Треть поверхности спутника занимают тёмные области, испещрённые ударными кратерами. Их возраст доходит до четырёх миллиардов лет. Остальную площадь занимают более молодые светлые области, покрытые бороздами и хребтами. Причины сложной геологии светлых областей понятны не до конца. Вероятно, она связана с тектонической активностью, вызванной приливным нагревом.

Ганимед - единственный спутник в Солнечной системе, обладающий собственной магнитосферой. Скорее всего, её создаёт конвекция в жидком ядре, богатом железом. Небольшая магнитосфера Ганимеда заключена в пределах намного большей магнитосферы Юпитера и лишь немного деформирует её силовые линии. У спутника есть тонкая атмосфера, в состав которой входят такие аллотропные модификации кислорода, как O (атомарный кислород), O2 (кислород) и, возможно, O3 (озон). Количество атомарного водорода (H) в атмосфере незначительно. Есть ли у Ганимеда ионосфера, неясно.

Ганимед открыл Галилео Галилей, который увидел его 7 января 1610 года. Вскоре Симон Марий предложил назвать его в честь виночерпия Ганимеда. Первым , изучавшим Ганимед, стал «Пионер-10» в 1973 году. Намного более детальные исследования провели аппараты программы «Вояджер» в 1979 году. Космический аппарат , изучавший систему Юпитера начиная с 1995 года, обнаружил подземный океан и магнитное поле Ганимеда. В 2012 году Европейское космическое агентство одобрило новую миссию для исследований ледяных спутников Юпитера - JUICE; её запуск планируется на 2022 год, а прибытие в систему Юпитера - на 2030 год. На 2020 год запланирована миссия Europa Jupiter System Mission, составной частью которой, возможно, станет российский «Лаплас».

История открытия и наименования

Ганимед был открыт Галилео Галилеем 7 января 1610 года с помощью его первого в истории телескопа. В этот день Галилей увидел около Юпитера 3 «звезды»: Ганимед, и «звезду», впоследствии оказавшуюся двумя спутниками - Европой и Ио (только на следующую ночь угловое расстояние между ними увеличилось достаточно для раздельного наблюдения). 15 января Галилео пришел к выводу, что все эти объекты на самом деле являются небесными телами, движущимися по орбите вокруг Юпитера. Галилей назвал четыре открытые им спутника «планетами Медичи» и присвоил им порядковые номера.

Французский астроном Никола-Клод Фабри де Пейреск предложил дать спутникам отдельные имена по именам четырёх членов семьи Медичи, но его предложение не было принято. На открытие спутника претендовал также немецкий астроном Симон Марий, который наблюдал Ганимед в 1609 году, но вовремя не опубликовал данные об этом. Марий попытался дать спутникам имена «Сатурн Юпитера», «Юпитер Юпитера» (это был Ганимед), «Венера Юпитера» и «Меркурий Юпитера», которые также не завоевали популярность. В 1614 году он вслед за Иоганном Кеплером предложил для них новые названия по именам приближённых Зевса (в том числе Ганимеда):

…Потом был Ганимед, красивый сын троянского царя Троса, которого Юпитер, приняв вид орла, похитил на небеса держа на спине, как сказочно описывают поэты… В третьих, из-за величественности света, Ганимед…

Однако название «Ганимед», как и наименования, предложенные Марием для других галилеевых спутников, практически не использовалось вплоть до середины 20 века, когда оно стало общеупотребительным. В большой части более ранней астрономической литературы Ганимед обозначен (по системе, введённой Галилео) как Юпитер III или «третий спутник Юпитера». После открытия спутников для спутников Юпитера стала использоваться система обозначения, основанная на предложениях Кеплера и Мария. Ганимед - единственный галилеев спутник Юпитера, названный в честь фигуры мужского пола -  согласно ряду авторов, он (как и Ио, Европа и Каллисто) был возлюбленным Зевса.

По данным китайских астрономических записей, в 365 году до н. э. Гань Дэ обнаружил спутник Юпитера невооруженным глазом (вероятно, это был Ганимед).

Происхождение и эволюция

Сравнение размеров Луны, Ганимеда и Земли

Ганимед, вероятно, сформировался из или , окружавшей Юпитер некоторое время после его образования. Формирование Ганимеда, вероятно, заняло приблизительно 10 000 лет (на порядок меньше оценки для Каллисто). В туманности Юпитера при формировании галилеевых спутников, вероятно, было относительно мало газа, что может объяснять очень медленное формирование Каллисто. Ганимед образовался ближе к Юпитеру, где туманность была более плотной, что и объясняет более быстрое его формирование. Оно, в свою очередь, привело к тому, что тепло, выделяемое при аккреции, не успевало рассеиваться. Это, возможно, вызвало таяние льда и отделение от него скальных пород. Камни обосновались в центре спутника, формируя ядро. В отличие от Ганимеда, при формировании Каллисто тепло успевало отводиться прочь, льды в её недрах не таяли и дифференциации не происходило. Эта гипотеза объясняет, почему два спутника Юпитера столь разные, несмотря на схожесть массы и состава. Альтернативные теории объясняют более высокую внутреннюю температуру Ганимеда приливным нагревом или более интенсивным воздействием на него поздней тяжелой бомбардировки.

Ядро Ганимеда после формирования сохранило большую часть тепла, накопленного во время аккреции и дифференцирования. Оно медленно отдаёт это тепло ледяной мантии, работая как своеобразная тепловая батарея. Мантия, в свою очередь, переносит это тепло на поверхность конвекцией. Распад радиоактивных элементов в ядре продолжил его разогревать, вызывая дальнейшую дифференциацию: были сформированы внутреннее ядро из железа и сульфида железа и силикатная мантия. Так Ганимед стал полностью дифференцированным телом. Для сравнения, радиоактивный нагрев недифференцированной Каллисто вызвал только конвекцию в её ледяных недрах, что эффективно их охладило и предотвратило крупномасштабное таяние льда и быструю дифференциацию. Процесс конвекции на Каллисто вызвал только частичное отделение камней ото льда. В настоящее время Ганимед продолжает медленно охлаждаться. Тепло, идущее от ядра и силикатной мантии, позволяет существовать подземному океану, а медленное охлаждение жидкого ядра из Fe и FeS вызывает конвекцию и поддерживает генерацию магнитного поля. Текущий тепловой поток из недр Ганимеда, вероятно, выше, чем у Каллисто.

Орбита и вращение

Ганимед находится на расстоянии 1 070 400 километров от Юпитера, что делает его третьим по удалённости галилеевым спутником. Ему требуется семь дней и три часа, чтобы совершить полный оборот вокруг Юпитера. Как и у большинства известных спутников, вращение Ганимеда синхронизировано с обращением вокруг Юпитера, и он всегда повернут одной и той же стороной к планете. Его орбита имеет небольшие наклонение к экватору Юпитера и эксцентриситет, которые квазипериодически изменяются по причине вековых возмущений от и планет. Эксцентриситет меняется в диапазоне 0,0009-0,0022, а наклонение - в диапазоне 0,05°-0,32°. Эти орбитальные колебания заставляют наклон оси вращения (угол между этой осью и перпендикуляром к плоскостью орбиты) изменяться от 0 до 0,33°.

Резонанс Лапласа (орбитальный резонанс) спутников Ганимед, Европа и Ио

Ганимед находится в орбитальном резонансе с Европой и Ио: на каждый оборот Ганимеда вокруг планеты приходится два оборота Европы и четыре оборота Ио. Максимальное сближение Ио и Европы происходит, когда Ио находится в перицентре, а Европа в апоцентре. С Ганимедом Европа сближается, находясь в своём перицентре. Таким образом, выстраивание в одну линию всех этих трёх спутников невозможно. Такой резонанс называется резонансом Лапласа.

Современный резонанс Лапласа неспособен увеличить эксцентриситет орбиты Ганимеда. Нынешнее значение эксцентриситета составляет около 0,0013, что может быть следствием его увеличения за счёт резонанса в прошлые эпохи. Но если он не увеличивается в настоящее время, то возникает вопрос, почему он не обнулился из-за приливной диссипации энергии в недрах Ганимеда. Возможно, последнее увеличение эксцентриситета произошло недавно - несколько сотен миллионов лет назад. Поскольку эксцентриситет орбиты Ганимеда относительно низок (в среднем 0,0015), приливный разогрев этого спутника сейчас незначителен. Однако, в прошлом Ганимед, возможно, мог один или несколько раз пройти через резонанс, подобный лапласовому, который был способен увеличить эксцентриситет орбиты до значений 0,01-0,02. Это, вероятно, вызвало существенный приливный разогрев недр Ганимеда, что могло стать причиной тектонической активности, сформировавшей неровный ландшафт.

Есть две гипотезы происхождения лапласовского резонанса Ио, Европы и Ганимеда: то, что он существовал со времён появления Солнечной системы или что он появился позже. Во втором случае вероятно такое развитие событий: Ио поднимала на Юпитере приливы, которые привели к её отдалению от него, пока она не вступила в резонанс 2:1 с Европой; после этого радиус орбиты Ио продолжал увеличиваться, но часть углового момента была передана Европе и она также отдалилась от Юпитера; процесс продолжался, пока Европа не вступила в резонанс 2:1 с Ганимедом. В конечном счете радиусы орбит этих трёх спутников достигли значений, соответствующих резонансу Лапласа.

Физические характеристики

Состав

Резкая граница между древним тёмным ландшафтом области Николсона и юной яркой рытвиной Арпагии

Средняя плотность Ганимеда составляет 1,936 г/см3. Предположительно, он состоит из равных частей скальных пород и воды (в основном замёрзшей). Массовая доля льда лежит в интервале 46-50 %, что немного ниже, чем у Каллисто. Во льдах могут присутствовать некоторые летучие газы, такие как аммиак. Точный состав скальных пород Ганимеда не известен, но он, вероятно, близок к составу обыкновенных хондритов групп L и LL, которые отличаются от H-хондритов меньшим полным содержанием железа, меньшим содержанием металлического железа и большим - окиси железа. Соотношение масс железа и кремния на Ганимеде составляет 1,05-1,27 (для сравнения, у Солнца оно равно 1,8).

Альбедо поверхности Ганимеда составляет около 43 %. Водяной лёд есть практически на всей поверхности и его массовая доля колеблется в пределах 50-90 %, что значительно выше, чем на Ганимеде в целом. Ближняя инфракрасная спектроскопия показала наличие обширных абсорбционных полос водяного льда на длинах волн 1,04, 1,25, 1,5, 2,0 и 3,0 μm. Светлые участки менее ровные и имеют большее количество льда по сравнению с тёмными. Анализ ультрафиолетового и ближнего инфракрасного спектра с высоким разрешением, полученных космическим аппаратом «Галилео» и наземными инструментами, показал наличие и других веществ: углекислого газа, диоксида серы и, возможно, циана, серной кислоты и различных органических соединений. По результатам миссии «Галилео» предполагается наличие на поверхности некоторого количества толинов. Результаты «Галилео» также показали наличие на поверхности Ганимеда сульфата магния (MgSO4) и, возможно, сульфата натрия (Na2SO4). Эти соли могли образоваться в подземном океане.

Поверхность Ганимеда асимметрична. Ведущее полушарие (повёрнутое в сторону движения спутника по орбите) светлее, чем ведомое. На Европе ситуация такая же, а на Каллисто - противоположная. На ведомом полушарии Ганимеда, видимо, больше двуокиси серы. Количество углекислого газа на обоих полушариях одинаково, но его нет вблизи полюсов. Ударные кратеры на Ганимеде (кроме одного) не показывают обогащения углекислым газом, что также отличает этот спутник от Каллисто. Подземные запасы углекислого газа на Ганимеде были, вероятно, исчерпаны ещё в прошлом.

Внутреннее строение

Возможное внутреннее строение Ганимеда

Предположительно Ганимед состоит из трёх слоёв: расплавленного железного или состоящего из сульфида железа ядра, силикатной мантии и внешнего слоя льда толщиной 900-950 километров. Эта модель подтверждается малым моментом инерции, который был измерен во время облета Ганимеда «Галилео» - (0,3105 ± 0,0028)×mr2 (момент инерции однородного шара равен 0,4×mr2). У Ганимеда коэффициент в этой формуле самый низкий среди твёрдых тел Солнечной системы. Существование расплавленного богатого железом ядра даёт естественное объяснение собственного магнитного поля Ганимеда, которое было обнаружено «Галилео». Конвекция в расплавленном железе, которое обладает высокой электропроводностью, - самое разумное объяснение происхождения магнитного поля.

Точная толщина различных слоёв в недрах Ганимеда зависит от принятого значения состава силикатов (доли оливина и пироксенов), а также от количества серы в ядре. Наиболее вероятное значение радиуса ядра - 700-900 км, а толщины внешней ледяной мантии - 800-1000 км. Остаток радиуса приходится на силикатную мантию. Плотность ядра - предположительно 5,5-6 г/см3, а силикатной мантии - 3,4-3,6 г/см3. Некоторые модели генерирования магнитного поля Ганимеда требуют наличия твёрдого ядра из чистого железа внутри жидкого ядра из Fe и FeS, что схоже со структурой земного ядра. Радиус этого ядра может достигать 500 километров. Температура в ядре Ганимеда предположительно составляет 1500-1700 К, а давление - до 10 ГПа.

Исследования магнитного поля Ганимеда указывают на то, что под его поверхностью может быть океан жидкой воды. Численное моделирование недр спутника, выполненное в 2014 году сотрудниками Лаборатории реактивного движения НАСА , показало, что этот океан, вероятно, многослойный: жидкие слои разделены слоями льда разных типов (лёд I, III, V, VI). Количество жидких прослоек, возможно, достигает 4; их солёность растёт с глубиной.

Поверхность

Мозаика из фотографий противоюпитерианского полушария Ганимеда. Тёмная древняя зона в верхнем правом углу - область Галилея. Её отделяют от области Мариуса (меньшей тёмной области левее) светлые рытвины Урук. Яркая лучистая структура внизу - свежий лёд, выброшенный при появлении относительно молодого кратера Осирис

Поверхность Ганимеда представляет собой смесь участков двух типов: очень древних сильно кратерированных тёмных областей и несколько более молодых (но всё-таки древних) светлых областей, покрытых бороздами, канавками и гребнями. Тёмные участки поверхности занимают примерно 1/3 всей площади и содержат глины и органические вещества, что может отображать состав , из которых образовались спутники Юпитера.

Пока неизвестно, что вызвало нагрев, необходимый для формирования бороздчатой поверхности Ганимеда. По современным представлениям, такая поверхность - следствие тектонических процессов. Криовулканизм играет, как считается, второстепенную роль, если играет вообще. Силы, создавшие в литосфере Ганимеда сильные напряжения, необходимые для тектонических подвижек, могли быть связаны с приливным разогревом в прошлом, причиной которого, возможно, были нестабильные орбитальные резонансы, через которые проходил спутник. Приливная деформация льдов могла разогреть недра Ганимеда и вызвать напряжения в литосфере, что привело к появлению трещин, горстов и грабенов. При этом на 70 % площади спутника была стёрта старая тёмная поверхность. Формирование бороздчатой поверхности также может быть связано с ранним формированием ядра спутника и последующим приливным разогревом его недр, что, в свою очередь, вызвало увеличение Ганимеда на 1-6 % благодаря тепловому расширению и фазовым переходам во льду. Возможно, в ходе последующей эволюции от ядра к поверхности поднимались плюмы из разогретой воды, вызывая деформации литосферы. Наиболее вероятный современный источник тепла в недрах спутника - радиоактивный разогрев, который может (по крайней мере, частично) обеспечить существование подповерхностного водного океана. Моделирование показывает, что если бы эксцентриситет орбиты Ганимеда был на порядок выше современного (а это, возможно, было в прошлом), приливный разогрев мог быть сильнее радиоактивного.

Фото Ганимеда (по центру меридиан 45° з.д.). Тёмные участки - область Перрайна (сверху) и область Николсона (снизу); лучистые кратеры - Трос (вверху справа) и Чисти (внизу слева)

Ударные кратеры есть на участках поверхности обоих типов, но в тёмных областях их особенно много: эти области насыщены кратерами и, судя по всему, их рельеф формировался главным образом именно столкновениями. На ярких бороздчатых участках кратеров намного меньше, и они не сыграли значимой роли в эволюции их рельефа. Плотность кратерирования тёмных участков указывает на возраст в 4 миллиарда лет (как и у материковых областей Луны).

Кратеры Гула и Ахелой (ниже). У каждого виден «вал» и «пьедестал» из выбросов

Светлые участки младше, но насколько - неясно. Особой интенсивности кратерирование поверхности Ганимеда (как и Луны) достигло около 3,5-4 миллиарда лет назад. Если эти данные точны, то большинство ударных кратеров осталось с той эпохи, и после этого они прибавлялись в числе незначительно. Некоторые кратеры пересечены бороздами, а некоторые образовались поверх борозд. Это говорит о том, что некоторые борозды довольно древние. Местами попадаются относительно молодые кратеры с расходящимися от них лучами выбросов. Кратеры Ганимеда более плоские, чем кратеры на Меркурии или Луне.

Вероятно, причиной этого служит непрочность ледяной коры Ганимеда, которая может (или могла) сглаживаться под действием силы тяжести. Древние кратеры, которые почти совсем сглажены (своего рода «призраки» кратеров) известны как палимпсесты; одним из крупнейших палимпсестов Ганимеда является факула Мемфис диаметром 360 км.

Изображение ведомого полушария Ганимеда, сделанное с космического аппарата «Галилео» (цвета усилены). В правом нижнем углу видны яркие лучи кратера Ташмет, а в верхнем правом - большое поле выбросов из кратера Хершеф. Часть тёмной области Николсона находится внизу слева. Сверху справа она граничит с рытвинами Гарпагия

Одна из примечательных геоструктур Ганимеда - тёмный участок под названием область Галилея, где видна сеть из разнонаправленных борозд. Вероятно, своим появлением этот регион обязан периоду бурной геологической активности спутника.

На Ганимеде есть полярные шапки, предположительно состоящие из водяного инея. Они покрывают широты выше 40°. Впервые полярные шапки наблюдались при пролёте «Вояджер». Вероятно, они образованы молекулами воды, выбитыми с поверхности при бомбардировке её частицами плазмы. Такие молекулы могли мигрировать на высокие широты с низких благодаря разнице температур или же происходить из самих полярных областей. Результаты расчётов и наблюдений позволяют судить, что верно второе. Наличие у Ганимеда собственной магнитосферы приводит к тому, что заряженные частицы интенсивно бомбардируют только слабо защищённые - полярные - области. Образовавшийся водяной пар осаждается в основном в самых холодных местах этих же областей.

Атмосфера и ионосфера

В 1972 году группа индийских, британских и американских астрономов, работая в индонезийской обсерватории имени Боссы, сообщила об обнаружении у спутника тонкой атмосферы во время наблюдения покрытия им звезды. Они оценили приповерхностное давление атмосферы в 0,1 Па. Однако в 1979 году КА «Вояджер-1» наблюдал покрытие Ганимедом звезды (κ Центавра) и получил противоречащие этому результаты. Эти наблюдения проводились в дальнем ультрафиолете на длинах волн меньше 200 нм, и они были куда более чувствительны к наличию газов, чем измерения 1972 года в видимом излучении. Никакой атмосферы датчики «Вояджера» не обнаружили. Верхний предел концентрации оказался на уровне 1,5·10 9 частиц/см 3 , что соответствует приповерхностному давлению менее 2,5 мкПа. А это почти на 5 порядков меньше, чем оценка 1972 года.

Существование нейтральной атмосферы подразумевает и существование у спутника ионосферы, потому что молекулы кислорода ионизируются столкновениями с быстрыми электронами, прибывающими из магнитосферы, и солнечным жёстким ультрафиолетом. Однако природа ионосферы Ганимеда такая же спорная, как и природа атмосферы. Некоторые замеры «Галилео» показали повышенную плотность электронов вблизи от спутника, что указывает на наличие ионосферы, тогда как другие попытки её зафиксировать потерпели неудачу. Концентрация электронов вблизи поверхности по различным оценкам колеблется в диапазоне от 400 до 2500 см 3 . На 2008 год параметры возможной ионосферы Ганимеда не установлены.

Карта температур на Ганимеде

Дополнительное указание на существование кислородной атмосферы Ганимеда - обнаружение по спектральным данным газов, вмороженных в лёд на его поверхности. Об обнаружении полос поглощения озона (O3) было сообщено в 1996 году. В 1997 году спектральный анализ выявил линии поглощения димера (или двухатомного) кислорода. Такие линии поглощения могут возникать только если кислород находится в плотной фазе. Лучшее объяснение - что молекулярный кислород вморожен в лёд. Глубина димерных полос поглощения зависит от широты и долготы (но не от поверхностного альбедо) - они имеют склонность к уменьшению с широтой, в то время как тенденция для O3 противоположна. Лабораторные эксперименты позволили установить, что при температуре в 100 K, характерной для поверхности Ганимеда, O2 растворяется во льду, а не собирается в пузырьки.

Обнаружив в атмосфере Европы натрий, учёные стали искать его и в атмосфере Ганимеда. В 1997 году стало ясно, что его там нет (точнее, как минимум в 13 раз меньше, чем на Европе). Это может объясняться его нехваткой на поверхности или тем, что магнитосфера Ганимеда препятствует заряженным частицам выбивать его оттуда. Помимо прочего, в атмосфере Ганимеда замечен атомарный водород. Он наблюдался на расстоянии до 3000 км от поверхности спутника. Его концентрация у поверхности - около 1,5·10 4 см 3 .

Магнитосфера

Космический аппарат «Галилео» с 1995 по 2000 годы сделал шесть близких пролётов возле Ганимеда (G1, G2, G7, G8, G28 и G29) и обнаружил, что у Ганимеда есть довольно мощное магнитное поле и даже своя магнитосфера, не зависящая от магнитного поля Юпитера. Величина магнитного момента составляет 1,3×10 13 Т·м 3 , что втрое больше, чем у Меркурия. Ось магнитного диполя наклонена на 176° по отношению к оси вращения Ганимеда, что означает её направленность против магнитного момента Юпитера. Северный магнитный полюс Ганимеда находится ниже плоскости орбиты. Индукция дипольного магнитного поля, созданного постоянным магнитным моментом, на экваторе спутника равна 719 ± 2 нТл (для сравнения - индукция магнитного поля Юпитера на расстоянии Ганимеда равна 120 нТл). Противоположность направлений магнитного поля Ганимеда и Юпитера делает возможным магнитное пересоединение. Индукция собственного магнитного поля Ганимеда на его полюсах вдвое больше, чем на экваторе, и равна 1440 нТл.

Ганимед - единственный спутник в Солнечной системе, у которого есть собственная магнитосфера. Она очень мала и погружена в магнитосферу Юпитера. Её диаметр - примерно 2-2,5 диаметра Ганимеда (который составляет 5268 км). У магнитосферы Ганимеда имеется область замкнутых силовых линий, расположенная ниже 30° широты, где заряженные частицы (электроны и ионы) оказываются в ловушке, создавая своего рода радиационный пояс. Основной вид ионов в магнитосфере - ионы кислорода O+, что хорошо согласуется с разрежённой кислородной атмосферой спутника. В шапках полярных областей на широтах выше 30° силовые линии магнитного поля не замкнуты и соединяют Ганимед с ионосферой Юпитера. В этих областях были обнаружены электроны и ионы, обладающие высокой энергией (десятки и сотни килоэлектронвольт), которые и могут вызывать полярные сияния, наблюдаемые вокруг полюсов Ганимеда. Кроме того, тяжелые ионы непрерывно осаждаются на полярной поверхности луны, распыляя и затемняя лёд.

Магнитное поле Ганимеда в поле Юпитера. Замкнутые силовые линии отмечены зелёным цветом

Взаимодействие между магнитосферой Ганимеда и юпитерианской плазмой напоминает во многих отношениях взаимодействие между солнечным ветром и земной магнитосферой. Плазма вращается совместно с Юпитером и сталкивается с магнитосферой Ганимеда на его ведомой стороне, как и солнечный ветер с земной магнитосферой. Основное отличие - скорость плазменного потока: сверхзвуковая в случае и дозвуковая в случае Ганимеда. Именно потому у магнитного поля Ганимеда нет ударной волны с запаздывающей стороны.

В дополнение к магнитному моменту, у Ганимеда есть индуцированное дипольное магнитное поле. Его вызывают изменения магнитного поля Юпитера вблизи спутника. Индуцированный дипольный момент направлен к Юпитеру или от него (согласно с правилом Ленца). Индуцированное магнитное поле Ганимеда на порядок слабее собственного. Его индукция на магнитном экваторе - около 60 нТ (вдвое меньше, чем напряжённость поля Юпитера там же). Индуцированное магнитное поле Ганимеда напоминает аналогичные поля Каллисто и Европы и указывает на то, что у этого спутника тоже есть подповерхностный водный океан с высокой электропроводностью.

Поскольку Ганимед полностью дифференцирован и обладает металлическим ядром, его постоянное магнитное поле, вероятно, генерируется тем же способом, что и земное: как результат перемещений электропроводящей материи в недрах. Если магнитное поле вызвано магнитогидродинамическим эффектом, то это, вероятно, результат конвективного движения разных веществ в ядре.

Несмотря на наличие железного ядра, магнитосфера Ганимеда остаётся загадкой, особенно с учётом того, что у других подобных тел её нет. Из некоторых исследований следует, что такое маленькое ядро уже должно было остыть до той точки, когда движение жидкости и поддержание магнитного поля невозможны. Одно из объяснений состоит в том, что поле сохраняется благодаря тем же орбитальным резонансам, которые привели к сложному рельефу поверхности: вследствие приливного разогрева из-за орбитального резонанса мантия защитила ядро от охлаждения. Ещё одно из объяснений - остаточная намагниченность силикатных пород в мантии, что возможно, будь у спутника более сильное поле в прошлом.

Изучение

Изображение Ганимеда, сделанное «Пионером-10» в 1973 году

Юпитер (как и все прочие газовые планеты) целенаправленно изучался исключительно межпланетными станциями НАСА. Несколько космических аппаратов исследовали Ганимед вблизи, включая четыре пролёта в 1970-х и многократные пролёты с 1990-х до 2000-х годов.

Первые фотографии Ганимеда из космоса были сделаны «Пионером-10», пролетевшим мимо Юпитера в декабре 1973 года, и «Пионером-11», пролетевшим в 1974 году. Благодаря им были получены более точные сведения о физических характеристиках спутника (к примеру, «Пионер-10» уточнил его размеры и плотность). На их снимках видны детали размером от 400 км. Наибольшее сближение Пионера-10 составило 446 250 километров.

Космический аппарат «Вояджер»

В марте 1979 года мимо Ганимеда прошёл «Вояджер-1» на расстоянии 112 тыс. км, а в июле - «Вояджер-2» на расстоянии 50 тыс. км. Они передали качественные снимки поверхности спутника и провели ряд измерений. В частности, они уточнили его размер, и оказалось, что это самый большой спутник в Солнечной системе (ранее самым большим считали спутник Сатурна Титан). Нынешние гипотезы о геологии спутника появились благодаря данным «Вояджеров».

С декабря 1995 по сентябрь 2003 года систему Юпитера изучал «Галилео». За это время он шесть раз сближался с Ганимедом. Наименования пролётов - G1, G2, G7, G8, G28 и G29. Во время самого близкого пролета (G2) «Галилео» прошел в 264 километрах от его поверхности и передал о нём массу ценных сведений, включая подробные фотографии. Во время пролёта G1 в 1996 году «Галилео» обнаружил у Ганимеда магнитосферу, а в 2001 году - подземный океан. Благодаря данным «Галилео» удалось построить относительно точную модель внутреннего строения спутника. Также «Галилео» передал большое число спектров и обнаружил на поверхности Ганимеда несколько неледяных веществ.

Аппарат «Новые горизонты» на пути к Плутону в 2007 году прислал фотографии Ганимеда в видимом и инфракрасном диапазонах, а также предоставил топографические сведения и карту состава.

Предложенная для запуска в 2020 году «Europa Jupiter System Mission» (EJSM) - совместная программа NASA, ESA и Роскосмоса по изучению спутников Юпитера. В феврале 2009 года было объявлено, что ESA и NASA придали ей больший приоритет, чем миссии «Titan Saturn System Mission». Для ESA финансирование этой миссии затруднено наличием у этого агентства других требующих финансирования проектов. Число аппаратов, которые будут запущены, варьирует от двух до четырёх: «Jupiter Europa Orbiter» (NASA), «Jupiter Ganymede Orbiter» (ESA), «Jupiter Magnetospheric Orbiter» (JAXA) и «Jupiter Europa Lander» (Роскосмос).

Одной из отменённых миссий по изучению Ганимеда является миссия «Jupiter Icy Moons Orbiter». Для полёта космического корабля использовалось бы ядерное топливо, что было бы удобным для более подробного изучения Ганимеда. Однако из-за сокращения бюджета миссия была отменена в 2005 году. Другая предложенная миссия носила название «The Grandeur of Ganymede» - «Великолепие Ганимеда».

2 мая 2012 года Европейское космическое агентство (ЕКА) объявило о старте миссии Jupiter Icy Moons Explorer (JUICE) в 2022 году с прибытием в систему Юпитера в 2030 году. Одной из главных целей миссии будет исследование Ганимеда, которое начнется в 2033 году. Россия, посредством привлечения ЕКА, также намерена отправить на Ганимед посадочный аппарат для поиска признаков жизни и для проведения комплексных исследований системы Юпитера в качестве характерного представителя газовых гигантов.



Ганимед, самый большой спутник Юпитера, был найден великим итальянским астрономом Г. Галилеем в 1610 году, одновременно с тремя своими собратьями. С тех пор 4 небесных тела называют «лунами Галилея».

Претендентом на открытие выступал и немецкий ученый С. Марий. Он утверждал, что нашел спутники годом раньше Галилея, но представить доказательства не смог.

Первооткрыватель обозначил найденные спутники номерами, хотя другие астрономы (в том числе С. Марий и И. Кеплер) предлагали варианты названий. Один из них, связанный с именами приближенных Юпитера (в греч. мифологии Зевса), был официально принят, но лишь в начале ХХ века.

Ганимед - единственный спутник с мужским именем. Согласно легенде, Зевс полюбил сына троянского царя Ганимеда и, обернувшись орлом, унес его к себе на Олимп.

Захватывающие факты о Ганимеде

    Ганимед - крупнейший из всех спутников в нашей системе. Его диаметр составляет около 5270 км, а масса равна 1,45*1023 кг.

    Спутник удален от планеты в среднем на 1 млн. км и обходит ее за 7,1 земных дней.

    Небесное тело включает ядро из расплавленного железа, горную мантию и толстую (850–950 км) ледяную оболочку.

    Плотность объекта, равная почти 2 г/см3, позволяет предположить, что пропорции камня и льда в нем примерно одинаковы.

    Есть гипотеза, что под ледяным слоем находится океан, жидкость в котором сохраняется за счет огромного давления.

    На поверхности Ганимеда присутствуют два вида рельефа. Древние участки темного цвета покрыты глубокими впадинами (кратерами). Более молодые и светлые образовались в результате тектонических процессов.

    Предполагается, что около 4 млн. лет назад спутник подвергался мощной атаке астероидов.

    Ганимед обладает слабой атмосферой с присутствием кислорода, образованного таянием льда.

    Световое излучение над спутником слабое, но есть и яркие пятна, создающие эффект северного сияния.

    Уникальность Ганимеда состоит в наличии небольшой магнитосферы, соединенной с магнитосферой Юпитера. Это в определенной степени подтверждает гипотезу о присутствии подземного океана.

    Самый крупный спутник является для ученых привлекательным объектом для поиска жизни. Несколько зондов, отправленных к Юпитеру, изучали и особенности Ганимеда.

Поскольку своим строением и особенностями Ганимед во многом напоминает Луну, ученые рассматривают его в качестве возможного объекта для колонизации. Несколько новых проектов находятся в ожидании одобрения.

Самый крупный спутник Юпитера Ганимед легко отыскать на виртуальном небосводе. Приобретая его, вы получите великолепный для себя или оригинальный подарок-сюрприз для близкого человека.

> Ганимед

Ганимед – самый большой спутник Солнечной системы из группы Галилея: таблица параметров с фото, обнаружение, исследование, имя, магнитосфера, состав, атмосфера.

Ганимед - крупнейший спутник не только системы Юпитера, но и всей Солнечной системы.

В 1610 году Галилео Галилей совершил удивительное открытие, так как возле гиганта Юпитера нашел 4 светлых пятна. Сначала он подумал, что перед ним звезды, но потом понял, что видит спутники.

Среди них был Ганимед – самый большой в Солнечной системе спутник, превышающий по размерам Меркурий. Это также единственная луна с магнитосферой, кислородной атмосферой и внутренним океаном.

Обнаружение и имя спутника Ганимед

В китайских записях можно найти отметку, что за Ганимедом мог наблюдать еще Ган Де в 365 г. до н.э. Но все же обнаружение приписывают Галилею, который 7 января 1610 года удачно направил прибор в небо.

Изначально все спутники именовались римскими цифрами. Но Симон Мариус, утверждавший, что нашел луны самостоятельно, предложил свои имена, которые мы используем до сих пор.

В мифах Древней Греции Ганимед был ребенком короля Троса.

Размер, масса и орбита спутника Ганимед

С радиусом в 2634 км (0.413 земного) Ганимед выступает крупнейшей луной в нашей системе. Но масса – 1.4619 х 10 23 , что намекает на состав из водяного льда и силикатов.

Показатель эксцентриситета – 0.0013, а удаленность колеблется между 1 069 200 км и 1 071 600 км (средняя – 1 070 400 км). На орбитальный проход тратит 7 дней и 3 часа. Пребывает в гравитационном блоке с планетой.

Таким образом вы узнали, спутником какой планеты является Ганимед.

Орбита расположена под наклоном к планетарному экватору, что вызывает орбитальные изменения от 0 до 0.33°. Спутник настроен на резонанс 4:1 с Ио и 2:1 с Европой.

Состав и поверхность спутника Ганимед

Показатель плотности в 1.936 г/см 3 намекает на присутствие одинаковых пропорций камня и льда. Водяной лед достигает 46-50% лунной массы (ниже Каллисто) с возможностью формирования аммиака. Поверхностное альбедо – 43%.

Ультра-инфракрасный и УФ-обзор показали присутствие двуокиси углерода, двуокиси серы, а также цианоген, гидросульфат и разнообразные органические соединения. Поздние исследования находили сульфат натрия и сульфат магния, которые могли поступить из подповерхностного океана.

Внутри спутник Юпитера Ганимед обладает ядром (железное, жидкий железный слой и сульфидное внешнее), силикатной мантией и оболочкой из льда. Полагают, что ядро простирается в радиусе на 500 км, а температура – 1500-1700 К с давлением в 10 Па.

На присутствие ядра из жидкого железа и никеля намекает магнитное поле луны. Скорее всего, причина в конвекции в жидком железе с высоким уровнем электропроводности. Показатель плотности ядра достигает 5.5-6 г/см 3 , а у силикатной мантии – 3.4-3.6 г/см 3 .

Мантия представлена хондритами и железом. Внешняя ледяная корка выступает крупнейшим слоем (800 км). Есть мнение, что между слоями расположен жидкий океан. На это могут намекать сияния.

На поверхности отмечают две разновидности рельефа. Это древние, темные и кратерные участки, а также молодые и светлые территории с хребтами и канавками.

Темная часть занимает 1/3 всей поверхности. Ее окрас объясняется наличием глины и органических материалов во льду. Полагают, что все дело в кратерных формированиях.

Рифленый ландшафт выступает тектоническим, что связано с криовальванизмом и приливным нагревом. Изгиб мог поднять температуру внутри объекта и надавить на литосферу, что вызвало формирование разломов и трещин, уничтоживших 70% темной местности.

Большая часть кратеров сосредоточена на темных участках, но их можно отыскать повсюду. Полагают, что 3.5-4 млрд. лет назад Ганимед прошел сквозь период активной астероидной атаки. Ледяная кора слабая, поэтому углубления более плоские.

Есть ледяные шапки со льдом, обнаруженные Вояджером. Данные от аппарата Галилео подтвердили, что вероятнее всего они сформировались от плазменной бомбардировки.

Атмосфера спутника Ганимед

На Ганимеде есть слабый атмосферный слой с кислородом. Создается благодаря присутствию на поверхности водяного льда, разделяющегося на водород и кислород при контакте с УФ-лучами.

Наличие атмосферы приводит к эффекту аэрографа – слабое световое излучение, созданное атомным кислородом и энергетическими частичками. Лишен равномерности, поэтому над полярными территориями формируются яркие пятна.

Спектрограф нашел озон и кислород. Это намекает на присутствие ионосферы, потому что кислородные молекулы ионизируются ударами электронов. Но это пока не подтвердилось.

Магнитосфера спутника Ганимед

Ганимед – уникальный спутник, потому что располагает магнитосферой. Величина стабильного магнитного момента – 1.3 х 10 3 Т · м 3 (втрое выше показателя Меркурия). Магнитный диполь установлен на 176° относительно планетарного магнитного момента.

Сила магнитного поля достигает 719 Тесла, а диаметр магнитосферы – 10.525-13.156 км. Замкнутые полевые линии находятся ниже 30° широты, где захватываются заряженные частички и формируют радиационный пояс. Среди ионов наиболее распространенными выступает одиночный ионизированный кислород.

Контакт между лунной магнитосферой и планетарной плазмой напоминает ситуацию с солнечным ветром и земной магнитосферой. Индуцированное магнитное поле намекает на существование подземного океана.

Но возможность магнитосферы все еще остается тайной. Кажется, что она формируется из-за динамо – перемещение материала в ядро. Но есть и другие тела с динамо, у которых нет магнитосферы. Полагают, что ответом могут служить орбитальные резонансы. Увеличение приливного нагрева способно изолировать ядро и не дать ему остыть. Или же все дело в остаточной намагниченности силикатных пород.

Обитаемость спутника Ганимед

Спутник планеты Юпитер Ганимед выступает привлекательной целью для поиска жизни из-за возможного подповерхностного океана. Анализ в 2014 году подтвердил, что может быть несколько океанических слоев, отделенных ледяными пластинами. Причем нижний касается каменистой мантии.

Это важно, так как в воду может поступать тепло от приливного сгибания, что поддержит жизненные формы. Присутствие кислорода только повышает шансы.

Исследование спутника Ганимед

К Юпитеру отправлялось несколько зондов, поэтому они отслеживали и особенности Ганимеда. Первыми полетели Пионер-10 (1973) и Пионер-11 (1974). Они предоставили детали физических характеристик. За ними в 1979 году помчались Вояджеры 1 и 2. В 1995 году на орбиту вышел Галилео, изучающий спутник с 1996-2000 г. Ему удалось обнаружить магнитное поле, внутренний океан и предоставить множество спектральных снимков.

Последний обзор прошел в 2007 году от Новых Горизонтов, летящего к Плутону. Зонд создал топографическую и композиционную карты Европы и Ганимеда.

Сейчас есть несколько проектов, которые находятся в ожидании одобрения. В 2022-2024 гг. могут запустить JUICE, которая охватила бы все галилейские луны.

Среди отмененных проектов числится и JIMO, собирающийся детально изучить крупнейшую луну в системе. Причина отмены – нехватка средств.

Колонизация спутника Ганимед

Ганимед выступает одним из отличных кандидатов на создание колонии и трансформацию. Это крупный объект с гравитацией 1.428 м/с 2 (напоминает Луну). Это значит, что на запуск ракеты уйдет меньше топлива.

Магнитосфера защитит от космических лучей, а водяной лед поможет создавать кислород, воду и ракетное топливо. Но не обойтись и без проблем. Магнитосфера не такая плотная, как мы привыкли, поэтому не сможет защитить от радиации Юпитера.

Также магнитосферы не хватит, чтобы удержать плотный атмосферный слой и комфортную температуру. Среди решений фигурирует возможность создать поселение под землей, ближе к ледяным залежам. Тогда нам не грозят лучи и морозы. Пока это лишь проекты и наброски. Но Ганимед заслуживает пристального внимания, потому что однажды может стать источником жизни или вторым домом. Карта раскроет детали поверхности Ганимеда.

Нажмите на изображение, чтобы его увеличить

Группа

Амальтея

· · ·
Галилеевы

спутники

· · ·
Группа

Фемисто

Группа

Гималая

· · · ·
Группа

Ананке

· · · · · · · · · · · · · · · ·
Группа

Карме

· · · · · · ·

Что еще почитать