Простые схемы для начинающих.

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Регулятор скорости вентилятора своими руками

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог - холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода - они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно - чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Часы на ИН-14 лампах своими руками

Часы на ИН-14 лампах своими руками

Давно хотел выложить статью,по изготовлению своими руками часов на лампах ИН-14 ,или как еще отзываются-часы в стиле стим-панк.

Постараюсь поэтапно и останавливаясь на ключевых моментах изложить только самое главное. Индикация часов хорошо видна как днем так и ночью, и сами по себе очень красиво смотрятся,особенно в хорошем деревянном корпусе.Общем,приступаем. Подробнее...

Плавное включение лампы своими руками

Плавное включение лампы накаливания своими руками.

В ходе непрекращающегося перегорания ламп накаливания, и в том числе на лестничн ой площадке было реализовано несколько схем защиты ламп накаливания в интернете.Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» - в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.

), люди продолжают интересоваться результатами - а значит пора рассказать о прогрессе.

Напомню цель проекта: научиться изготавливать несложные кремниевые цифровые микросхемы в «домашних» условиях. Это никоим образом не позволит конкурировать с серийным производством - помимо того, что оно на порядки более совершенное (~22нм против ~20мкм, каждый транзистор в миллион раз меньше по площади), так еще и чудовищно дешевое (этот пункт не сразу стал очевиден). Тем не менее, даже простейшие работающие микросхемы, изготовленные в домашних условиях будут иметь как минимум образовательную и конечно декоративную ценность.

Начнем с неудач и драмы

Как я уже упоминал в комментариях к другому топику, попытка выйти с этим проектом на kickstarter провалилась - проект не прошел модерацию из-за отсутствия прототипа. Это заставило в очередной раз переосмыслить пути коммерциализации этой упрощенной технологии. Возможность релиза технологии домашних микросхем в виде RepRap-подобного opensource-кита покрыта туманом: очень уж много опасной, дорогой и нестойкой химии - так просто рассылать по почте не выйдет. Также по видимому отсутствует возможность делать мелкие партии микросхем дешевле серийных заводов: сейчас минимальные тестовые партии микросхем можно изготавливать примерно по 30-50$ штука (в партии ~25 штук), и существенно дешевле 30$ за микросхему сделать это на самодельной упрощенной установке не получится. Кроме того, не смотря на низкую цену на обычных заводах - любительские микросхемы практически никто не делает, задач где они имели бы преимущества перед FPGA/CPLD/микроконтроллерами практически нет, а стоимость и сложность разработки - остается очень высокой.

Но как я уже упоминал выше - даже с этими недостатками проект остается для меня интересным.

Логистика

Из того, что уже упоминалось в моих других статьях в последние месяцы - куплен кислородный концентратор, позволяет получить ~95% кислород без головной боли. Из вредных примесей - похоже только углекислый газ (35ppm), будем надеяться, этого будет достаточно. Также едет из Китая генератор озона (ему на входе нужен кислород) - есть результаты исследований, показывающих что им удобно растить тонкие подзатворные диэлектрики и использовать как один из этапов для очистки пластин.

Чего еще не хватает

Из того, что упоминал в предыдущей статье - TEOS видимо не нужен, слишком сложно с ним работать, HMDS - не обязателен, по крайней мере для «больших» транзисторов.

Генератор азота - это конечно удобно, работать с пластинами в инертной атмосфере и не возиться с баллонами, но также не критично.

Единственное, что серьёзно могло бы облегчить работу - это образцы spin-on dopants и spin-on glass. В России по различным причинам их не используют и не производят, за рубежем - производителей мало, продается большими партиями и стоит дорого (тысячи $). Компания Emulsitone, у которой покупала образцы Jeri Ellsworth когда делала свои транзисторы - похоже загнулась, с ними связаться так и не удалось. Но это также не обязательный пункт - работать можно и без них (с фосфорной и борной кислотами, POCl3 и BBr3), хоть и намного сложнее / несколько опаснее.

И наконец - конечно не хватает спонсора для моих проектов, иногда между дополнительными затратами времени и дополнительными затратами денег приходится выбирать первое. Если кто-то из компаний или частных лиц имеет желание спонсировать мои проекты (условия обсуждаемы) - вы знаете, где меня найти :-).
Update: Ориентировочная смета есть, высылаю по запросу - т.е. представление на что именно нужны деньги - есть.

О «серийном» проекте

В прошлой статье я упоминал о моём классическом микроэлектронном проекте - я хотел разработать и производить на серийных заводах микроконтроллеры. Исследовав под микроскопом конкурентов (нормы производства, площадь), и узнав цены производства на практически всех заводах (как отечественных, так и зарубежных) - стало понятно, что бизнес это хороший, хоть и очень капиталоемкий. Тем не менее, тут похоже пока не судьба - в Сколково проект дважды завернули , из-за отсутствия у меня профильного опыта. С одной стороны они безусловно правы, с другой - пришел бы Цукерберг в Сколково, а ему «А сколько социальных сетей вы уже создали?». Вводить в команду фиктивных членов - совершенно нет желания. Так что жизнь как всегда вносит коррективы в радужные планы - видимо сначала придется зарабатывать деньги на проект другими путями, и вернуться к нему через 3-5 лет (если он тогда еще будет кому-то нужен).

Дальнейшие планы

Следующий шаг - сборка печки с управляющей электроникой, и наконец производство первых образцов. Для начала - кремниевые диоды, исследование их характеристик, солнечные батареи, затем - полевые транзисторы, возможно и биполярные. Можно попробовать сделать диоды Шоттки - но с ними все не так просто (высокие требования к интерфейсу металл-полупроводник и краям диода).

Затем нужно думать, как в домашних условиях сделать ультразвуковую или термокомпрессионную сварку проволоки с кремниевой пластиной - это нужно для подключения выводов.

Надеюсь, в обозримом будущем домашние микросхемы мы все-же увидим:-)

Теги:

  • asic
  • микросхема
  • кремний
  • разработка
  • фотолитография
Добавить метки

С момента публикации первой статьи по моему проекту домашних микросхем прошел (скорее пролетел) год, пора поделится прогрессом и новыми проблемами.

Изначальная цель проекта - научиться изготавливать микросхемы в домашних условиях, состоящие из сотен/тысяч транзисторов (уровня КР580ВМ80А / Z80).

Из-за того, что проект получился достаточно большим по требуемым ресурсам и времени - я решил получить в качестве дополнительного результата - документированный, максимально простой open-source техпроцесс, позволяющий создавать микросхемы в ограниченных условиях. В США, возможно, это было бы хорошим поводом для проекта на kickstarter, но видимо не судьба.

О решении сложных проблем и человеческой ограниченности

Первые полгода задача, стоящая передо мной, иногда казалась просто неподъемной. Не везде все ясно, список вещей, которые необходимо сделать или с которыми нужно разобраться - был нескончаемым. Лишь позднее я понял основной принцип решения сложных проблем:
Человек - в принципе не способен решать сложные проблемы. Все что ему под силу - сделать один следующий простой и очевидный шаг по длинной лестнице, ведущей к решению проблемы. Если стоящая проблема не очевидная чтобы решить её за один шаг - остаётся только изучать и разбивать её на подзадачи, пока она не станет очевидной. После этого она в худшем случае превращается в логистическую проблему - проблему управления большим количеством простых подзадач.

Именно так и случилось, по мере изучения и проработки - задача стала логистической, и свелась к поиску всех необходимых компонент и выбору из известных вариантов решения каждой технологической проблемы исходя из имеющихся ограничений по габаритам, финансам и безопасности.

О технологических решениях

  • Техпроцесс - NMOS (или PMOS в крайнем случае), с одним типом транзисторов и одним легированием. Как там все работает и проектируется - понятно. CMOS достаточно сложен для диффузионного легирования, и его оставляю на потом.
  • Из сжатых газов - будет только Аргон для высокотемпературного отжига и распыления металлов. Но буду пробовать обойтись без него - водородом / азотом.
  • Кислород (для выращивания слоя окисла на кремнии) и водород (для отжига) - будут получаться электролизом воды на никелевых электродах в щелочном электролите. Небольшое загрязнение щелочными металлами не должно стать большой проблемой. Я думаю понятно, что баллоны с кислородом и тем более водородом тащить домой я бы не хотел.
  • Не будет эпитаксиальных слоев (т.е. выращивания слоя кремния), т.к. моносилан (газ, из которого растят слой кремния) слишком опасен для дома в силу своей взрывоопасности, и получать его «на месте» в микроскопических количествах не выйдет. Соответственно, транзисторы будут с металлическим затвором, т.е. относительно медленные.
  • Фотолитография - все мои старые и наивные мысли о кварцевой оптике, жестком 253/184нм УФ - уходят на свалку. Будут стандартные объективы и 365/405нм ближний УФ свет. Это снимает вопросы и с относительно экзотическими фоторезистами.
  • Распыление металлов в вакууме - плазмой, а не нагреванием в вольфрамовой лодочке. Это намного проще и гибче, не требует собственно лодочек и сложной электроники нагрева и контроля температуры. Металл - алюминий. Про желательный 1% сплав с кремнием я знаю, но пока точно не знаю что с этим буду делать. Прокола pn перехода из-за использования чистого алюминия можно избежать разными способами, а электромиграция не значимая проблема для данной задачи.
  • Печка - банальный нихром на кварцевой трубке. Контроль температуры - по изменению сопротивления Нихрома или в худшем случае - по выдаваемой на спираль мощности (т.е. вслепую). Термопары высокотемпературные я купил - но они слишком большие для моих сверхкомпактных размеров.
  • Фоторезист - банальный новолачный фоторезист с щелочным проявителем. Опять же, загрязнение ионами щелочных металлов не фатальны для первоначальной задачи, поэтому с дорогими без-металлическими проявителями (на основе TMAH) я решил пока не заморачиваться.

Продвижение по материалам

В дополнение к пластинам из унылого кремния - кремний на сапфире (на производстве - используется для радиационно-стойких микросхем). В моём случае - техпроцесс на некоторых шагах может быть упрощен:

Приехал из Китая двухступенчатый вакуумный насос с фурнитурой (краники с электроприводом, вакуумные шланги, манометры и проч.) - его должно быть достаточно для напыления металлов:

Кислоты - серная, соляная, азотная, борная, ортофосфорная… Многих беспокоят прекурсоры и госнаркоконтроль - у меня все приобретено легально, с прохождением соответствующих бюрократических процедур.

И заморская, плавиковая. Это - моя самая большая в жизни ошибка. В магазине отказались разливать (из-за её опасности), и сказали, что могут продать только целиком, 24кг. Тогда я не видел других вариантов, и согласился. А ведь её я реально боялся - после того, как я давно посмотрел видео о работе с плавиковой кислотой - потом кошмар приснился, что я ей отравился, антидота нет и всё, конец (что недалеко от истины, тема раскрыта в 20-й серии 4-го сезона ER/Скорой помощи). Идея была «гениальна» - хрен с ним, сам разолью и продам лишнюю. Но после первых 2-х килограммов, которые переливать пришлось 20-и кубовым шприцем, в противогазе и проч., когда у ног задорно шипит бетон, растворяясь в тех местах, где я пару капель пролил - я решил - ну его нафиг. Получился своего рода чемодан без ручки, который не просто жалко выкидывать - нельзя, т.к. чертовски опасен.

В итоге, этот чемодан я подарил продавцу химией с самовывозом, оставив себе минимально необходимое количество. Это был хороший урок.

После этого, самые опасные вещества в производстве микросхем, которые мне придется использовать - источники фосфора и бора для легирования: BBr3 и POCl3 - их я купил самым минимальным необходимым объемом. Есть и более безопасные альтернативы - так называемые spin-on dopants - но производители не хотят мне его продавать, из-за liability issues. Если не выйдет с процессом по старинке, буду додавливать производителей.

Кварцевая посуда для микро-печки до 1000C

Нихромовая проволока (диаметр 0.4 и 0.8мм), никелевый прокат для электродов электролизера:

Промышленный фоторезист для микроэлектронного применения. Я решил не гнаться за максимально тонким резистом, этот - достаточно дубовый 2-х микронный. Толще слой - проще работать, по началу его должно быть достаточно. Пока нет промотора адгезии (HMDS) - его не оказалось в наличии, буду пробовать без него:

Как заметили некоторые люди, помогавшие мне советами - сделать микросхемы можно только в лаборатории. Сделать их дома можно только если дома - лаборатория. Похоже к этому дело и идет

В целом, самые необходимые вещи по логистике уже все есть.
Есть вещи, к которым меня пока не пускает жаба:

  1. Металлографический микроскоп - в России китайские микроскопы перепродают по 100-300 тыс рублей, на родине слонов они - 1500$-3000$. Это пожалуй тоже необходимая вещь, не могу пока только найти китайцев, которые бы с Escrow его мне продали.
  2. Лабораторный генератор азота - чертовки хитрая штука. Азот получает из воздуха, расходников нет. С ним можно было бы сделать бескислородный бокс и снять проблему инертного газа. Но стоит порядка 190 тыс рублей. Буду обходиться без него.
  3. Генератор деионизированной воды - тоже полезная вещь в хозяйстве, но очень уж простая для ~45тыс рублей. Буду пробовать «колхозить» свою на ионообменных смолах (исключительно из интереса, понятно, что ДИ воду можно и покупать)

Остающиеся проблемы и что я ищу

  • Подробные описания (старых) техпроцессов с конкретными цифрами. Один я нашел, и он очень мне помог, но еще на 1-2 взглянуть было бы крайне полезно.
  • «Открытые» (т.е. когда непосредственно видны по слоям содержимое standard cells) цифровые библиотеки для относительно толстых техпроцессов
  • Ищу, кто поможет настроить софт для проектирования микросхем и подскажет как там что - чтобы иметь общее представление, и я мог синтезировать простые тестовые схемы. Понятно, что сдвиговой регистр я и на бумажке нарисовать могу, а вот что-то чуть сложнее...
  • Пока не удалось купить вакуумную резину для камеры напыления металлов.
  • Также буду неспешно искать где купить образцы spin-on dopants и spin-on glass для ILD (диэлектрика, который разделяет уровни металлической разводки).
  • Небольшие объемы

Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, . На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.

Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы . В этом случае хорошим помощником будет наш .

Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр . Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, и тот же сварочный аппарат.

Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.

Когда все будет готово – инструменты собраны, запчасти подысканы и минимальные знания получены, можно переходить к сборке любительских электронных самоделок в домашних условиях. Тут-то как раз, наш небольшой справочник Вам и поможет. Каждая предоставленная инструкция включает в себя не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами, а также видео уроками, в которых наглядно показывается весь процесс изготовления. Если же Вы какой-то момент не поняли, то можете уточнить его под записью в комментариях. Наши специалисты постараются своевременно проконсультировать Вас!

Что еще почитать