Теория. научные законы

Закон представляет собой наиболее общие, существенные объективные связи и отношение м/у предметами и явлениями; но не всякая связь выступает как закон. Для закона характерно: существенная, устойчивая, необходимая, повторяющаяся, внутренне присущая явлениям связь и взаимная обусловленность. Закон выражает такую связь, которая при наличии известных условий определяет характер развития. Все законы носят в своей основе объективный характер и их можно разделить на три группы : 1)частные и специфические(частно-научные) законы(отражают связь определённых частей, сто­рон и особенности реальной действительности), 2)общие или общенаучные за­коны действия(распространяются либо на всю природу либо на все общест­венные явления. Для мышления присущи такие общие з-ы как з-н тож­дества, з-н противоречия, з-н достаточного основания и з-н исклю­чённого третьего, который изучает формальная и математическая логика); 3)всеобщий или универсальный з-н(относятся з-ы диалектики). З-ы диалектики действуют везде, охватывают все стороны мира, распространяются на природу общества и мышления и имеют всеобщее познавательное и методологическое значение. Диалектика разрабатывает не только законы бытия, но и законы познания, поэтому Д. – это не только учение о законах развития бытия, но это теория познания и логика одновременно, т.е. учение о законах в форме мышления. Среди всебщих законов Д. Принято выделять три основных з-а: 1.З-н перехода количественных изменений в качественные и обратно. 2.З-н единства и борьбы противоположностей. 3.З-н двойного отрицания.

43. Основные законы диалектики: их сущность.

Среди всебщих з-в Д. Принято выделять три основных закона : 1.Закон перехода количественных изменений в качественные и обратно. 2.Закон единства и борьбы противоположностей. 3.Закон двойного отрицания. Законы Д. Раскрывают существенные черты, любого развивающегося явления. Они раскрывают: механизм перехода от старого к новому(1), источник развития объективного мира и человеческого мышления(2), его направленность(мира) тенденции и взаимоотношения, формами развития и результат развития(3). Впервые эти законы сформулировал Гегель. 1-й закон(в первой части) его науку логики в учение о бытие. 2-й закон учение о сущности. 3-й закон использован при построении всей философской сис-мы. 1-й закон есть взаимосвязь таких всеобщих понятий как: свойства(хар-ка пред, котор обусловливает его различие или общность с др предметами; св-во относительно), качества(совокуп св-в, указ на то, что собой дан вещь представляет, чем является), количества(совокуп св-в, указ на размеры вещи и величину), мера(рамки, в кот кол и кач хар-ки находится в сост гармонии) и категория скачка(форма перехода из 1 кач сост в др; скачки бывают взрывы(революция) и медленные(эволюция)). Диалектика кач и кол-ва сост в том, что не одно кач изменение не произойдет до тех пор, пока не будут накоплены необход кол изменения. 2-й закон : понятие тождества, категория различия, категория противоположностей, единства, борьбы, противоречий. Раздвоение единого и познание противоречивых частей его – суть и ядро диалектики. Единство относительно, борьба абсолютна, осн понятием явл диалектическое противоречие, которое включает в себя тенденции в развитии взаимо друг друга дополняющие и отрицающие. 3-й закон: отрицание, диалектическое отрицание, двойного отрицания, поступательность, цикличность, прогресс, регресс. Основные элементы закона: тезис, антитезис, синтез.

В теоретическом познании принцип причинности основывается на научных законах. Для понимания современной научной картины мира важно поэтому ясное представление о содержании и роли законов в структуре научной теории.

Например, утверждение о том, что причиной сохранения нормального состояния воды являются межмолекулярные силы сцепления, что нагревание воды влечет за собой увеличение кинетической энергии молекул и т.п. Поэтому вначале следует выяснить природу законов, отличие их от эмпирических обобщений, прежде чем оценить их роль в причинных объяснениях и предсказаниях на теоретическом уровне познания.

Согласно утверждениям ученых, использующих индуктивную логику в исследованиях, наука начинается с наблюдения сходств и различий между явлениями и событиями, данными в опыте. Эти наблюдения позволяют сделать обобщение на основе нескольких частных примеров. Именно поэтому они настаивают на обязательном повторении экспериментов, наблюдений нескольких частных случаев и т.д.

С их точки зрения развитие наших представлений о причинной зависимости состоит в простом расширении эмпирических причинных объяснений. Главным механизмом развития представлений о причинности оказывается, таким образом, индуктивный вывод или серия таких выводов.

В качестве образца такой модели объяснения предлагается нередко объяснение поведения газов в молекулярно-кинетической теории. Переход от одного уровня причинного исследования к другому изображается здесь следующим образом. На основе наблюдения за поведением газов при некоторых условиях была выдвинута гипотеза о прямо пропорциональной зависимости между температурой и давлением, температурой и объемом. Эти гипотезы обобщали установленную зависимость для всех газов. Когда было изучено достаточное количество примеров поведения всех газов при одних и тех же условиях, гипотезы стали законами - соответственно законами Бойля и Мариотта, Шарля и Гей-Люссака. Дальнейшее обобщение этих законов, по мнению индуктивистов, привело к формальной теории, описывающей структуру всех газов, - к кинетической теории, в соответствии с которой газы обнаруживали сходство даже в большей степени, чем это следовало из экспериментальных законов.

Однако далеко не всякое обобщение в науке достигается индуктивным путем, хотя каждый научный закон выражается общим предложением. В этом смысле было бы полезно различать два понятия: «обобщение» и «генерализация». Называя некоторую научную процедуру генерализацией, мы имеем в виду, что имеющиеся обобщения (или общие предложения) достигнуты именно индуктивным путем, в процессе последовательного перехода от частных примеров к общему утверждению обо всех имеющихся (и возможных) случаях. Называя некоторые предложения общими, мы не говорим ничего относительно пути, которым они были достигнуты. Эти пути могут быть различными, для нас важно в данном случае лишь то, что общее предложение имеет широкую сферу применения.

Однако, как бы парадоксально это ни выглядело, универсальность закона во втором смысле имеет свои границы. Во-первых, может быть ограничено множество объектов, составляющих область применения данного закона. Во-вторых, всякий научный закон, отражая объективные отношения между явлениями или событиями, выделяет лишь определенную сторону действительности (даже весьма устойчивую или регулярно повторяющуюся), абстрагируясь от других ее событий и процессов. И в этом плане сфера применения научного закона ограничивается не только событиями определенного типа, но и условиями, которые складываются в той или иной области действительности. Если дело обстоит таким образом, то любую зависимость можно считать универсальной лишь в относительном смысле слова, т.е. только в пределах данной области явлений и только с учетом определенных условий, называемых обычно граничными (или начальными) условиями. Всякое событие, выходящее за пределы данной области, или всякое обстоятельство, нарушающее граничные условия, очевидно, нарушает и требование универсальности закона. Таким образом, сколь бы важной характеристикой научного закона ни была его универсальность, она не может служить единственным и безусловным его критерием.

Между тем в истории философии, как известно, немало возлагалось надежд на то, что можно, полагаясь на ясность и простоту критерия универсальности, ограничиться в анализе научного закона одной лишь этой его стороной. Первая попытка свести понятие закона к универсальности была предпринята еще английским философом Д. Юмом (1711 - 1776). По его мнению, каждая идея должна быть выведена из ощущений. Но поскольку нет необходимой зависимости, которая была бы непосредственно дана в чувственном восприятии, постольку она может быть лишь проекцией на чувственный опыт той неизбежности, которая возникает по ассоциации при постоянном сопутствии или регулярном следовании событий. Итак, Д. Юм не отрицал закономерности как «регулярного следования событий». «Всякая вера в факты или реальное существование,- писал он в "Исследовании о человеческом познании",- основана исключительно на каком-нибудь объекте, имеющемся в памяти или восприятии, и на привычном соединении его с каким-нибудь объектом. Или, иными словами, если мы заметим, что во многих случаях два рода объектов - огонь и тепло, снег и холод - всегда были соединены друг с другом, и если огонь или снег снова воспринимаются чувствами, то наш ум в силу привычки ожидает тепла или холода и верит, что то или другое из этих качеств действительно существует и проявится, если мы приблизимся к объекту».

Концепция К. Поппера, одного из представителей философии науки XX в., также представляет собой модернизированную версию юмовской доктрины, попытку отождествить «физическую» необходимость и универсальность. Вывод, к которому он приходит в результате некоторых изменений своих взглядов на научный закон, звучит недвусмысленно в поддержку Юма. Никакого существенного различия между формулировками научного закона и универсальными эмпирическими обобщениями нет. Необходимость, как ее представляет К. Поппер,- лишь ярлык, полезный для словесного различения универсальных законов и акцидентальной универсальности. «Научные теории, писал Поппер, - являются универсальными высказываниями. Подобно всем лингвистическим образованиям, они представляют собой системы знаков или символов. Я считаю бесполезным выражать различие между универсальными теориями и сингулярными высказываниями посредством указания на то, что последние "конкретны", в то время как теории являются только символическими формулами или схемами, так как то же самое можно сказать даже о наиболее "конкретных" высказываниях».

Однако вопреки взглядам К. Поппера и других представителей современной «философии науки» законы отличаются от универсальных генерализаций именно своей устойчивостью, неопровержимостью. Если бы в реальном научном исследовании ученые руководствовались рецептами К. Поппера, то в 30-е гг. нашего столетия неизбежной жертвой подобного заблуждения оказался бы прежде всего закон сохранения и превращения энергии, когда была обнаружена «утечка» энергии при распаде. Даже законы Ньютона едва ли можно было бы назвать законами, поскольку они в строгом смысле не могут быть ни подтверждены, ни опровергнуты простым наблюдением регулярностей: всякое конкретное, чувственно воспринимаемое нами движение «отклоняется» от тех идеализации, которые предполагает механика Ньютона. Этой особенностью, т.е. неопровержимостью, научные законы как раз и отличаются от эмпирических обобщений, причем не только от акцидентальных, но и строго универсальных. Каким бы ни было универсальное обобщение (если заведомо не известно, что оно представляет собой действительно объективный закон), не может быть никакой уверенности в том, что оно рано или поздно не будет опровергнуто, ибо всегда существует возможность появления такого факта, который бы противоречил сформулированному таким образом обобщению.

Становится очевидным, что доказательство универсального характера зависимости - отнюдь не первостепенная задача в обосновании научного закона, хотя отрицать полностью значение критерия универсальности было бы не менее ошибочно, чем абсолютировать его. Речь, по-видимому, должна идти о таком порядке обоснования научного закона, при котором отдается приоритет доказательству его необходимости.

необходимая, существенная, устойчивая, повторяющаяся связь вещей и явлений. В категории З. отражаются объективные и всеобщие взаимосвязи между предметами и их свойствами, системными объектами и их подсистемами, элементами и структурами. З. отличаются друг от друга: 1) по степени общности: всеобщие, универсальные (напр., З. диалектики: взаимного перехода количеств. изменений в качеств. и др.); общие, действующие во мн. обл. и изучаемые рядом наук (напр., З. сохранения энергии); особенные, действующие в одной обл. и изучаемые одной наукой или разделом науки (напр., З. естеств. отбора); 2) по сферам бытия и формам движения материи: неживой природы, живой природы и об-ва, а также мышления; 3) по отношениям детерминации: динамические (напр., З. механики) и статистические (напр., З. молекулярной физики) и др. Кроме понятия «З.» в философии и науке также употребляется категория закономерности, к-рая обозначает совокупность з-нов, проявление взаимосвязанного и упорядоченного характера взаимодействия предметов, явлений, событий в мире. Р.А.Бурханов

Отличное определение

Неполное определение

НАУЧНЫЙ ЗАКОН

универсальное, необходимое утверждение о связи явлений. Общая форма Н.э.: “Для всякого объекта из данной предметной области верно, что если он обладает свойством А, то он с необходимостью имеет также свойство В”. Универсальность закона означает, что он распространяется на все объекты своей области, действует во всякое время и в любой точке пространства. Необходимость, присущая Н.э., является не логической, а онтологической. Она определяется не структурой мышления, а устройством реального мира, хотя зависит тйкже от иерархии утверждений, входящих в научную теорию. Н.э. являются, напр., утверждения: “Если по проводнику течет ток, вокруг проводника образуется магнитное поле”, “Хи-

мическая реакция кислорода с водородом дает воду”, “Если в стране нет развитого гражданского общества, в ней нет устойчивой демократии”. Первый из этих законов относится к физике, второй - к химии, третий - к социологии.

Н.э. делятся на динам и ч еские и статистические. Первые, называемые также закономерностями жесткой детерминации, фиксируют строго однозначные связи и зависимости; в формулировке вторых решающую роль играют методы теории вероятностей.

Неопозитивизм предпринимал попытки найти формально-логические критерии отличения Н.э. от случайно истинных общих высказываний (таких, напр., как “Все лебеди в этом зоопарке белые”), однако эти попытки закончились ничем. Номологическое (выражающее Н.э.) высказывание с логической т.зр. ничем не отличается от любого другого общего условного высказывания.

Для понятия Н.э., играющего ключевую роль в методологии таких наук, как физика, химия, экономическая наука, социология и др., характерны одновременно неясность и неточность. Неясность проистекает из смутности значения понятия онтологической необходимости; неточность связана в первую очередь с тем, что общие утверждения, входящие в научную теорию, могут изменять свое место в ее структуре в ходе развития теории. Так, известный химический закон кратных отношений первоначально был простой эмпирической гипотезой, имевшей к тому же случайное и сомнительное подтверждение. После работ англ, химика В. Дальтона химия была радикально перестроена. Положение о кратных отношениях вошло составной частью в определение химического состава, и его стало невозможно ни проверить, ни опровергнуть экспериментально. Химические атомы могут комбинироваться только в отношении один к одному или в некоторой целочисленной пропорции - сейчас это конститутивный принцип современной химической теории. В процессе превращения предположения в тавтологию положение о кратных отношениях на каком-то этапе своего существования превратилось в закон химии, а затем снова перестало быть им. То, что общее научное утверждение может не только стать Н.э., но и прекратить быть им, было бы невозможным, если бы онтологическая необходимость зависела только от исследуемых объектов и не зависела от внутренней структуры описывающей их теории, от меняющейся со временем иерархии ее утверждений.

Н.э., относящиеся к широким областям явлений, имеют отчетливо выраженный двойственный, дес-криптивно-прескриптивный характер (см.: Описательно-оценочные высказывания). Они описывают и объясняют некоторую совокупность фактов. В качестве описаний они должны соответствовать эмпирическим данным и эмпирическим обобщениям. Вместе с тем такие Н.э. являются также стандартами оценки как других утверждений теории, так и самих фактов. Если роль ценностной составляющей в Н.э. преувеличивается, они становятся лишь средством для упорядочения результатов наблюдения и вопрос об их соответствии действительности (их истинности) оказывается некорректным. Так, Н. Хэнсон сравнивает наиболее общие Н.з. с рецептами повара: “Рецепты и теории сами по себе не могут быть ни истинными, ни ложными. Но с помощью теории я могу сказать нечто большее о том, что я наблюдаю”. Если абсолютизируется момент описания, Н.з. онтологизируются и предстают как прямое, однозначное и единственно возможное отображение фундаментальных характеристик бытия.

В жизни Н.э., охватывающего широкий круг явлений, можно выделить, т.о., три типичных этапа: 1) период становления, когда функционирует как гипотетическое описательное утверждение и проверяется прежде всего эмпирически; 2) период зрелости, когда закон в достаточной мере подтвержден эмпирически, получил ее системную поддержку и функционирует не только как эмпирическое обобщение, но и как правило оценки других, менее надежных утверждений теории; 3) период старости, когда он входит уже в ядро теории, используется, прежде всего, как правило оценки других ее утверждений и может быть отброшен только вместе с самой теорией; проверка такого закона касается прежде всего его эффективности в рамках теории, хотя за ним остается и старая, полученная еще в период его становления эмпирическая поддержка. На втором и третьем этапах своего существования Н.з. является описательно-оценочным утверждением и проверяется, как все такие утверждения. Напр., второй закон движения Ньютона долгое время был фактической истиной. Потребовались века упорных эмпирических и теоретических исследований, чтобы дать ему строгую формулировку. Сейчас данный закон выступает в рамках классической механики Ньютона как аналитически истинное утверждение, которое не может быть опровергнуто никакими наблюдениями.

В т.н. эмпирич еских з а к о н а х, или законах малой общности, подобных закону Ома или закону Гей-Люссака, оценочная составляющая ничтожна. Эволюция теорий, включающих такие законы, не меняет места последних в иерархии утверждений теории; новые теории, приходящие на место старым, достаточно безбоязненно включают такие законы в свой эмпирический базис.

Одна из главных функций Н.з. - объяснение, или ответ на вопрос: “Почему исследуемое явление происходит?” Объяснение обычно представляет собой дедукцию объясняемого явления из некоторого Н.з. и утверждения о начальных условиях. Такого рода объяснение принято называтъ номологическим”, или “объяснением через охватывающий закон”. Объяснение может опираться не только на Н.э., но и на случайное общее положение, а также на утверждение о каузальной связи. Объяснение через Н.з. имеет, однако,

известное преимущество перед др. типами объяснения: оно придает объясняемому явлению необходимый характер.

Понятие Н.з. начало складываться в 16-17 вв. в период формирования науки в современном смысле этого слова. Долгое время считалось, что данное понятие универсально и распространяется на все области познания: каждая наука призвана устанавливать законы и на их основе описывать и объяснять изучаемые явления. О законах истории говорили, в частности, О. Конт, К. Маркс, Дж.С. Милль, Г. Спенсер.

В кон. 19 в. В. Виндельбанд и Г. Риккерт выдвинули идею о том, что наряду с генерализирующими науками, имеющими своей задачей открытие Н.э., существуют индивидуализирующие науки, не формулирующие никаких собственных законов, а представляющие исследуемые объекты в их единственности и неповторимости (см.: Номотетическая наука и Ндиографтес-кая наука). Не ставят своей целью открытие Н.з. науки, занимающиеся изучением “человека в истории”, или науки о культуре, противопоставляемые наукам о природе. Неудачи в поисках законов истории и критика самой идеи таких законов, начатая Виндель-бандом и Риккертом и продолженная затем М. Вебе-ром, К. Поппером и др., привели к сер. 20 в. к существенному ослаблению позиции тех, кто связывал само понятие науки с понятием Н.з. Вместе с тем стало ясно, что граница между науками, нацеленными на открытие Н.э., и науками, имеющими др. главную цель, не совпадает, вопреки мнению Виндельбанда и Риккерта, с границей между науками о природе (номо-тетическими науками) и науками о культуре (идиогра-фическими науками).

“Наука существует только там, - пишет лауреат Нобелевской премии по экономике М. Алле, - где присутствуют закономерности, которые можно изучить и предсказать. Таков пример небесной механики. Но таково положение большей части социальных явлений, и в особенности явлений экономических. Их научный анализ действительно позволяет показать существование столь же поразительных закономерностей, что и те, которые обнаруживаются в физике. Именно поэтому экономическая дисциплина является наукой и подчиняется тем же принципам и тем же методам, что и физические науки”. Такого рода позиция все еще обычна для представителей конкретных научных дисциплин. Однако мнение, что наука, не устанавливающая собственных Н.э., невозможна, не выдерживает методологической критики. Экономическая наука действительно формулирует специфические закономерности, но ни политические науки, ни история, ни лингвистика, ни тем более нормативные науки, подобные этике и эстетике, не устанавливают никаких Н.з. Эти науки дают не номологическое, а каузальное объяснение исследуемым явлениям или же выдвигают на первый план вместо операции объяснения операцию понимания, опирающуюся не на опи-

сательные, а на оценочные утверждения. Формулируют Н.э. те науки (естественные и социальные), которые используют в качестве своей системы координат сравнительные категории; не устанавливают Н.э. науки (гуманитарные и естественные), в основании которых лежит система абсолютных категорий (см.: Абсолютные категории и сравнительные категории, Ис-торицизм, Классификация наук, Науки о природе и науки о культуре}.

О Виндельбанд В. История и естествознание. СПб., 1904; Карнап Р. Философские основания физики. Введение в философию науки. М., 1971; Поппер К. Нищета историиизма. М., 1993; Алле М. Философия моей жизни // Алле М. Экономика как наука. М., 1995; Никифоров А.Л. Философия науки: история и методология. М., 1998; Риккерт Г. Науки о природе и науки о культуре. М., 1998; ИвинА.А. Теория аргументации. М., 2000; Он же. Философия истории. М., 2000; Степин B.C. Теоретическое знание. Структура, историческая эволюция. М.,2000.

Отличное определение

Неполное определение ↓

1.2. Научный закон

Научный закон — важнейшая составляющая научного знания. Научный закон репрезентирует знание в предельно концентрированном виде. Однако не следует сводить цель научной деятельности вообще лишь к установлению научных законов, ведь есть и такие предметные области (прежде всего это касается гуманитарных наук), где научное знание производится и фиксируется в других формах (например, в виде описаний или классификаций). Кроме того, научное объяснение, как мы будем говорить дальше (§ 1.3), возможно не только на основе закона: существует целый спектр различных видов объяснений. Тем не менее именно научный закон в его лаконичной формулировке производит самое сильное впечатление и на самих ученых, и на широкие крути представителей вненаучной деятельности. Поэтому научный закон нередко выступает синонимом научного знания вообще.
Закон входит в состав теории, в общий теоретический контекст. Это означает, что формулировка закона осуществляется в специальном языке той или иной научной дисциплины и опирается на базисные положения в виде совокупности тех условий, при которых закон выполняется. То есть закон, несмотря на свою краткую формулировку, является частью целой теории и не может быть вырван из своего теоретического контекста. Он не может быть приложен к практике непосредственно, без окружающей его теории, а также, как это часто бывает, требует для своих приложений наличия определенных промежуточных теорий, или “теорий среднего уровня”. Иными словами, научный закон не является непосредственным продуктом, всегда готовым к употреблению для любого пользователя.
Определение и характеристика научного закона
Что такое научный закон? Это научное утверждение, имеющее универсальный характер и описывающее в концентрированном виде важнейшие аспекты изучаемой предметной области.
Научный закон как форму научного знания можно охарактеризовать с двух сторон:
1) со стороны объективной, онтологической. Здесь необходимо выявить то, какие черты реальности схватываются в законе;
2) со стороны операционально-методологической. Здесь необходимо выявить, каким образом ученые приходят к познанию закона, к формулировке законоподобного утверждения;
Перейдем к рассмотрению этих двух сторон научного закона.
Объективная (онтологическая) сторона научного закона.
С объективной стороны, т.е. со стороны референта теории, научным законом называют устойчивое, сущностное отношение между элементами реальности.
Устойчивость отношения означает то, что данное отношение стабильно, повторяемо, воспроизводимо в данных неизменяемых условиях.
Сущностность закона означает то, что отношение, описываемое законом, отражает не какие-то случайные, наугад схваченные свойства описываемых объектов, а наоборот, самые важные — те, которые определяют или структуру этих объектов, или характер их поведения (функционирования) и вообще тем или иным способом объясняют сущность изучаемого явления. Референт теории, включающей законы, — это не единичный объект, а некоторая (возможно, бесконечная) совокупность объектов, взятая под углом зрения универсальности; поэтому закон формулируется не для единичного явления, а относится к целому классу подобных объектов, объединенных в этот класс определенными свойствами.
Таким образом, закон фиксирует существенные инвариантные соотношения, универсальные для той или иной предметной области.
Что такое универсальность закона
Универсальность закона сама по себе является достаточно сложным качеством. Г. И. Рузавин говорит о трех смыслах универсальности. Первый смысл — универсальность, задаваемая самим характером понятий, входящих в закон. Разумеется, существуют различные уровни общности научных понятий. Поэтому и законы могут быть упорядочены по признаку общности как более универсальные (фундаментальные) и менее универсальные (производные). Второй смысл универсальности касается пространственно-временной общности. Утверждение является универсальным в этом смысле, если оно применяется к объектам независимо от их пространственного и временного положений. Поэтому геологические законы не могут быть названы универсальными в этом смысле, т.к. характеризуют именно земные явления. В этом случае можно говорить об универсальности более низкого уровня: региональной и даже локальной (или индивидуальной). Наконец, третий смысл связан с логической формой законоподобных утверждений — с использованием в формулировке закона специального логического оператора, позволяющего высказываться о каком-либо “объекте вообще”. Такой оператор называется квантором. В универсальных утверждениях используется либо квантор всеобщности (для всех объектов вида А имеет место...), либо квантор существования (существует некий объект вида А, для которою имеет место...). При этом законы более низкого уровня универсальности используют квантор существования, а законы фундаментальные — квантор всеобщности.
Кроме того, универсальность научного закона выражается в том, что, описывая сущностные аспекты того или иного явления, он относится непосредственно не столько к имеющим место явлениям, сколько к универсальным потенциальным ситуациям, которые могут реализоваться при выполнении соответствующих условий. Иными словами, закон как бы преодолевает сферу того, что актуально существует. Так, К. Поппер обращает внимание на такую особенность научных универсальных утверждений: они характеризуют потенциальный план реальности, объективную предрасположенность к тому или иному явлению при наличии соответствующих условий (такие утверждения называют диспозициями). Универсальные утверждения, играющие роль научных законов, являются, по К. Попперу, описаниями не столько реально наблюдаемых единичных явлений, сколько потенций, предрасположенностей.
Поскольку в законе должна фиксироваться именно сущностная универсальность, встает вопрос о том, как отличить подлинные законы от случайных обобщений, лишь по видимости имеющих законоподобную форму. (Например, утверждение “все яблоки в этом холодильнике красные” может оказаться истинным, не будучи научным законом.) В целом этот вопрос пока недостаточно прояснен. Но следует отметить важный вклад американского философа и логика Н. Гудмена. Он тоже обращает внимание на потенциальный характер законов. И. Гудмен называет в качестве специфического свойства научных законов то. что из них могут быть выведены условные (или контрфактические) предложения, т.е. те, которые описывают не фактическое положение дел, а то, что может или могло бы произойти в определенных обстоятельствах. Например, “если бы не мешало трение, этот камень продолжал бы катиться дальше” — это условное высказывание, опирающееся на закон инерции. Напротив, те суждения, которые отражают лишь случайные свойства какого-либо объекта, не могут служить основанием для выведения из них контрфактических суждений".
Операционально-методологическая сторона научного закона
С операциональной стороны закон можно рассматривать как хорошо подтвержденную гипотезу. Действительно, к признанию закона мы приходим после выдвижения какой-то гипотезы, имеющей универсальный характер, обладающей способностью объяснить обширный ряд эмпирических данных и схватывающей существенные черты этих единичных фактов. После проведения каких-то процедур верификации научное сообщество принимает данную гипотезу как подтвержденную и способную фигурировать в роли научного закона.
Однако следует отметить, что то свойство закона, которое называют универсальностью, приводит к известным трудностям, ведь универсальность предполагает, что мы можем применить закон к неограниченному классу однородных явлений. Но само обоснование гипотезы всегда опирается на конечное число наблюдений, эмпирических данных. Как же происходит переход от конечного эмпирического базиса к теоретическому заключению о бесконечном числе приложений? Далее, где истоки категоричности в формулировке научного закона? Вправе ли мы говорить, например, что “все тела непременно расширяются при нагревании”?
Это давняя проблема для теории познания и философии вообще. Существенный вклад в ее прояснение внесли Д. Юм и И. Кант. Так, Д. Юм показал, что из наблюдения единичных явлений мы не можем получить логически корректного вывода о необходимой связи тех или иных явлений, лежащей в их основе. Эго означает, что при формулировании утверждения, носящего универсальный характер, мы делаем нечто большее, чем просто описание наблюдаемой регулярности. Причем это добавление не является выведенным логически из ряда эмпирических данных. Иными словами, у нас нет надежных логических оснований для перехода от единичных наблюдений к постулированию необходимых связей между ними.
Кант же идет дальше отрицательных результатов Д. Юма. И. Кант показывает, что человеческий разум всегда при выдвижении тех или иных универсальных положений, или законов, сам “навязывает” природе тот или иной закон, подобно законодателю, т.е. всегда занимает активную позицию относительно эмпирического базиса. Мы не просто регистрируем закономерность, которая проглядывает через эмпирические данные, хотя порой именно так кажется, настолько естественно работа ученого выглядит как считывание данных и их простое обобщение. Нет, на самом деле ученый всегда выдвигает далекоидущее суждение, принципиально превосходящее возможности проверки и базирующееся на ряде предпосылаемых допущений о постоянстве природы и т.п. Это суждение априорно предвосхищает бесконечный ряд случаев, который заведомо никогда не может быть весь исследован.
Разумеется, при выдвижении законоподобной гипотезы возникает вопрос о различного рода необходимостях, но они носят уже не всеобщелогический характер, а более специальный, содержательный. Так, говорят о физической необходимости, о причинной (или каузальной) необходимости; эти оттенки употребления термина “необходимость” изучаются и уточняются в современной модальной логике.
Понятие научного закона — анахронизм?
Некоторые современные философы науки утверждают, что само понятие закона является в настоящее время не совсем удачным. Оно отсылает нас к метафизике XVII-XVIII вв., когда под законом понималось нечто абсолютное, безусловное, присущее природе с логической необходимостью. Сегодня мы далеко отошли от такой метафизики. Так, например, говорит Б. ван Фраассен в книге “Законы и симметрия” (1989). Он поднимает ряд важных проблем, касающихся статуса законов в современной науке. Известная работа Нэнси Кэртрайт “Как лгут законы физики” (1983) вскрывает тот сложный контекст, в котором работают научные законы. Так, ученые вместе с научными законами вводят сильные идеализирующие допущения, заведомо упрощают ситуацию (в т.ч. отходят от сугубо фактической истинности самой по себе). То есть использование закона в научной деятельности включено в достаточно сложную практику.
Думается, что все же отказываться в научной практике от устоявшегося понятия научного закона не стоит. Однако на современном уровне развития науки мы действительно понимаем под законами не столько безусловные законы природы в традиционном метафизическом смысле, сколько особые теоретические конструкции, находящиеся в сложном контексте абстрактных объектов и абстрактных связей, идеализаций, мысленных моделей и т.п.
Научные законы — это эффективные теоретические конструкции, выполняющие в научном знании ряд важнейших функций.
Классификация законов
Классификация научных законов может быть проведена по различным основаниям. Укажем некоторые способы. Самым простым является способ группировки законов в зависимости от науки (группы наук), к которой принадлежат те или иные законы. В этой связи можно выделить законы физические, биологические и т.д.
Существует, далее, деление, восходящее еще к неопозитивистскому (§ 0.2) периоду. Оно в достаточно четкой форме представлено у Р. Карнапа. Это различение законов эмпирических, в формулировке которых используются только термины наблюдения (т.е. относящиеся к объектам, которые принципиально наблюдаемы), и законов теоретических (включающих в свой состав сугубо теоретические термины; такие термины относятся к достаточно абстрактным объектам). Несмотря на то что, как мы увидим в § 1.4, представление о различии эмпирического и теоретического уровней оказывается при ближайшем рассмотрении достаточно сложным, в целом деление законов на эмпирические и теоретические можно сохранить, хотя сегодня оно уже не имеет такого принципиального значения, как это было в неопозитивистском периоде.
Наконец, отметим еще одну из предлагаемых классификаций. Она отталкивается от типа детерминизма, который выражается в тех или иных законах. Так, различают законы детерминистические (или динамические) и статистические (или вероятностные). Законы первого вида дают однозначные характеристики тех или иных явлений. Законы статистические же дают характеристики лишь в вероятностных терминах: например, в физике это касается либо массовых, статистических явлений, как, например, в термодинамике, либо объектов микромира, где вероятностный, неопределенный характер их свойств относится и к единичным объектам, являясь их существенным качеством.
Функции научных законов
Наиболее яркие функции научных законов — это объяснение и предсказание. Действительно, одна из важнейших черт теоретического мышления — это подведение тех или иных явлений под установленный научный закон. В том числе, как мы говорили выше, объясняется не только то, что реально имеет место, но и то, что могло бы произойти при наличии определенных обстоятельств. Здесь функция объясняющая переходит в функцию предсказательную. Далее, важнейшей функцией законов является далекоидущая унификация научного знания. Так, законы высокой степени общности объединяют и систематизируют обширные области знаний.
В целом же функции научных законов включены в функции научной теории, т.к. закон всегда входит в контекст теории, репрезентируя ее принципиальные положения. О функциях научной теории мы будем говорить в соответствующем месте (§ 3.4).
Резюме. Итак, научный закон концентрирует в себе сущностные, устойчивые черты изучаемых явлений. Закон — универсальное утверждение, приложимое к бесконечному числу единичных случаев, соответствующих определенным базисным условиям. С операционально-методологической стороны он является лишь хорошо подтвержденной гипотезой, а не логически необходимым выводом из совокупности единичных данных. Всякий научный закон является гораздо более сильным утверждением, чем те утверждения, которые просто описывали бы конечную совокупность единичных феноменов. В конечном счете сам теоретический разум “берет на себя ответственность” за выдвижение научного закона. Использование законов в научной практике погружено в сложный контекст идеализаций, допущений, абстрактных объектов. Посредством научных законов выполняются описания, предсказания, унификация и др.

Способы их открытия и обоснования

1. Законы и их роль в научном исследовании.

Открытие и формулировка законов составляет важнейшую цель научного исследования: именно с помощью законов выражаются существенные связи и отношения предметов и явлений объективного мира.

Все предметы и явления реального мира находятся в вечном процессе изменения и движения. Там, где на поверхности эти изменения кажутся случайными, не связанными друг с другом, наука вскрывает глубокие, внутренние связи, в которых отражаются устойчивые, повторяющиеся, инвариантные отношения между явлениями. Опираясь на законы, наука получает возможность не только объяснять существующие факты и события, но и предсказывать новые. Без этого немыслима сознательная, целенаправленная практическая деятельность.

Путь к закону лежит через гипотезу. Действительно, чтобы установить существенные связи между явлениями, мало одних наблюдений и экспериментов. С их помощью мы можем обнаружить лишь зависимости между эмпирически наблюдаемыми свойствами и характеристиками явлений. Таким путем могут быть открыты только сравнительно простые, так называемые эмпирические законы. Более глубокие научные или теоретические законы относятся к ненаблюдаемым объектам. Такие законы содержат в своем составе понятия, которые нельзя ни непосредственно получить из опыта, ни проверить на опыте. Поэтому открытие теоретических законов неизбежно связано с обращением к гипотезе, с помощью которой пытаются нащупать искомую закономерность. Перебрав множество различных гипотез, ученый может найти такую, которая хорошо подтверждается всеми известными ему фактами. Поэтому в самой предварительной форме закон можно охарактеризовать как хорошо подтвержденную гипотезу.

В своих поисках закона исследователь руководствуется определенной стратегией. Он стремится найти такую теоретическую схему или идеализированную ситуацию, с помощью которой он смог бы в чистом виде представить найденную им закономерность. Иными словами, чтобы сформулировать закон науки, необходимо абстрагироваться от всех несущественных связей и отношений изучаемой объективной действительности и выделить лишь связи существенные, повторяющиеся, необходимые.

Процесс постижения закона, как и процесс познания в целом, идет от истин неполных, относительных, ограниченных к истинам все более полным, конкретным, абсолютным. Это означает, что в процессе научного познания ученые выделяют все более глубокие и существенные связи реальной действительности.

Второй существенный момент, который связан с пониманием законов науки, относится к определению их места в общей системе теоретического знания. Законы составляют ядро любой научной теории. Правильно понять роль и значение закона можно лишь в рамках определенной научной теории или системы, где ясно видна логическая связь между различными законами, их применение в построении дальнейших выводов теории, характер связи с эмпирическими данными. Как правило, всякий вновь открытый закон ученые стремятся включить в некоторую систему теоретического знания, связать его с другими, известными уже законами. Это заставляет исследователя постоянно анализировать законы в контексте более широкой теоретической системы.

Поиски отдельных, изолированных законов в лучшем случае характеризуют неразвитую, дотеоретическую стадию формирования науки. В современной, развитой науке закон выступает как составной элемент научной теории, отображающей с помощью системы понятий, принципов, гипотез и законов более широкий фрагмент действительности, чем отдельный закон. В свою очередь система научных теорий и дисциплин стремится отобразить единство и связь, существующую в реальной картине мира.

2. Логико-гносеологический анализ понятия “научный закон”

Выяснив объективное содержание категории закона, необходимо ближе и конкретнее рассмотреть содержание и форму самого понятия “научный закон”. Предварительно мы определили научный закон как хорошо подтвержденную гипотезу. Но не всякая хорошо подтвержденная гипотеза служит законом. Подчеркивая тесную связь гипотезы с законом, мы хотим прежде всего указать на решающую роль гипотезы в поисках и открытии законов науки.

В опытных науках не существует другого пути открытия законов, кроме постоянного выдвижения и проверки гипотез. В процессе научного исследования гипотезы, противоречащие эмпирическим данным, отбрасываются, а те, которые обладают меньшей степенью подтверждения, заменяются гипотезами, имеющими более высокую степень. При этом увеличение степени подтверждения в значительной мере зависит от того, может ли быть гипотеза включена в систему теоретического знания. Тогда о надежности гипотезы можно судить не только по тем эмпирически проверяемым следствиям, которые из нее непосредственно вытекают, но и по следствиям других гипотез, которые в рамках теории логически с ней связаны.

В качестве примера можно показать, как с помощью гипотетико-дедуктивного метода Галилей открыл закон свободного падения тел. Вначале он, как и многие его предшественники, исходил из интуитивно более очевидной гипотезы, что скорость падения пропорциональна пройденному пути. Однако следствия из этой гипотезы противоречили эмпирическим данным, и поэтому Галилей вынужден был отказаться от нее. Ему потребовалось около трех десятков лет, чтобы найти гипотезу, следствия которой хорошо подтверждались на опыте. Чтобы прийти к верной гипотезе, Кеплеру пришлось проанализировать девятнадцать различных предположений о геометрической орбите Марса. Вначале он исходил из простейшей гипотезы, согласно которой эта орбита имеет форму круга, но такое предположение не подтверждалось данными астрономических наблюдений. В принципе таков общий путь открытия закона. Ученый редко сразу находит верную идею. Начиная с простейших гипотез, он постоянно вносит в них коррективы и вновь проверяет их на опыте. В науках, где возможна математическая обработка результатов наблюдений и экспериментов, такая проверка осуществляется путем сравнения теоретически вычисленных значений с фактическими результатами измерений. Именно таким путем Галилей смог убедиться в правильности своей гипотезы и окончательно сформулировать ее в виде закона свободного падения тел. Этот закон, как и многие другие законы теоретического естествознания, представлен в математической форме, что значительно облегчает его проверку и делает легко обозримой связь между величинами, которую он выражает. Поэтому мы воспользуемся им для того, чтобы уточнить понятие закона, которое по крайней мере используется в наиболее развитых отраслях современного естествознания.

Как видно из формулы

,

закон свободного падения математически выражается с помощью функциональной зависимости двух переменных величин: времениt и пути S. Первую из этих величин мы принимаем в качестве независимой переменной, или аргумента, вторую - зависимой переменной, или функции. В свою очередь эти переменные величины отображают реальную взаимосвязь таких свойств тела, как путь и время падения. Выбрав соответствующие единицы измерения, мы можем выразить эти физические свойства или величины с помощью чисел. Таким путем оказывается возможным подвергнуть математическому анализу взаимосвязь между самыми различными по своей конкретной природе физическими или другими свойствами реальных предметов и процессов. Вся трудность при этом будет состоять не столько в том, чтобы найти подходящую математическую функцию для отображения зависимости между свойствами, сколько в том, чтобы обнаружить такую связь фактически. Иначе говоря, задача состоит в том, чтобы абстрагироваться от всех несущественных факторов исследуемого процесса и выделить свойства и факторы существенные, основные, определяющие ход процесса. Действительно, интуитивно мы вполне можем допустить, что расстояние, пройденное падающим телом, зависит от его массы, скорости, а может быть, даже и температуры. Однако физический опыт не подтверждает эти предположения.

Вопрос о том, какие факторы оказывают существенное влияние на ход процесса, а от каких можно абстрагироваться, представляет весьма сложную проблему. Ее решение связано с выдвижением гипотез и их последующей проверкой. Рассуждая абстрактно, можно допустить бесконечное множество гипотез, в которых учитывалось бы влияние самых различных факторов на процесс. Ясно, однако, что проверить все их экспериментально нет никакой практической возможности. Возвращаясь к закону свободного падения, мы видим, что движение падающего тела всегда происходит единообразным путем и зависит прежде всего от времени. Но в формуле закона встречаются также начальный путь, пройденный теломS 0 , и его начальная скорость V 0 , которые представляют фиксированные величины, или параметры. Они характеризуют первоначальное состояние движения какого-либо конкретного физического тела. Если известны эти начальные условия, то мы можем точно описать его поведение в любой момент времени, т. е. в данном случае найти путь, пройденный падающим телом в течение любого промежутка времени.

Возможность абстрагирования законов движения из хаотического множества происходящих вокруг нас явлений, замечает известный американский физик Е. Вигнер, основывается на двух обстоятельствах. Во-первых, во многих случаях удается выделить множество начальных условий, которое содержит все то, что существенно для интересующих нас явлений. В классическом примере свободно падающего тела можно пренебречь почти всеми условиями, кроме начального положения и начальной скорости: его поведение всегда будет одним и тем же, независимо от степени освещенности, наличия вблизи от него других тел, их температуры и т. д. Не менее важноезначение имеет то обстоятельство, что при одних и тех же существенных начальных условиях результат будет одним и тем же независимо от того, где и когда мы их реализуем. Иначе говоря, абсолютное положение и время никогда не являются существенными начальными условиями. Это утверждение, продолжает Вигнер, стало первым и, может быть, наиболее важным принципом инвариантности в физике. Не будь ее, мы бы не могли открывать законы природы.

Что еще почитать