Второй закон термодинамики. Энтропия

Первое начало термодинамики

Макроскопические характеристики термодинамических систем. Расширенная формулировка закона сохранения энергии

Величины, характеризующие состояние макроскопических тел без учета молекулярного состояния тел (V, p, t) называются макроскопическими пораметрами (газ данной массы всегда занимает некоторый объем, имеет определенные давления и температуру).

Ø утверждает существование качественных видов энергии (механической, тепловой, электромагнитной) и присущую им способность при определенных условиях превращаться друг в друга;

Ø указывает, что в любых процессах, происходящих в замкнутых системах, численное значение энергии остается постоянным, т.е невозможность ее исчезновения или возникновения

Количественная формулировка первого начала термодинамики : количество теплоты (ΔQ), сообщенное телу, идет на увеличение ее внутренней энергии (ΔU)и на совершение телом работы (ΔA)

ΔQ=ΔU+ΔA

Работа, проделанная над телом, производит изменения его кинетической и потенциальной энергии. Следовательно, количество работы равно изменению его содержания энергии. Так как работа изменяет его уровень энергии, энергию можно определить как количество работы, которая содержится в веществе.

Первый закон термодинамики констатирует тот факт , что вечный двигатель (первого рода) невозможен, т.е. нельзя построить периодически действующую машину, которая бы совершала работу больше подводимой к ней извне энергии.

Экспериментальные исследования показывают, что в отличие от механического движения все тепловые процессы не обратимы, т.е реализация любого термодинамического процесса, при котором предполагается осуществление ранее пройденных тепловых состояний, но в обратном порядке, практически невозможна.


Всякая система стремиться перейти к состоянию термодинамического равновесия, в котором тела обладают одинаковыми температурами и давлением. Все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы.

Сущность второго начала термодинамики:

1. тепло не может само собой переходить от холодных тел к более нагретым;

2. тепловая энергия равномерно распределяется между всеми телами, и всякие тепловые процессы в любой системе полностью прекращаются. Это приводит к тепловой смерти системы. Утверждение справедливо для замкнутых систем. Закон характеризует рост энтропии во времени.

Вечный двигатель второго рода, работающий за счет энергии находящихся в тепловом равновесии тел, невозможен.

Второе начало термодинамики указывает на существование двух различных форм энергии – теплоты (связанной с неупорядоченным движением) и работы (связанной с упорядоченным движением). Неупорядоченную энергию нельзя полностью перевести в упорядоченную. Мерой неупорядоченности в термодинамике является энтропия.



Энтропия (мера рассеяния энергии) (1865 Рудольф Клазиус ) – это функция состояния системы, характеризующая направление протекания самопроизвольных процессов в замкнутой системе.

Изменение энтропии термодинамической системы при обратимом процессе – это соотношение изменения общего количества тепла к величине абсолютной температуры ΔS= ΔQ/T

В замкнутой системе энтропия стремиться к максимуму.

Необратимыми называются такие процессы, которые могут самопроизвольно протекать только в одном направлении; в обратном направлении они могут протекать только как одно из звеньев более сложного процесса.

Количественная формулировка второго закона термодинамики : направление тепловых процессов определяется законом возрастания энтропии :

Ø энтропия замкнутой системы может только возрастать;

Ø максимальное значение энтропии замкнутой системы достигается в равновесии ΔS≥0

Ø чный двигатель второго рода невозможен!!! Все сказанное об энтропии показывает, что второй закон термодинамики, запрещающий ВД-2, незыблем. Житейское правило (особенно хорошо известное женщинам) , что беспорядок из порядка всегда возникает сам по себе, а наведение порядка всегда требует затраты работы, здесь оправдывается в полной мере.

Есть ли на Земле что-либо не подчиняющееся второму закону термодинамики? Иногда утверждают, что жизнь как таковая опровергает его. Нет. Жизнь в целом - это такая же термодинамическая машина, которая получает световую энергию от солнца и превращает ее в теплоту, совершая при этом какую-то работу и повышая энтропию окружающей среды. А ее виды (бактерии, водоросли, грибы, животные и т.д.) - всего лишь составляют единый механизм, достаточно сложный, но познаваемый. И в этом плане мы должны его рассматривать целиком, ведь при термодинамическом анализе двигателей, мы не выделяем в нем какую-нибудь мелкую деталь, вроде золотника.

Закон увеличения энтропии был сформулирован в 19 веке Клаузиусом. Возможно, это событие так и осталось бы незамеченным для широкой публики, но увеличение энтропии должно было привести к тому, что все температуры в мире когда-нибудь обязательно сравняются, тепловая энергия перестанет превращаться в механическую, весь мир замрет и наступит "тепловая смерть".

Больцман связал увеличение энтропии с увеличением вероятности осуществления данного макроскопического состояния системы. Энтропия увеличивается потому, что, имея выбор, система, как правило, переходит в более вероятное состояние. Шеннон ввел информационное определение энтропии, по которому она является мерой неопределенности. Чем больше у системы возможных состояний и чем они равновероятней, тем выше энтропия. Несмотря на общий принцип, два определения энтропии не идентичны. Термодинамическая энтропия системы, обусловлена уровнем неопределенности составляющих ее атомов. А вот информационная, в определении Шеннона, энтропия системы определяется только через возможные состояния всей системы в целом.

Чем больше свободы у атомов системы, тем выше ее термодинамическая энтропия. Если же перемещения атомов как-нибудь ограничить, то термодинамическая энтропия уменьшится. Поэтому энтропию стали считать мерой беспорядка, а увеличение энтропии стало означать движение к хаосу. Однако это не соответствовало наблюдаемому усложнению и структуризации человеческого сообщества. С сомнением у людей появилась надежда опровергнуть мрачное пророчество о "тепловой смерти" вселенной.

Пригожин и Стингерс попробовали доказать, что отдельные подсистемы могут уменьшать свою энтропию отдавая ее другим подсистемам. Александр Хазен предположил, что за энтропию мы склонны принимать ее прирост. И когда мы говорим о низкой энтропии сверхорганизованного современного общества, то подразумеваем низкий ее прирост, в то время как абсолютное значение энтропии растет. Сергей Хайтун настаивает на том, что энтропию нельзя противопоставлять сложности и организованности, так как последние понятия субъективные и четкому исчислению не подлежат. Он также утверждает, что рост энтропии - цель эволюции и прогресса. Причем существует механизм, который постоянно принуждает материю увеличивать свою энтропию.

Сегодня множество исследователей в разных областях знаний сомневаются в истинности закона увеличения энтропии. Андрей Швец доказывает, что энтропия системы может, как увеличиваться, так и уменьшаться. Если внутри системы поместить робота или устройство, в чью задачу будет входить уменьшение энтропии, то она будет уменьшаться. А если научить робота воспроизводить себя, то энтропия никогда не будет увеличиваться. Тем более, что энергию можно получать не только за счет взаимного перемещения частиц. Все зависит от цели. Если у системы ее нет, то она будет перемещаться к наиболее вероятным состояниям, постоянно увеличивая свою термодинамическую энтропию. Цель - признак жизни, вернее сознания. Поэтому сознание может и увеличивать и уменьшать энтропию системы в зависимости от поставленной цели.

Заменим понятие "термодинамическая энтропия" на "энтропия микроуровня" и еще раз взглянем на зловещий феномен "тепловой смерти", которым он грозил миру полтора века. Энтропия микроуровня системы увеличивается, движения атомов становятся более неопределенными. В то время как энтропия макроуровня уменьшается и приближается к нулю. "Тепловая смерть" наступает при нулевом уровне энтропии системы на макроуровне. В этом случае у системы остается только одно возможное состояние, из которого оно уже не выйдет. И пугает нас именно нулевое, а не максимальное значение энтропии. Нас страшит отсутствие вариантов, отсутствие даже надежды на изменение - все то, что несет нулевая энтропия. Таким образом, разные уровни системы могут иметь разные энтропии. И так же естественно как может увеличиваться энтропия на микроуровне, также естественно может уменьшатся энропия системы на макруровне.

Нулевая энтропия пугает, а большая - привлекает. Швец утверждает, что энтропия, является еще мерой свободы и мерой ценности. На этом основании он строит свою теорию стоимости. И это есть, по сути, новый закон: задача прогресса и эволюции - увеличение энтропии на всех уровнях. Но это задача для сознания, которое знает, что такое цель и что такое свобода. Сознание может и ошибиться и ошибка может привести к уменьшению энтропии.

Жизнь и цивилизация - способы передачи энтропии с более низкого уровня системы на более высокий. Из всех возможных вариантов развития человеческое общество отбирает то, которое сулит больший рост энтропии. Что приводит к еще большему росту числа возможных состояний. Поэтому развитие носит прогрессивный, экспоненциальный характер. Однако люди могут ошибаться, делая выбор, несмотря на свои предпочтения. В этом отличие нового закона от старого. Старый считает, что рост энтропии - беда и это неизбежно, новый же, что рост энтропии - благо, но это не неизбежно.

Остался еще один вопрос. Как может расти энтропия при явном росте новых связей в обществе? В одном каком-нибудь институте, в каком-то аспекте деятельности энтропия при появлении новых связей и ограничений, действительно уменьшается. Но если при этом создаются новые институты и новые возможности, то число новых возможных состояний для каждого члена общества растет и, следовательно, растет его энтропия. Мы не можем, как дикари разгуливать голышом, где попало, и это ограничивает наши возможности по сравнению с ними, но зато нам доступен выбор, которого не было у них. Мы можем выбирать работу, менять увлечения, ходить в театр, изучать науки, играть в компьютерные игры, путешествовать по миру, нажатием кнопки менять ландшафт и т.д. Мы свободней, наша энтропия несоизмеримо выше. А некоторые при этом еще и ходят голышом!

Если замкнутая система не находится в состоянии статистического равновесия, то с течением времени ее макроскопическое состояние будет изменяться, пока система в конце концов не придет в состояние полного равновесия. Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, мы можем сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распределению энергии.

Это возрастание вероятности, вообще говоря, чрезвычайно велико в силу выясненного в предыдущем параграфе экспоненциального ее характера. Именно, мы видели, что вероятность определяется выражением , в экспоненте которого стоит аддитивная величина - энтропия системы. Мы можем поэтому сказать, что процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей в состояния с большей энтропией, пока, наконец, энтропия не достигнет наибольшего возможного значения, соответствующего полному статистическому равновесию.

Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это так называемый закон возрастания энтропии или второй закон термодинамики. Он был открыт Клаузиусом (R. Clausius, 1865), а его статистическое обоснование было дано Больцманом (L. Boltzmann, 1870-е годы).

Говоря о «наиболее вероятном» следствии, надо иметь в виду, что в действительности вероятность перехода в состояния с большей энтропией настолько подавляюще велика по сравнению с вероятностью сколько-нибудь заметного ее уменьшения, что последнее вообще фактически никогда не может наблюдаться в природе. Отвлекаясь от уменьшений энтропии, связанных с совершенно ничтожными флуктуациями, мы можем поэтому сформулировать закон возрастания энтропии следующим образом: если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает - увеличивается или в предельном случае остается постоянной.

В том, что изложенные простые формулировки соответствуют реальной действительности, - нет никакого сомнения; они подтверждаются всеми нашими ежедневными наблюдениями. Однако при более внимательном рассмотрении вопроса о физической природе и происхождении этих закономерностей обнаруживаются существенные затруднения, в известной мере до настоящего времени еще не преодоленные.

Прежде всего, если мы попытаемся применить статистику к миру как целому, рассматриваемому как единая замкнутая система, то мы сразу же столкнемся с разительным противоречием между теорией и опытом. Согласно результатам статистики вселенная должна была бы находиться в состоянии полного статистического равновесия. Точнее, должна была бы находиться в равновесии любая сколь угодно большая, но конечная ее область, время релаксации которой во всяком случае конечно.

Между тем ежедневный опыт убеждает нас в том, что свойства природы не имеют ничего общего со свойствами равновесной системы, а астрономические данные показывают, что то же самое относится и ко всей доступной нашему наблюдению колоссальной области Вселенной.

Выход из создающегося таким образом противоречия следует искать в общей теории относительности. Дело в том, что при рассмотрении большинства областей вселенной важную роль начинают играть существующие в них гравитационные поля. Как известно, последние представляют собой не что иное, как изменение пространственно-временной метрики. При изучении статистических свойств тел метрические свойства пространства времени можно в известном смысле рассматривать как «внешние условия», в которых эти тела находятся. Но утверждение о том, что замкнутая система должна в течение достаточно длительного времени перейти в состояние равновесия, разумеется, относится лишь к системе, находящейся в стационарных внешних условиях. Между тем общее космологическое расширение вселенной означает, что ее метрика существенно зависит от времени, так что «внешние условия» отнюдь не являются в данном случае стационарными. При этом существенно, что гравитационное поле не может быть само включено в состав замкнутой системы ввиду того, что при этом обратились бы в тождество законы сохранения, являющиеся, как мы видели, основой статистики. Благодаря этому в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле; в связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости статистического равновесия.

Таким образом, в изложенной части вопроса о мире как целом ясны физические корни кажущихся противоречий. Существуют, однако, еще и другие трудности в понимании физической природы закона возрастания энтропии.

Как известно, классическая механика сама по себе полностью симметрична по отношению к обоим направлениям времени. Уравнения механики остаются неизменными при замене времени t на -t, поэтому, если эти уравнения допускают какое-либо движение, то они же допускают и прямо противоположное, при котором механическая система проходит через те же самые конфигурации в обратном порядке. Естественно, что такая симметрия должна сохраниться и в основанной на классической механике статистике. Поэтому, если возможен какой-либо процесс, сопровождающийся возрастанием энтропии замкнутой макроскопической системы, то должен быть возможен и обратный процесс, при котором энтропия системы убывает. Приведенная выше формулировка закона возрастания энтропии сама по себе еще не противоречит этой симметрии, так как в ней идет речь лишь о наиболее вероятном следствии макроскопически описанного состояния.

Другими словами, если дано некоторое неравновесное макроскопическое состояние, то закон возрастания энтропии утверждает лишь, что из всех микроскопических состояний, удовлетворяющих данному макроскопическому описанию, подавляющее большинство приведет в следующие моменты времени к возрастанию энтропии.

Противоречие возникает, однако, если обратить внимание на другую сторону этого вопроса. Формулируя закон возрастания энтропии, мы говорили о наиболее вероятном следствии заданного в некоторый момент времени макроскопического состояния. Но это состояние само должно было возникнуть из каких-то других состояний в результате происходящих в природе процессов. Симметрия по отношению к обоим направлениям времени означает, что во всяком произвольно выбранном в некоторый момент времени макроскопическом состоянии замкнутой системы можно утверждать не только, что подавляюще вероятным его следствием при будет увеличение энтропии, но и что подавляюще вероятно, что оно само возникло из состояний с большей энтропией; другими словами, подавляюще вероятно должно быть наличие минимума у энтропии как функции времени в момент в который макроскопическое состояние выбирается нами произвольно.

Но такое утверждение, разумеется, ни в какой степени не эквивалентно закону возрастания энтропии, согласно которому во всех реально осуществляющихся в природе замкнутых системах энтропия никогда не убывает (отвлекаясь от совершенно ничтожных флуктуаций). Между тем именно эта общая формулировка закона возрастания энтропии полностью подтверждается всеми происходящими в природе явлениями. Подчеркнем, что она отнюдь не эквивалентна формулировке, данной в начале этого параграфа, как это могло бы показаться. Для того чтобы получить одну формулировку из другой, нужно было бы ввести понятие о наблюдателе, искусственно «изготовившем» в некоторый момент времени замкнутую систему, так, чтобы вопрос о ее предыдущем поведении вообще отпадал; такое связывание физических законов со свойствами наблюдателя, разумеется, совершенно недопустимо.

Вряд ли сформулированный таким образом закон возрастания энтропии вообще мог бы быть выведен на основе классической механики. К тому же, ввиду инвариантности уравнений классической механики по отношению к изменению знака времени, речь могла бы идти лишь о выводе монотонного изменения энтропии. Для того чтобы получить закон ее монотонного возрастания, мы должны были бы определить направление времени как то, в котором происходит возрастание энтропии. При этом возникла бы еще проблема доказательства тождественности такого термодинамического определения с квантовомеханическим {см. ниже).

В квантовой механике положение существенно меняется. Как известно, основное уравнение квантовой механики - уравнение Шредингера само по себе симметрично по отношению к изменению знака времени (при условии одновременной замены, волновой функции на . Это значит, что если в некоторый момент времени волновая функция задана, ), и, согласно уравнению Шредингера, в другой момент времени она должна стать равной то переход от к обратим; другими словами, если в начальный момент было бы , то в момент будет . Несмотря, однако, на эту симметрию, квантовая механика в действительности существенным образом содержит неэквивалентность обоих направлений времени. Эта неэквивалентность проявляется в связи с основным для квантовой механики процессом взаимодействия квантовомеханического объекта с системой, подчиняющейся с достаточной степенью точности классической механике. Именно, если с данным квантовым объектом последовательно происходят два процесса взаимодействия (назовем их А и В), то утверждение, что вероятность того или иного результата процесса В определяется результатом процесса А, может быть справедливо лишь в том случае, если процесс А имел место раньше процесса В (см. также III, § 7),

Таким образом, в квантовой механике имеется физическая неэквивалентность обоих направлений времени, и в принципе закон возрастания энтропии мог бы быть ее макроскопическим выражением. В таком случае должно было бы существовать содержащее квантовую постоянную h неравенство, обеспечивающее справедливость этого закона и выполняющееся в реальном мире. Однако до настоящего времени никому не удалось сколько-нибудь убедительным образом проследить такую связь и показать, что она действительно имеет место.

Вопрос о физических основаниях закона монотонного возрастания энтропии остается, таким образом, открытым. Не имеет ли его происхождение космологической природы и не связано ли оно с общей проблемой начальных условий в космологии?

Играет ли, и какую роль, в этом вопросе нарушение временной симметрии в некоторых процессах слабых взаимодействий между элементарными частицами? Возможно, что на подобные вопросы будут получены ответы лишь в процессе дальнейшего синтеза физических теорий.

Резюмируя, еще раз повторим общую формулировку закона возрастания энтропии: во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает она увеличивается или, в предельном случае, остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые. Под первыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы; процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшиться. Обратимыми же называются процессы, при которых энтропия замкнутой системы остается постоянной и которые, следовательно, могут происходить и в обратном направлении. Строго обратимый процесс представляет собой, разумеется, идеальный предельный случай; реально происходящие в природе процессы могут быть обратимыми лишь с большей или меньшей степенью точности.

Пусть при необратимом процессе 1- a -2 система является адиабатически изолированной. Так как адиабатический процесс осуществляется без теплообмена с окружающей средой , то приведенная теплота процесса1- a -2 равна нулю
. С учетом этого условия неравенства
и
можно записать:

и
. (14.12)

Полученные неравенства выражают закон возрастания энтропии :в любом процессе , который осуществляется в адиабатически изолированной системе , энтропия либо возрастает , либо остаётся постоянной.

Для равновесных обратимых адиабатических процессов
и
, т.е. энтропия остается постоянной (S = const).

Если все процессы в системе, в конце концов, завершились, и система перешла из одного равновесного состояния в другое равновесное состояние, её энтропия имеет максимальное значение.

Итак, в произвольном (обратимом или необратимом) процессе любой термодинамической системы приращение энтропии больше или равно приведенной теплоте процесса:

;
. (14.13)

Знак равенства имеет место для равновесных (обратимых) процессов. В произвольном (обратимом или необратимом) процессе с адиабатически изолированной системой приращение энтропии больше или равно нулю (энтропия возрастает):
;
, знак равенства имеет место для обратимых процессов.

Тема 15 энтропия и вероятность. Термодинамическая вероятность

15.1. Энтропия

Итак, мы ввели понятие энтропии. Энтропия – функция состояния системы. Если тело (или система тел) при переходе из одного состояния в другое на бесконечно малом участке этого перехода получает бесконечно малое количество теплоты
, то отношениеявляется дифференциалом некоторой функцииS . Эта функция– энтропия:

. (15.1)

При обратимом процессе изменение энтропии:

, (15.2)

при этом изменение энтропии S не зависит от пути перехода из состояния 1 в состояние 2 .

Теплоизолированная (или замкнутая ) система – это система, не получающая и не отдающая тепла. Теоретически доказано, что в замкнутой системе все необратимые процессы протекают в сторону возрастания энтропии, т.е. S  0. В частном случае, когда все процессы системы обратимы, то изменение энтропии равно нулю, т.е. S = 0. Кратко выше сказанное можно записать так:

S  0, (15.3)

(знак равенства относится к обратимым процессам, знак неравенства – к необратимым). Выражение S  0 тоже является одной из формулировок второго начала термодинамики, энтропия – критерий обратимости и необратимости процессов. По тому, как изменяется S , можно узнать: обратим процесс или нет. Энтропия, так же как и внутренняя энергия, является важнейшей функцией, определяющей термодинамический процесс, поскольку именно энтропия определяет направление протекания процесса.

Согласно второму началу термодинамики все процессы в замкнутой системе происходят в направлении возрастания энтропии. Если система в конечном состоянии находится в равновесном состоянии, то энтропия достигает максимума, и все процессы в системе прекращаются. Этот вывод противоречит основным положениям молекулярно-кинетической теории. Рассмотрим, например (рис. 15.1), закрытый сосуд, разделённый перегородкойАВ на две одинаковые части 1 и 2. Пусть сначала в части 1 сосуда находится N молекул идеального газа, а в части 2 – вакуум. В момент t = 0 мгновенно уберем перегородку АВ . Газ начинает расширяться. Молекулы из части 1 переходят в часть 2. Спустя некоторое время возникнет обратный поток частиц из части 2 в часть 1, после чего начнется, и будет продолжаться обмен молекулами между частями 1 и 2.

Когда число молекул N 1 и N 2 в обеих частях сосуда, а также потоки туда и обратно станут одинаковыми, наступит состояние равновесия. Это состояние будет динамическое, а не статическое равновесие. В состоянии динамического равновесия
почти никогда не выполняется, потому что молекулы движутся хаотично, аN 1 и N 2 мгновенные значения числа молекул в обеих частях сосуда. Однако среднее число частиц за достаточно большой промежуток времени в обоих частях сосуда будет одинаковым и тогда можно записать:
. Самопроизвольные отклонения числа частицN 1 и N 2 от средних значений обусловленные тепловым движением молекул, называются флуктуациями.

В рассматриваемом примере возможна такая ситуация, когда все молекулы газа, первоначально распределенные равномерно по всему объёму сосуда, самопроизвольно соберутся в одной из частей сосуда – в части 1 или в части 2. С точки зрения молекулярно-кинетической теории такая ситуация возможна, но при большом числе частиц маловероятна.

Энтропия – это функция состояния термодинамической системы, приращение которой равно приведенной теплоте равновесного перехода системы из начального состояния в конечное. Такое определение основывается на началах термодинамики. Рассмотрим молекулярно-кинетический смысл энтропии.

Следствием второго начала термодинамики является закон возрастания энтропии в адиабатически изолированной системе. Все процессы в адиабатически изолированной системе происходят в направлении возрастания энтропии: , где
и
– энтропия в конечном и начальном состояниях. Если в термодинамической адиабатически изолированной системе все макропроцессы, которые могли сопровождаться только увеличением энтропии, завершены и система пришла в состояние равновесия, то энтропия такой системы имеет максимальное значение. Таким образом,в состоянии равновесия энтропия адиабатически изолированной системы максимальна.

Обратный переход такой системы из состояния с большей энтропией в состояние с меньшей энтропией невозможен , т.к. его осуществление противоречит второму началу термодинамики.

В молекулярно-кинетической теории для описания свойств термодинамических систем и процессов применяется понятие вероятности состояния. Тогда, используя понятие вероятности состояния, следствия второго начала термодинамики можно сформулировать так: всякий процесс в адиабатически изолированной системе представляет собой переход из состояния с меньшей вероятностью в состояние с большей вероятностью. Вероятность равновесного состояния максимальна. А переход системы из состояния с большей вероятностью в состояние с меньшей вероятностью невозможен.

Отсюда следует, что понятие энтропии и вероятности состояния должны быть тесно связаны между собой. Найдем эту взаимосвязь.

Универсальным законом, признанным всеми научными дисциплинами. Этот закон утверждает, что замкнутые системы (каковой может быть наша вселенная) в конечном итоге деградируют.

Первый закон физики состоит в том, что энергия замкнутой системы постоянна. Второй закон касается «свободной энергии», которая в физике означает энергию, способную совершать работу. Когда система, так сказать, «успокоилась», вся ее энергия могла превратиться в теплоту, и свободной энергии для работы не осталось.

Впервые узнав об этом законе во время своей учебы в Масачузетском технологическом институте, я сразу же начал размышлять о том, как его изменить. Я знал, что он применим к нашей физической вселенной (если считать ее замкнутой системой, не обладающей сознанием), но применим ли он к нашим телам, симптомам и процессу старения? Давайте подумаем об энтропии.

Энтропия является мерой (не)доступной энергии, а также беспорядка в системе. Когда беспорядок возрастает, энтропия увеличивается. Второй закон термодинамики гласит, что в общепринятой реальности материальная вселенная, как замкнутая система, движется в направлении неупорядоченности.

Согласно термодинамике, теплота, материя и свет не могут ни проникать в замкнутую систему, ни выходить из нее. Напротив, в открытой системе, теплота, материя и свет приходят и уходят, как им заблагорассудится.

(Надписи на рисунке, слева направо, сверху вниз: Окружающая среда; Открытая система; Замкнутая система; теплота; свет; материя)

В физике, наши тела считаются открытыми системами (даже когда мы говорим, что «закрыты» для новых идей). Замкнутые системы со временем деградируют. Подумайте о чашке черного чая, сразу после того, как вы налили туда немного молока, как об относительно замкнутой системе. Сперва вы видите красивый узор, образованный молоком, которое клубится в чае. Но очень скоро энтропия этой чашки возрастает, так что красивый узор смешивается с остальным чаем и упорядоченность в чашке уменьшается. Не прибегая к надуманным определениям порядка, позвольте своей интуиции сказать, что мы имеем в виду под «упорядоченностью».

Законы природы предсказывают, что со временем чай станет неупорядоченным. Согласно статистической физике существует один шанс из многих миллиардов, что упорядоченность вернется к первоначальному узору. Однако, даже если бы вы в течение своей жизни налили миллиард чашей чая, подобное чудо вряд ли произошло бы.

Второй закон как раз и говорит нам, что в замкнутой системе количество информации убывает с развитием системы во времени. Количество общепринятой информации и упорядоченности становится меньше.

Заметьте, что в последней фразе я добавил слово «общепринятых», поскольку законы физики касаются общепринятой или измеримой упорядоченности. Однако терапевты знают - то, что считается упорядоченностью для большинства людей, может быть беспорядком (расстройством) для какого-то одного человека.

Научная формулировка второго закона имеет дело с вселенной, как замкнутой системой (включая любое количество подсистем и их окружений ). Второй закон гласит, что энтропия замкнутой вселенной всегда возрастает; общее количество энтропии или общепринятой неупорядоченности увеличивается . Неупорядоченность растет со временем

В замкнутых системах все происходящее ведет к возрастанию энтропии. С точки зрения порядка, второй закон термодинамики означает, что во вселенной (или в любой замкнутой системе) общее количество порядка не может возрастать, а должно уменьшаться. Известные структуры распадаются!

Возможно, все в вас восстает против этого закона, и действительно, с тех пор, как Клаузиус (1822–1888) первоначально сформулировал этот второй закон, против него восставали многие ученые. Однако до сих пор никому не удавалось его опровергнуть. Все замкнутые вселенные подвержены старению и деградации! В чем-то второй закон соответствует здравому смыслу. Если вы оставите мокрую машину в закрытом гараже, то через сто лет она вся проржавеет и развалится. Это обыденный пример действия второго закона термодинамики.

Тем не менее, всегда находится бунтарь, который отказывается признавать справедливость этого закона. «Должен существовать локальный и временный порядок; в конце концов, жизнь является упорядоченной и содержательной! Человеческий род служит примером возрастающего порядка. Эволюция создает порядок! Даже Дарвин говорил, что мы эволюционируем!»

Но физики отвечают: «Нет! Локальный порядок носит лишь временный характер. Локальный порядок на земле оплачивается беспорядком во всей остальной неупорядоченной вселенной. Мы с вами и весь остальной человеческий род, наша эволюция и эволюция других видов - все это примеры открытых систем, живущих на планете, которую согревает солнце. Временный порядок оплачивается за счет солнца!

Поскольку земля представляет собой открытую систему, пронизываемую лучистой тепловой энергией солнца (а также энергией, приходящей от всей остальной вселенной), то она использует энергию солнца для увеличения своего собственного порядка.

(Надписи на рисунке, сверху вниз слева направо: Порядок Земли стоит беспорядка Солнцу . Солнце платит за порядок на Земле; Солнце; Термоядерная энергия; Земля)

Если мы на мгновение представим себе, что земля и солнце образуют замкнутую систему, то согласно второму закону, порядок на земле приводит к сгоранию солнца. Наша эволюция, развитие, творческие идеи и новые орудия все основаны на снижении термоядерной энергии солнца. Мы - лишь оазис порядка. Использование меньшего количества топлива и уменьшение материального потребления только откладывает неизбежную тепловую смерть солнца и, в конечном итоге, земли. Наша преходящая жизнь связана со смертью солнца.

Что еще почитать