Строение оксида азота 2. Оксиды азота и их свойства

Важнейшие оксиды азота представлены в таблице 1.

Оксид азота (V) представляет собой твёрдое вещество, остальные оксиды при обычных условиях газообразны. Наибольшее практическое значение из них имеют оксид азота (II) и оксид азота (IV). Все оксиды азота ядовиты, за исключением оксида азота (I).

Оксид азота(I) N 2 O. При комнатной температуре N 2 0 - бесцветный газ (t пл = _ 91 °С, t кип = -89 °С) без запаха, сладковатый на вкус, малорастворимый в воде. При вдыхании в небольших количествах N 2 0 вызывает судорожный смех, поэтому его называ­ют «веселящим газом». Молекула N 2 0 линейная, малополярная. Методом валент­ных связей ее строение описывается с помощью двух резонансных структур:

Связь между атомами азота (0,113 нм) лишь немного длиннее, чем тройная связь в молекуле N 2 (0,110 нм).

Оксид азота(1) получают термическим разложением нитрата аммония при температуре немного выше температуры его плавления (170 °С):

NH 4 NO 3 → N 2 0 + 2Н 2 0

Более чистый N 2 0 образуется при сопропорционировании нитрита и соли гидразина или гидроксиламина:

NH 3 OHCI + NaN0 2 = N 2 O + 2Н 2 0 + NaCl

Оксид азота (II) NO – бесцветный газ, мало растворимый в воде и химически с ней не взаимодействующий. Он легко соединяется с кислородом, образуя оксид азота (IV):

2NO + O 2 → 2NO 2 + 113 кДж

Оксид азота (II) получают в лаборатории при действии разбавленной азотной кислоты (ρ = 1,2 г/см 3 , ω=33%) на медь. Уравнение реакции имеет вид:

3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O

Молекула NO обладает нечётным числом внешних электронов, следовательно, у неё есть один избыточный электрон. Ненасыщенный характер молекулы NO проявляется в её способности к комплексообразованию с ионами некоторых металлов. Так, при пропускании NO в раствор FeSO 4 последний окрашивается в бурый цвет вследствие образования соединения состава SO 4 . При нагревании это непрочное соединение разлагается.

Оксид азота(II) - типичный восстановитель. Он обесцвечивает подкислен­ный раствор перманганата калия:

5NO + 3KMn0 4 + 2H 2 S0 4 = 2MnS0 4 + 3KN0 3 + Mn(N0 3) 2 + 2H 2 0

легко окисляется кислородом:

2NO + 0 2 = 2N0 2

Процесс протекает с очень высокой скоростью, так как обе реагирующие частицы являются радикалами.

Из-за наличия одного неспаренного электрона на разрыхляющей 2π-орбитали для оксида азота (II) характерны процессы одноэлектронного окисления с образованием катиона нитрозила (нитрозония ) N0 + : N0 – е - = N0 + . При этом кратность связи N-О повышается до трех, а ее энергия возрастает от 627 (NО) до 1046 (NO +) кДж/моль. Производными нитрозила являются ковалентные оксигалогениды азота NOX (X - галоген), а также ионные соли, например, перхлорат нитрозония , селенат нитрозония (N0) 2 Se0 4 . Гидросульфат нитрозония получают, пропуская сернистый газ через дымящую азотную кислоту:



HN0 3 + S0 2 =

Другие соли нитрозония также мо­гут быть получены взаимодействием ок­сидов азота с концентрированными кислотами, например:

N 2 0 3 + H 2 Se0 4 = (N0) 2 Se0 4 + Н 2 0

Соли нитрозония термически неустойчивы, а в присутствии воды необратимо гидроли­зуются:

2 + Н 2 0 = NO + N0 2 + 2H 2 S0 4

Ковалентный хлорид нитрозила N0C1 - оранжево-красный газ (t пл = -65 °С, t кип = -6 °С), образующийся при хлорировании N0 в присутствии активированного угля:

NO + С1 2 = 2N0C1

при взаимодействии нитрита с хлороводородом:

NaN0 2 + 2НС1 = N0C1 + NaCl + Н 2 0

или при замещении аниона в солях нитрозония:

NaCl = N0C1 + NaHS0 4

Менее характерны для N0 окислительные свойства. Например, при взаи­модействии с сильными восстановителями образуется азот:

2N0 + 2H 2 S = N 2 + 2S↓ + 2Н 2 0

На родиевом катализаторе N0 окисляет угарный газ в углекислый:

2N0 + 2СО = N 2 + 2С0 2

Такие катализаторы устанавливают в выхлопных трубах автомобилей во избе­жание загрязнения атмосферы ядовитыми газами NO x .

При взаимодействии с расплавленной щелочью NO диспропорционирует:

6N0 + 4КОН = N 2 + 4KN0 2 + 2Н 2 0

Оксид азота(III) N 2 0 3 . Это соединение очень неустойчиво и существует только при низких температурах. В твердом и жидком состоянии (t пл = -100 °С) это вещество окрашено в ярко-синий цвет; выше О °С оно разлагается:

N 2 0 3 =N0 + N0 2

В отличие от N 2 0 и N0 оксид азота (II) - типичный кислотный оксид, в ледяной воде он растворяется с образованием голубого раствора азотистой кислоты;

N 2 0 3 + Н 2 0 = 2HNO 2

При взаимодействии с щелочными растворами N 2 0 3 количественно превра­щается в нитриты:

N 2 0 3 + 2NaOH = 2NaN0 2 + Н 2 0

В сильнокислой среде происходит гетеролитический распад связи NO-N0 2 , в результате этого образуются соли нитрозония:

N 2 0 3 + 3H 2 S0 4 = 2NO + + Н 3 0 + + 3HSO 4

При охлаждении до -36 °С эквимолярной смеси оксидов N0 и N0 2 , образую­щейся при восстановлении 50%-ной HN0 3 оксидом мышьяка (III) или крахма­лом, конденсируется N 2 0 3:

2HN0 3 + As 2 0 3 + 2Н 2 0 = 2H 3 As0 4 + N 2 0 3

1 / n (C 6 H 10 O 5) n +12HN0 3 = 6C0 2 + 11H 2 0 + 6N 2 0 3

Оксиды азота(IV): NO 2 и N 2 0 4 . Оксид азота(IV) в широком интервале тем­пературы существует в виде равновесной смеси мономера N0 2 и димера N 2 0 4 .

Равновесие

2N0 2 ↔ N 2 0 4 , ΔН = -57,2 кДж/моль

Бурый газ Бесцветный газ

парамагнитен диамагнитен

сильно зависит от температуры. Твердый оксид азота(IV) бесцветный, так как состоит исключительно из молекул N 2 0 4 . При его нагревании до t, w = -12,8 °С появляется коричневая окраска, которая усиливается с повышением темпера­туры по мере увеличения доли мономера в смеси.

Оксид азота(IV) (как мономер, так и димер) хорошо растворим в воде и взаимодействует с ней. Поскольку в водных растворах соединения азота в чет­ных степенях окисления не существуют, происходит диспропорционирование на азотную и азотистую кислоты:

N 2 0 4 + Н 2 0 = HN0 3 + HN0 2

Последняя устойчива лишь на холоде, а при комнатной температуре и выше диспропорционирует на N0 и HN0 3 , поэтому при комнатной и более высо­ких температурах реакция протекает по уравнению

3N0 2 + Н 2 0 = 2HN0 3 + NO

Однако если через воду пропускать смесь N0 2 и воздуха, то образуется только HN0 3:

2N0 2 + Н 2 0 + 1 / 2 0 2 = 2HN0 3

Подобно N0 оксид N 2 0 4 подвержен одноэлектронному окислению с обра­зованием катиона нитроила (нитрония) N0 2 , имеющего линейное строение и изоэлектронного (16 е - на три атома) С0 2 . Нитроил-ион образуется также при самоионизации азотной кислоты:

2HN0 3 ↔ N0 2 + + NO 3 - + Н 2 0

Диоксид N0 2 - сильный окислитель, в атмосфере которого горят углерод, сера, многие металлы:

С + 2N0 2 = С0 2 + 2NO

В газовой фазе диоксид азота окисляет хлороводород до хлора:

2N0 2 + 4НС1 = 2NOC1 + 2Н 2 0 + С1 2

Получают N0 2 взаимодействием меди с горячей концентрированной азот­ной кислотой:

Сu + 4HN0 3 = Cu(N0 3) 2 + 2N0 2 + 2Н 2 0

либо термическим разложением (350-500 °С) тщательно высушенных нитра­тов тяжелых металлов:

2Pb(N0 3) 2 → 2РbО + 4N0 2 + 0 2

Реакцию проводят в присутствии диоксида кремния, связывающего образую­щийся оксид свинца в силикат PbSi0 3 , тем самым смещая равновесие вправо.

Оксид азота(IV) образуется также при окислении N0 кислородом:

2NO + 0 2 = 2N0 2 , ΔН° = -114 кДж/моль

Интересно, что эта реакция является обратимой, и при 200°С равновесие существенно смещено влево.

Оксид азота(V) N 2 0 5 . Азотный ангидрид N 2 0 5 образуется в виде летучих (t субл = 32,3 °С) бесцветных гигроскопичных кристаллов при пропускании па­ров азотной кислоты через колонку с оксидом фосфора(V):

4HN0 3 + Р 4 0 10 → 2N 2 0 5 + 4НР0 3

Твердый N 2 0 5 построен из ионов N0 2 + и N0 3 - , а в газовой фазе и в растворах состоит из молекул 0 2 N-О-N0 2 . Это вещество очень неустойчиво и в течение нескольких часов распадается (период полураспада 10ч), при нагревании - со взрывом:

2N 2 0 5 = 4N0 2 + 0 2

При растворении N 2 0 5 в воде образуется азотная кислота.

Высший оксид азота является сильным окислителем, например:

N 2 0 5 + I 2 = I 2 0 5 + N 2

В безводных кислотах (серной, азотной, ортофосфорной, хлорной) N 2 0 5 рас­падается, образуя катион нитрония N0 2:

N 2 0 5 + НСlO 4 = N0 2 + C10 4 - + HN0 3

Соли нитрония являются сильными окислителями. При попадании в воду они гид­ролизуются:

N0 2 + C10 4 - + Н 2 0 = HN0 3 + НС10 4

Хлористый нитроил N0 2 C1 (t пл = -145 °С, t кип = -16 °С) - бесцветный газ, образую­щийся при пропускании хлора над твердым нитратом серебра или при взаимодействии дымящей азотной и хлорсульфоновой кислот:

HN0 3 + ClSO 3 H = N0 2 C1 + H 2 S0 4

В щелочной среде он распадается на гипохлорит и нитрит.

Оксидами называют бинарные соединения химических элементов с кислородным атомом, у которого окислительная степень равна 2-. Азот, обладающий меньшим электроотрицательным значением, образует различные комбинации с кислородом. Эти соединения относятся к разным классам веществ. Оксид азота кислород содержит в количестве, которое устанавливает валентность элемента N. Она колеблется от 1 до 5.

Какие бывают оксиды

Существует около десятка азотистых соединений, содержащих O-элемент. Из них пять наиболее часто встречаемых: оксид одновалентного, оксид двухвалентного, оксид трехвалентного, оксид четырехвалентного и оксид пятивалентного азота.

Остальные соединения считаются менее распространенными. К ним относят оксид азота четырехвалентного в форме димера, нестабильные молекулы нитрилазида, нитрозилазида, тринитрамида и нитратный радикал.

Формулы оксидов азота

Ниже приведены обозначения наиболее значимых соединений элемента N.

Это прежде всего оксид азота, формула которого состоит из двух химических знаков - N и O. За ними ставятся индексы, в зависимости от степени окисления атомов.

  • Азота одновалентного оксид имеет формулу N 2 O. В нем атом N заряжен +1.
  • Азота двухвалентного оксид имеет формулу NO. В нем атом N заряжен +2.
  • Азота трехвалентного оксид имеет формулу N 2 O 3 . В нем атом N заряжен +3.
  • Четырехвалентный оксид азота, формула которого NO 2 , имеет заряд атома N +4.
  • Пятивалентное кислородное соединение обозначается как N 2 O 5 . В нем атом N заряжен +5.

Описание одновалентного оксида азота

Он еще именуется диазотом, закисью и газом веселящим. Последнее название произошло от действия, связанного с опьянением.

Оксид азота с валентностью I в условиях нормальной температуры существует в форме негорючего газа, без цвета, который проявляет приятный сладковатый привкус и запах. Воздух легче данного соединения. Оксид растворяется в водной среде, этаноле, эфирах и кислоте серной.

Вода, щелочные и кислотные растворы не способны с ним вступать в реакцию, он не образует соли. Не подвергается воспламенению, зато способен поддержать процесс горения.

Аммиак оксид азота переводит в азид (N3NH4).

При соединении с молекулами эфиров, хлорэтана и циклопропана образуется взрывоопасная смесь.

Обычные условия способствуют его инертности. Под действием нагревания вещество восстанавливается.

Описание оксида двухвалентного азота

Его еще называют моноокисью, окисью или нитрозил-радикалом. В условиях нормальной температуры является бесцветным негорючим газом, слаборастворимым в водной среде. Воздухом окисляется, получается NO 2. Жидкая и твёрдая его форма становятся голубого цвета.

Оксид азота может быть восстановителем в реакциях взаимодействия с галогенами. Продуктом их присоединения является нитрозилгалогенид, который имеет формулу NOBr.

Диоксид серы и другие сильные восстановители окисляют NO с получением молекул N 2 .

Описание оксида трехвалентного азота

Они именуется ангидридом азотистым. В нормальном состоянии может быть жидкостью, с синей окраской, а стандартные параметры среды переводят оксид в форму газа, не имеющего цвета. Обладает устойчивостью только при низких температурах.

Молекулы N 2 O 3 диссоциируют во время нагревания с выделением одно- и двухвалентного оксида.

В качестве ангидрида присоединяет воду с получением кислоты азотистой, а со щелочами формирует соли в виде нитритов.

Описание оксида четырехвалентного азота

По-другому его называют диоксидом. Существует в форме буро-красного газа, у которого имеется острый запах, а также может быть желтоватой жидкостью.

Относится к кислотным оксидам, у которых развита хорошо химическая активность.

Его молекулы окисляют неметаллы с образованием кислородсодержащих соединений и свободного азота.

Диоксид взаимодействует с оксидом четырехвалентной и шестивалентной серы. Получается кислота серная. Метод ее синтеза называют нитрозным.

В водной среде можно растворить оксид азота. Азотная кислота является результатом данной реакции. Такой процесс называют диспропорционированием. Промежуточным компонентом считается кислота азотистая, которая быстро распадается.

Если растворить азота четырехвалентного оксид в щелочи, то происходит образование растворов нитратов и нитритов. Можно использовать его жидкую форму для взаимодействия с металлом, тогда получится безводная соль.

Описание оксида пятивалентного азота

Его также называют диазотным пентаоксидом, нитратом нитрония, нитриловым нитратом или азотным ангидридом.

Существует в форме бесцветных кристаллов, которые обладают летучестью и неустойчивостью. Их стабильность наблюдается при низкой температуре. Такую структуру образуют нитрат- и нитрит-ионы.

В газообразном виде вещество имеет форму ангидрида NO 2 −O−NO 2 .

Оксид азота пятивалентный обладает свойствами кислотными. Он легко разлагается с выделением кислорода.

Вещество реагирует с водой, в результате получается азотная кислота.

Щелочи растворяют ангидрид с выделением солей нитратов.

Как получают оксиды азота

Закись N 2 O образуется при острожном нагревании аммония нитрата в сухом виде, однако такой способ может сопровождаться взрывом.

Предпочтительным методом получения оксида одновалентного является воздействие кислотой азотной в концентрированном виде на кислоту сульфаминовую. Главным условием считается нагревание.

Нитрозил, или NO, - это особый оксид азота, получение которого осуществляется при взаимодействии молекул N 2 и O 2 . Важным условием такого процесса является сильное нагревание свыше 1000 °C.

Природный способ получения связан с грозовыми разрядами в атмосферном воздухе. Такой оксид быстро соединяется с кислородными молекулами и формируется диоксид.

Лабораторный метод синтеза NO связан с реакцией металлов и неконцентрированной кислоты азотной. Примером такой реакции может быть взаимодействие меди с HNO 3 .

Другой способ образования моноокиси азота - реакция хлорида железа двухвалентного с натрия нитритом и кислотой соляной. Результатом процесса являются железа трехвалентного и натрия хлориды, вода и сама окись.

В промышленных масштабах его добывают за счет окисления аммиачных молекул во время нагревания и под высоким давлением. Ускорителем процесса является платина или хрома трехвалентного оксид.

Диоксид, или NO 2, получается при взаимодействии мышьяка трехвалентного оксида с 50 % кислотой азотной, которую наносят по каплям на поверхность твердого реагента. Образуется смесь из оксидов двухвалентного и четырехвалентного азота.

Если ее охладить до температуры -30 °С, то синтезируется ангидрид азотистый, или N 2 O 3 .

В порошкообразном виде он получается в случае пропускания тока электрического сквозь газообразную его форму.

Если на крахмальный порошок подействовать кислотой азотной с концентрацией 50 %, то выделяется оксид двухвалентного и четырехвалентного азота, газ углекислый и вода. В дальнейшем из полученных первых двух соединений формируется молекула N 2 O 3 .

В результате теплового расщепления свинцового нитросоединения выделяется свободный кислород и оксид свинца.

Ангидрид, или N 2 O 5, образуется благодаря отщеплению молекулы воды от кислоты азотной действием фосфора оксида пятивалентного.

Другой способ его синтеза является пропускание сухого хлора сквозь безводный серебряный нитрат.

Если на диоксид азотный подействовать молекулами озона, то формируется N 2 O 5 .

Оксид азота (II), оксид (II) оксид, окись азота — неорганическое соединение состава NO. При обычных условиях является бесцветным, токсичным и негорючей газом. В жидком и твердом состояниях соединение димеризуеться с образованием оксида N 2 O 2.

Монооксид азота относится к несолетвирних оксидов: с водой он не образует кислоту или основание, а непосредственно реагируя с основами и с кислотами, не образует солей.

Физические свойства

Оксид азота NO при обычных условиях является бесцветным газом с очень низкой температурой кипения (-151,8 ° С) и температурой плавления (-163,6 ° С). В твердом состоянии, благодаря наличию неспаренного электрона, соединение полностью димеризуеться с образованием оксида N 2 O 2, а в жидком — примерно на четверть.

В воде растворяется трудно: при обычной температуре лишь около 5 см³ в 100 г воды.

Получение

Промышленный метод

В промышленных масштабах синтез оксида азота (II) является одной из стадий в получении азотной кислоты. Его получают окислением аммиака кислородом воздуха в присутствии катализаторов:

Количество преобразованного в NO аммиака составляет примерно 93-98%. Другими, побочными, реакциями является образование азота и оксида азота (I):

Кроме этого, может происходить частичное разложение конечного продукта, NO, а также его взаимодействие с аммиаком:

Согласно одной из самых распространенных теорий механизма окисления, предложенной Максом Боденштейном, аммиак окисляется атомарным кислородом, адсорбированным на катализаторе с образованием гидроксиламина, который постепенно разлагается с образованием NO:

Основными применяемыми катализаторами являются платина и, в меньшей степени, родий и палладий. Несмотря на их высокую стоимость, они имеют преимущество в высшем выходе реакции и меньшей склонности к отравлению.

Лабораторные методы

В лабораториях монооксид азота обычно добывают взаимодействием разбавленной азотной кислоты с медью при некотором нагревании по реакции:

Применяются также реакции восстановления нитритов в разведенной серной кислоте:

Полученный такими методами NO может быть загрязнен примесями (прежде всего, N 2 O), поэтому он требует дополнительной очистки.

Химические свойства

Наиболее характерной свойством монооксида азота является его способность легко сочетаться при обычных условиях с кислородом воздуха с образованием диоксида азота (реакция имеет большое значение при производстве азотной кислоты):

При высокотемпературном нагреве и в присутствии катализатора BaO, газообразные NO разлагается на простые соединения. Жидкий NO с течением времени может диспропорционуваты с образованием оксидов азота (I) и азота (III):

При взаимодействии с галогенами или серной кислотой (в присутствии кислорода), NO окисляется с образованием соединений нитрозила:

Аналогично он образует нитрозильни комплексы с металлами в водных растворах солей:

Оксид азота восстанавливается до свободного азота графитом, красным фосфором, неметаллическими соединениями-восстановителями, а также некоторыми металлами:

Роль в живых организмах

Роль оксида азота (II) как сигнальной молекулы в живых организмах была открыта в 1980-х годах, а в 1998 Роберт Ферчготт, Луис Игнарро и Ферид Мурад получили Нобелевскую премию по физиологии или медицине за выяснение его функций в сердечно-сосудистой системе. Монооксид азота является паракринным фактором благодаря своей способности быстро диффундировать через мембраны клеток, однако из-за высокой реакционность расстояние такой диффузии ограничена 1 мм а время полжизни молекул NO составляет 5-10 секунд. Азот мооноксид выполняет сигнальную функцию как у животных, так и у растений, даже некоторые бактерии могут чувствовать очень небольшие его концентрации и двигаться в сторону от источника этого соединения.

У млекопитающих NO задействован в ряде физиологических процессов, таких как регуляция артериального давления, передача нервных импульсов, свертывания крови и иммунный ответ. Синтез оксида азота (II) осуществляется путем деаминирование аминокислоты аргинина и обеспечивается ферментом NO-синтазы (NOS), что у млекопитающих трех изоформы: нейрональная (nNOS), индуцибельной (iNOS) и эндотелиальной (eNOS). nNOS и eNOS экспрессируются в соответствующих типах клеток конститутивно и резко увеличивают свою активность в ответ на рост концентрации Ca 2+. Зато активация iNOS осуществляется на уровне транскрипции под влиянием эндотоксинов или цитокинов воспаления, в частности в таких клетках как макрофаги и нейтрофилы, и не зависит от цитоплазматического уровня кальция.

Одной из мишеней монооксида азота в клетках млекопитающих, в том числе и гладких мышцах, является фермент гуанилатциклазы, в активном центре которого он присоединяется к атому железа и таким образом увеличивает энзиматическую активность. Циклический ГМФ, что является продуктом гуанилатциклазы, является вторичным посредником и запускает в клетке каскад реакций, обеспечивающих физиологическую ответ, в случае гладких мышц — их расслабление.

NO может действовать также и цГМФ-независимым путем, например изменять активность белков путем ковалентной нитрозилювання тиольных групп (-SH) специфических остатков цистеина в их составе.

Защитная функция монооксида азота

У растений NO участвует в защитных реакциях во время повреждений и инфекций. Также монооксид азота играет роль в функционировании иммунной системы животных. Активированные макрофаги и нейрофилов (а также клетки эндотелия) производят его в больших количествах во время воспалительных процессов. Вместе с NO они выделяют супероксид-он (O-2), эти два соединения соединяясь образуют очень токсичен пероксинитрит (OONO -) нужен для того, чтобы убить поглощены бактерии.

Медицинские препараты, влияющие на сигналювання NO

Из препаратов, влияющих на сигнальный путь монооксида азота, первым начал использоваться еще в XIX веке нитроглицерин для борьбы со стенокардией. Это соединение медленно расщепляется в организме и действует как источник NO длительное время. NO в свою очередь обеспечивает расширение сосудов и уменьшения нагрузки на сердце. Такое действие нитроглицерина была открыта благодаря наблюдению, что больные стенокардией работники фабрик, на которых изготавливали это соединение, сильнее страдали от боли на выходных. Врачи настолько часто слышали такие сообщения пациентов, обратили внимание на терапевтический эффект нитроглицерина. С тех пор было разработано много других нитровазодиляторив. Сам NO не имеет терапевтического действия при стенокрадии, через очень небольшое время полжизни, однако его иногда используют в вдыхаемой форме для облегчения легочной гипертензии.

Существуют также препараты, имеющие другие мишени в сигнальном пути NO. Например, силденафил подавляет деятельность фосфодиэстеразы, которая расщепляет цГМФ, таким образом продолжая продолжительность действия сигнала. Это соединение была впервые предложена для лечения стенокрадии, однако выяснилось, что она наиболее эффективно влияет на изоформу цГМФ-фосфодиэстеразы, експресуетсья в сосудах пениса, и вызывает их расширение и, соответственно, эрекцию. Поэтому силденафил (под названием Виагра) стал использоваться для лечения эректильной дисфункции.

Токсичность

Оксид NO раздражает дыхательные пути и глаза. Симптомы отравления зьявляють только через определенный период задержки в несколько часов. Ими являются: раздражение горла, затрудненное дыхание, головная боль, тошнота. Дальнейшие осложнения при отсутствии лечебных мероприятий могут вызывать полную потерю сил, непостоянство дыхания, цианоз, а также смерть в результате отека легких.

Пораженного NO необходимо убрать из опасной территории, провентилировать легкие кислородом. Дальнейшие 72 часа необходимо обеспечить надзор и исключить любую физическую деятельность, поскольку это может привести к развитию отека легких. При попадании вещества в ое или на кожу, необходимо тщательно промыть пораженное место теплой водой и обратиться к врачу.

Мерами безопасности при работе с оксидом азота (I) является наличие защитных резиновых (тефлоновых) перчаток, герметичных очков, респиратора.

Оксидом азота называется инертный газ, который не обладает ароматическими качествами и цветом. Есть несколько соединений:

  • Оксид (I) несолеобразующий. При условии высокой концентрации может спровоцировать возбуждение нервной системы. По-другому его называют веселящим газом. Свое применение оксид азота нашел как наркоз слабого действия в медицине;
  • Монооксид азота – это газ, не обладающий цветом. Свойством оксида азота (II) является слабая степень растворимости в воде;
  • Оксид (III) – это жидкость, обладающая темно-синим цветом. В нормальных условиях проявляет неустойчивость. При условии взаимодействия с водой способен образовывать азотистую кислоту;
  • Оксид (IV) обладает газообразной формой, его окрас – бурый. В таком состоянии вещество тяжелее воздуха, поэтому способно легко сжиматься. Одним из свойств оксида азота является способность взаимодействовать с водой и щелочными растворами;
  • Оксид (V) является веществом в кристаллической форме без цвета. Проявляет свойства сильного окислителя.

Оксид азота как пищевая добавка обладает свойствами антифламинга и глазирователя. Данное соединение также известно под наименованиями азотистый ангидрид, несолеобразующий оксид, диоксид азота, азотный ангидрид, триоксид диазота, монооксид азота, пентаоксид диазота, тетраоксид диазота, нитрозилазид, тринитрамид.

Применение оксида азота

Соединение в качестве добавки к продуктам питания практически не используется. Свое применение оксид азота нашел при упаковке продуктов, используется с целью приготовления аэрозольных масел, для взбивания сливок.

Благодаря своим особым свойствам соединение используется как газ-спрей в медицинских флаконах. Благодаря способности проявлять наркозный эффект оксид применяется в хирургической практике.

Оксид азота в организме

Как было установлено за последние годы, молекула оксида азота имеет широкий спектр биологического влияния. Данное действие можно поделить на защитное, регуляторное и вредное.

Оксид принимает участие в регуляции систем межклеточной и внутриклеточной сигнализации. Кроме того, соединение ответственно за эндотелиальное расслабление гладкой мускулатуры, принимает участие в процессах репродуктивной, иммунной, нервной системах. Показывает цитостатические и цитотоксические свойства.

Оксид клетками иммунной системы используется для уничтожения клеток злокачественных опухолей и бактерий. В случае нарушения метаболизма и биосинтеза оксида азота развивается бронхиальная астма, ишемическая болезнь сердца, первичная легочная гипертензия, инфаркт миокарда, невротическая депрессия, сахарный диабет, нейродегенеративные заболевания, импотенция, эссенциальная артериальная гипертензия.

Оксид азота в спорте

Наверное, многие слышали о продуктах, которые способны активизировать выработку оксида азота. Данные продукты в сфере пищевых добавок стали весьма популярными. Считается, что за счет усиления выработки оксида увеличивается приток крови к мышцам скелета, что положительно сказывается на организме атлета.

Согласно данным ученых Техасского университета, стадия, которая ограничивает скорость ткани аминокислот, отвечает за транспорт через межклеточную жидкость и кровь. Это означает, что усиление притока крови к мышцам скелета совместно с увеличением концентрации аминокислот обеспечивает более интенсивное поглощение мышечными клетками аминокислот.

Вред оксида азота

Несмотря ни на что, оксиды азота вредны и опасны для человеческого здоровья. Вследствие этого пищевая добавка относится к третьему классу опасности. Например, NO считается сильным ядом, который оказывает влияние на центральную нервную систему, может привести к поражению крови за счет связывания гемоглобина. NO2 также проявляет высокую токсичность, может спровоцировать раздражение дыхательных органов.

Популярные статьи Читать больше статей

02.12.2013

Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

605451 65 Подробнее

10.10.2013

Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...

444883 117 Подробнее

02.12.2013

В наше время бег уже не вызывает массу восторженных отзывов, как это было лет тридцать назад. Тогда общество б...

Основные реакции оксида азота - это реакции с кислородом, свободными радикалами, тиолами, металлами переменной валентности.

С кислородом оксид азота включается в цепочку реакций результатом которой является образование нитрит-иона.

Со свободными радикалами оксид азота образует высокоактивные соединения:

    Реакция с супероксидным анион-радикалом (образуется пероксинитрит) NO+O2=ONOO

    Реакция с гидроксильным радикалом (образуется нитрит)

    Реакции с пероксильными и алкоксильными радикалами липидов с обрывом цепи перекисного окисления липидов (в результате восстановления этих радикалов до гидропероксидов или оксипроизводных липидов).

Таким образом оксид азота может участвовать в регуляции процессов свободнорадикального перекисного окисления липидов.

С тиоловыми группами белков и низкомолекулярных тиолов (цистеин, глутатион) оксид азота образует нитрозилированные соединения R-SNO (например, нитрозилированный альбумин).

    Связывается с железом гема с образованием нитрозольного комплекса с железом в активном центре

    Вступает в качестве восстановителя в окислительно-восстановительные реакции

5. Реакции оксида азота с кислородом

Оксид азота бесцветный газ, растворимый в воде и жирах. Обладает одним неспаренным электроном, благодаря чему является высоко реактивным радикалом. Свободно проникает через биологические мембраны и легко вступает в реакции с другими соединениями.

С кислородом оксид азота включается в цепочку реакций, результатом которых является образование нитрит-иона.

N2O3 + H2O = 2NO2 + 2H

Реакция с супероксилным радикалом, которая приводит к образованию пероксинитрита и OH радикала: NO + O2 = ONOO

При связывании оксида азота с кислородом образуются стабильные конечные продукты – нитрит и нитрат, которые являются косвенными маркерами концентрации оксида азота в организме.

Вне вопросов - Оксид азота участвует в:

    Работе ЖКТ и мочеполовой системы

    Функционирование секреторных клеток и тканей, в частности в выработке инсулина

    Работе органов дыхания

    Жизнедеятельности кожного покрова

    Болевой реакции

    Работе репродуктивной системы

    Ингибирование тромбообразования и адгезия тромбоцитов на поверхности сосудов

    Регуляция выделения нейромедиаторов

    Формирование в синаптической передаче длительно функционирующих связей между нейронами – постсинаптической потенциации, лежащей в основе памяти, обучения, творческой деятельности человека.

Оксид азота существует в трех формах, которые могут переходить друг в друга при окислении или восстановлении. Оксид азота, никтрозоний-катион, нитроксил-анион.

6. Какие соединения образуются в результате связывания no с тиоловыми группами

S-нитрозотиолы (RS-NO) и динитрозильные комплексы – относительно долгоживущие продукты связывания оксида азота с тиоловыми группами аминокислот и негемового железа в макрофогах и эндотелиальных клетках.

R-SH + NO = RS-NO

S-нитрозотиолы и динитрозильные комплексы негемового комплекса – это вещества способные переносить ионы нитрозония на тиоловые группы различных белков с образованием белковых S-нитрозотиолов

В физиологических условиях при действии облучения нитрозотиолы распадаются и высвобождают оксид азота

В присутствии железо- или медьсодержащих белков S-нитрозотиолы могут образовывать дисульфиды, например, распад глутатиона в присутствии ионов меди

Что еще почитать