При изгибе в поперечных сечениях балки действуют. Нормальные напряжения при изгибе

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

Рассмотрим балку 1 го пролета

Определим фиктивные реакции для балки первого пролета по табличным формулам (см.таблицу «Фиктивные опорные реакции... .»)

Балка 2 го пролета

Балка 3 го пролета

5. Составляем уравнение 3 х моментов для двух точек ­­– промежуточных опор ­– опора 1 и опора 2. Это и будут два недостающих уравнения для решения задачи.

Уравнение 3х моментов в общем виде:

Для точки (опоры) 1 (n=1):

Для точки (опоры) 2 (n=2):

Подставляем все известные величины, учитываем, что момент на нулевой опоре и на третьей опоре равны нулю, M 0 =0; M 3 =0

Тогда получим:

Поделим первое уравнение на сомножитель 4 при M 2

Второе уравнение поделим на сомножитель 20 при M 2

Решим эту систему уравнений:

Из первого уравнения вычтем второе, получим:

Подставляем это значение в любое из уравнений и находим M 2

Глава 1. ИЗГИБ ПРЯМОЛИНЕЙНЫХ БАЛОК И БАЛОЧНЫХ СИСТЕМ

1.1. Основные зависимости теории изгиба балок

Балками принято называть стержни, работающие на изгиб под действием поперечной (нормальной к оси стержня) нагрузки. Балки – наиболее распространенные элементы судовых конструкций. Ось балки – геометрическое место центров тяжести ее поперечных сечений в недеформированном состоянии. Балка называется прямой, если осью является прямая линия. Геометрическое место центров тяжести поперечных сечений балки в изогнутом состоянии называется упругой линией балки. Принято следующее направление осей координат: ось OX совмещена с осью балки, а оси OY и OZ – с главными центральными осями инерции поперечного сечения (рис. 1.1).

Теория изгиба балок основывается на следующих допущениях.

1. Принимается гипотеза плоских сечений, согласно которой поперечные сечения балки, первоначально плоские и нормальные к оси балки, остаются после ее изгиба плоскими и нормальными к упругой линии балки. Благодаря этому деформацию изгиба балки можно рассматривать независимо от деформации сдвига, которая вызывает искажение плоскостей поперечных сечений балки и их поворот относительно упругой линии (рис. 1.2, а ).

2. Нормальными напряжениями в площадках, параллельных оси балки, пренебрегают из-заих малости (рис. 1.2, б ).

3. Балки считаются достаточно жесткими, т.е. прогибы их малы по сравнению с высотой балок, а углы поворота сечений малы по сравнению с единицей (рис.1.2, в ).

4. Напряжения и деформации связаны линейной зависимостью, т.е. справедлив закон Гука (рис. 1.2, г ).


Рис. 1.2. Допущения теории изгиба балок

Будем рассматривать появляющиеся при изгибе балки в ее сечении изгибающие моменты и перерезывающие силы как результат действия мысленно отбрасываемой по сечению части балки на оставшуюся ее часть.

Момент всех действующих в сечении усилий относительно однойиз главных осей называется изгибающим моментом. Изгибающий момент равен сумме моментов всех сил (включая опорные реакции и моменты), действующих на отброшенную часть балки, относительно указанной оси рассматриваемого сечения.

Проекция на плоскость сечения главного вектора усилий, действующих в сечении, называется перерезывающей силой. Она равна сумме проекций наплоскость сечения всех сил (включая опорные реакции), действующих на отброшенную часть балки .

Ограничимся рассмотрением изгиба балки, происходящего в плоскости XOZ . Такой изгиб будет иметь место в случае, когда поперечная нагрузка действует в плоскости, параллельной плоскости XOZ , а ее равнодействующая в каждом сечении проходит через точку, называемую центром изгиба сечения. Заметим, что для сечений балок,имеющих две осисимметрии, центр изгиба совпадает с центром тяжести, а для сечений, имеющих одну ось симметрии, он лежит на осисимметрии, но не совпадает с центром тяжести.

Нагрузка входящих в состав судового корпуса балок может быть либо распределенной (чаще всего равномерно распределенной вдоль оси балки, или изменяющейся по линейному закону), либо приложенной в виде сосредоточенных сил и моментов.

Обозначим интенсивность распределенной нагрузки (нагрузку, приходящуюся на единицу длины оси балки) через q (x ), внешнюю сосредоточенную силу – как Р , а внешний изгибающий момент – как М . Распределенная нагрузка и сосредоточенная сила положительны, если направления их действия совпадают с положительным направлением оси OZ (рис. 1.3,а ,б ). Внешний изгибающий момент положителен, если он направлен по часовой стрелке (рис.1.3,в ).

Рис. 1.3. Правило знаков для внешних нагрузок

Обозначим прогиб прямой балки при ее изгибе в плоскости XOZ через w , а угол поворота сечения – через θ. Примем правило знаков для элементов изгиба (рис. 1.4):

1) прогиб положителен, если он совпадает с положительным направлением оси OZ (рис. 1.4, а ):

2) угол поворота сечения положителен, если в результате изгиба сечение поворачивается по часовой стрелке (рис. 1.4, б );

3) изгибающие моменты положительны, если балка под их воздействием изгибается выпуклостью вверх (рис. 1.4, в );

4) перерезывающие силы положительны, если они поворачивают выделенный элемент балки против часовой стрелки (рис. 1.4, г ).


Рис. 1.4. Правило знаков для элементов изгиба

На основании гипотезы плоских сечений можно видеть (рис. 1.5), что относительное удлинение волокна ε x , отстоящего на z от нейтральной оси, будет равно

ε x = −z /ρ ,(1.1)

где ρ – радиус кривизны балки в рассматриваемом сечении.

Рис. 1.5. Схема изгиба балки

Нейтральной осью поперечного сечения называется геометрическое место точек, для которых линейная деформация при изгибе равна нулю. Между кривизной и производными от w (x ) существует зависимость

В силу принятого допущения о малости углов поворота для достаточно жестких балок величина мала по сравнению с единицей , поэтому можно считать, что

Подставив 1/ρ из (1.2) в (1.1), получим

Нормальные напряжения от изгиба σ x на основании закона Гука будут равны

Поскольку из определения балок следует, что продольное усилие, направленное вдоль оси балки, отсутствует, главный вектор нормальных напряжений должен обращаться в нуль, т.е.

где F – площадь поперечного сечения балки.

Из (1.5) получим, что статический момент площади сечения балки равен нулю. Это значит, что нейтральная ось сечения проходит через его центр тяжести.

Момент внутренних усилий, действующих в поперечном сечении относительно нейтральной оси, M y будет

Если учесть, что момент инерции площади сечения относительно нейтральной оси OY равен , и подставить это значение в (1.6), то получим зависимость, которая выражает основное дифференциальное уравнение изгиба балки

Момент внутреннихусилий в сечении относительно оси OZ будет

Поскольку оси OY и OZ по условию являются главными центральными осями сечения, то .

Отсюда следует, что при действии нагрузки в плоскости, параллельной главной плоскости изгиба, упругая линия балки будет плоской кривой. Такой изгиб называется плоским . На основании зависимостей (1.4) и (1.7) получим

Формула (1.8) показывает, что нормальные напряжения при изгибе балок пропорциональны отстоянию от нейтральной оси балки. Естественно, что это вытекаетиз гипотезы плоских сечений. В практических расчетах для определения наибольших нормальных напряжений часто используют момент сопротивления сечения балки

где |z | max – абсолютное значение отстояния наиболее удаленного волокна от нейтральной оси.

В дальнейшем нижние индексы y для упрощения опущены.

Между изгибающим моментом, перерезывающей силой и интенсивностью поперечной нагрузки существует связь, вытекающая из условия равновесия элемента, мысленно выделенного из балки.

Рассмотрим элемент балки длиной dx (рис. 1.6). Здесь принимается, что деформации элемента пренебрежимо малы.

Если в левом сечении элемента действует момент M и перерезывающая сила N , то в правом его сечении соответствующие усилия будут иметь приращения. Рассмотрим только линейные приращения .

Рис.1.6. Усилия, действующие на элемент балки

Приравняв нулю проекцию на ось OZ всех усилий, действующих на элемент, и момент всех усилий относительно нейтральной оси правого сечения, получим:

Из этих уравнений с точностью до величин высшего порядка малости получим

Из (1.11) и (1.12) следует, что

Зависимости (1.11)–(1.13) известны под названием теоремы Журавского–Шведлера .Из этих зависимостей следует, что перерезывающая сила и изгибающий момент могут быть определены путем интегрирования нагрузки q :


где N 0 и M 0 – перерезывающая сила и изгибающий момент в сечении, соответствующем x = x 0 , которое принимается за начало отсчета; ξ, ξ 1 – переменные интегрирования .

Постоянные N 0 и M 0 для статически определимых балок могут быть определены из условий их статического равновесия.

Если балка статически определимая, изгибающий момент влюбом сечении может быть найден по (1.14), и упругая линия определяется путем двукратного интегрирования дифференциального уравнения (1.7). Однако в конструкциях судового корпуса статически определимые балки встречаются крайне редко. Большинство балок, входящих в состав судовых конструкций, образует многократно статически неопределимые системы. В этих случаях для определения упругой линии уравнение (1.7) является неудобным, и целесообразно перейти к уравнению четвертого порядка.

1.2. Дифференциальное уравнение изгиба балок

Дифференцируя уравнение (1.7) для общего случая, когда момент инерции сечения является функцией от x , с учетом (1.11) и (1.12) получим:


где штрихами обозначено дифференцирование по x .

Для призматических балок, т.е. балок постоянного сечения, получим следующие дифференциальные уравнения изгиба:

Обыкновенное неоднородное линейное дифференциальное уравнение четвертого порядка (1.18) можно представить в виде совокупности четырех дифференциальных уравнений первого порядка:

Используем далееу равнение (1.18) или систему уравнений (1.19) для определения прогиба балки (ее упругой линии) и всех неизвестных элементов изгиба: w (x ), θ (x ), M (x ), N (x ).

Интегрируя (1.18) последовательно 4 раза (считая, чтолевому концу балки соответствует сечение x = x a ), получим:


Нетрудно видеть, что постоянные интегрирования N a , M a , θ a , w a имеют определенный физический смысл, а именно:

N a – перерезывающая сила в начале отсчета, т.е. при x = x a ;

M a – изгибающий момент в начале отсчета;

θ a – угол поворота в начале отсчета;

w a – прогиб в этом же сечении.

Для определения указанных постоянных всегда можно составить четыре граничных условия – по два для каждого конца однопролетной балки. Естественно, что граничные условия зависят от устройства концов балки. Простейшие условия соответствуют шарнирному опиранию на жесткие опоры или жесткой заделке.

При шарнирном опирании конца балки на жесткой опоре (рис. 1.7, а ) прогиб балки и изгибающий момент равны нулю:

При жесткой заделке на жесткой опоре (рис. 1.7, б ) равны нулю прогиб и угол поворота сечения:

Если конец балки (консоль) свободен (рис. 1.7, в ), то в этом сечении равны нулю изгибающий момент и перерезывающая сила:

Возможна ситуация, связанная со скользящей заделкой или заделкой по симметрии (рис. 1.7, г ). Это приводит к таким граничным условиям:

Заметим, что граничные условия (1.26), касающиеся прогибов и углов поворота, принято называть кинематическими , а условия (1.27) – силовыми .


Рис. 1.7. Виды граничных условий

В судовых конструкциях часто приходится иметь дело с более сложными граничными условиями, которые соответствуют опиранию балки на упругие опоры или упругой заделке концов.

Упругой опорой (рис. 1.8, а ) называется опора,имеющая просадку, пропорциональную действующей на опору реакции. Будем считать реакцию упругой опоры R положительной, если она действует на опору в сторону положительного направления оси OZ . Тогда можно записать:

w = AR ,(1.29)

где A – коэффициент пропорциональности, называемый коэффициентом податливости упругой опоры.

Этот коэффициент равен просадке упругой опоры при действии реакции R = 1, т.е. A = w R = 1 .

Упругими опорами в судовых конструкциях могут быть балки, подкрепляющиерассматриваемую балку, или пиллерсы и другие конструкции, работающие на сжатие.

Для определения коэффициента податливости упругой опоры A необходимо загрузить соответствующую конструкцию единичной силой и найти абсолютную величину просадки (прогиб) в месте приложения силы. Жесткая опора – частный случай упругой опоры при A = 0.

Упругой заделкой (рис. 1.8, б ) называется такая опорная конструкция, которая препятствует свободному повороту сечения и в которой угол поворота θ в этом сечении пропорционален моменту, т.е. имеетместо зависимость

θ =Â M .(1.30)

Множитель пропорциональности Â называется коэффициентом податливости упругой заделки и может быть определен, как угол поворота упругой заделки при M = 1, т.е. Â = θ M = 1 .

Частным случаем упругой заделки при Â = 0 является жесткая заделка. В судовых конструкциях упругими заделками обычно являются балки, нормальные к рассматриваемой и лежащие в этой же плоскости. Например, упруго заделанными на шпангоутах можно считать бимсы и т.п.


Рис. 1.8. Упругая опора (а ) и упругая заделка (б )

Если концы балки длиной L оперты на упругие опоры (рис. 1.9), то реакции опор в концевых сечениях равны перерезывающим силам, и граничные условия можно записать:

Знак минус в первом условии (1.31) принят потому, что положительная перерезывающая сила в левом опорном сечении соответствует реакции, действующей на балку сверху вниз, а на опору – снизу вверх.

Если концы балки длиной L упругозаделанные (рис. 1.9), то для опорных сечений, учитывая правило знаков для углов поворота и изгибающих моментов, можно записать:

Знак минус во втором условии (1.32) принят потому, что при положительном моменте в правом опорном сечении балки момент, действующий на упругую заделку, направлен против часовой стрелки, а положительный угол поворота в этом сечении направлен по часовой стрелке, т.е. направления момента и угла поворота не совпадают.

Рассмотрение дифференциального уравнения (1.18) и всех граничных условий показывает, что они линейны относительно как входящих в них прогибов и их производных, так и действующих на балку нагрузок. Линейность является следствием допущений о справедливости закона Гука и малости прогибов балки.

Рис. 1.9. Балка, оба конца которой упруго оперты и упруго заделаны (а );

усилия в упругих опорах и упругих заделках, соответствующие положительным
направлениям изгибающего момента и перерезывающей силы (б )

При действии на балку нескольких нагрузок каждый элемент изгиба балки (прогиб, угол поворота, момент и перерезывающая сила) представляет собой сумму элементов изгиба от действия каждой из нагрузок в отдельности. Это очень важное положение, называемое принципом наложения, или принципом суммирования действия нагрузок, широко используется в практических расчетах и, в частности, для раскрытия статической неопределимости балок.

1.3. Метод начальных параметров

Общий интеграл дифференциального уравнения изгиба балки может быть использован для определения упругой линии однопролетной балки в том случае, когда нагрузка балки представляет собой непрерывную функцию координаты на протяжении всего пролета. Если в составе нагрузки встречаются сосредоточенные силы, моменты или распределенная нагрузка действует на части длины балки (рис. 1.10), то непосредственно использовать выражение (1.24) нельзя. В этом случае можно было бы, обозначив упругие линии на участках 1, 2 и 3 через w 1 , w 2 , w 3 , выписать для каждойиз них интеграл в виде (1.24) и найти все произвольные постоянные из граничных условий на концах балки и условий сопряжения на границах участков. Условия сопряжения в рассматриваемом случае выражаются так:

при x=a 1

при x=a 2

при x=a 3

Нетрудно заметить, что такой путь решения задачи приводит к большому числу произвольных постоянных, равному 4n , где n – число участков по длине балки.

Рис. 1.10. Балка, на отдельных участках которой приложены нагрузки разных типов

Значительно удобнее представить упругую линию балки в виде

где члены за двойной чертой учитываются при x ³ a 1, x ³ a 2 и т.д.

Очевидно, что δ 1 w (x )=w 2 (x )−w 1 (x ); δ 2 w (x )=w 3 (x )−w 2 (x ); и т.д.

Дифференциальные уравнения для определения поправок к упругой линии δ i w (x ) на основании (1.18) и (1.32) можно записать в виде

Общий интеграл для любой поправки δ i w (x ) к упругой линии может быть записан в виде (1.24) при x a = a i . При этом параметры N a , M a , θ a , w a имеют смысл изменения (скачка) соответственно: в перерезывающей силе, изгибающем моменте, угле поворота и стрелке прогиба при переходе через сечение x = a i . Такой прием называется методом начальных параметров. Можно показать, чтодля балки, приведенной на рис. 1.10, уравнение упругой линии будет


Таким образом, метод начальных параметров дает возможность и при наличии разрывности в нагрузках записать уравнение упругой линии в виде, содержащем лишь четыре произвольных постоянных N 0 , M 0 , θ 0 , w 0 , которые определяются из граничных условий по концам балки.

Заметим, что для большого числа вариантов встречающихся на практике однопролетных балок составлены подробные таблицы изгиба, которые позволяют легко найти прогибы, углы поворота и другие элементы изгиба.

1.4. Определение касательных напряжений при изгибе балок

Принятая в теории изгиба балок гипотеза плоских сечений приводит к тому, что деформация сдвига в сечении балки оказывается равной нулю, и мы неимеем возможности, используя закон Гука, определить касательные напряжения. Однако поскольку в общем случае в сечениях балки действуют перерезывающие силы, то должны возникать соответствующие им касательные напряжения. Это противоречие (которое является следствием принятой гипотезы плоских сечений) можно обойти, рассматривая условия равновесия. Будем считать, что при изгибе балки, составленной из тонких полос, касательные напряжения в поперечном сечении каждой из этих полос равномерно распределены по толщине и направлены параллельно длинным сторонам ее контура. Это положение практически подтверждается точными решениями теории упругости. Рассмотрим балку открытого тонкостенного двутаврового профиля. На рис. 1.11 показано положительное направление касательных напряжений в поясках и стенке профиля при изгибе в плоскости стенки балки. Выделим продольным сечением I - I и двумя поперечными сечениями элемент длиной dx (рис. 1.12).

Обозначим касательное напряжение в указанном продольном сечении через τ, а нормальные усилия в начальном поперечном сечении через T . Нормальные усилия в конечном сечении будут иметь приращения. Рассмотрим только линейные приращения, тогда .

Рис. 1.12. Продольные усилия и касательные напряжения
в элементе пояска балки

Условие статического равновесия выделенногоиз балки элемента (равенство нулю проекций усилий на ось OX ) будет

где ; f – площадь части профиля, отсеченного линией I – I ; δ– толщина профиля в месте сечения.

Из (1.36) следует:

Поскольку нормальные напряжения σ x определяются формулой (1.8), то

При этом мы полагаем, что балка имеет постоянное по длине сечение. Статический момент части профиля (отсеченной линией I – I ) относительно нейтральной оси сечения балки OY является интегралом

Тогда из (1.37) для абсолютной величины напряжений получим:

Естественно, что полученная формула для определения касательных напряжений справедлива и для любого продольного сечения, например II – II (см. рис. 1.11), и статический момент S отс вычисляется для отсеченной части площади профиля балки относительно нейтральной оси без учета знака.

Формула (1.38) по смыслу проведенного вывода определяет касательные напряжения в продольных сечениях балки. Из теоремы о парности касательных напряжений, известной из курса сопротивления материалов, следует, что такие же касательные напряжения действуют в соответствующих точках поперечного сечения балки. Естественно, что проекция главного вектора касательных напряжений на ось OZ должна быть равна перерезывающей силе N в данном сечении балки. Поскольку в поясках балки такого типа, как показано на рис. 1.11, касательные напряжения направлены по оси OY , т.е. нормально к плоскости действия нагрузки, и являются в целом уравновешенными, перерезывающая сила должна уравновешиваться касательными напряжениями в стенке балки. Распределение касательных напряжений по высоте стенки следует закону изменения статического момента S отс отсеченной части площади относительно нейтральной оси (при постоянной толщине стенки δ ).

Рассмотрим симметричное сечение двутавровой балки с площадью пояска F 1 и площадью стенки ω = (рис. 1.13).

Рис. 1.13. Сечение двутавровой балки

Статический момент отсеченной части площади для точки, отстоящей на z от нейтральной оси, будет

Как видно из зависимости (1.39), статическиймомент изменяется с z по закону квадратичной параболы. Наибольшее значение S отс , а следовательно, и касательных напряжений τ, получится у нейтральной оси, где z = 0:

Наибольшее касательное напряжениев стенке балки у нейтральной оси

Поскольку момент инерции сечения рассматриваемой балки равен

то наибольшее касательное напряжение будет


Отношение N /ω есть не что иное, как среднее касательное напряжение в стенке, вычисленное в предположенииравномерного распределения напряжений. Принимая, например, ω = 2F 1 , по формуле (1.41) получим

Таким образом, у рассматриваемой балки наибольшее касательное напряжение в стенке у нейтральной оси лишь на 12,5% превышает среднее значение этих напряжений. Следует отметить, что у большинства профилей балок, применяемых в судовом корпусе, превышение максимальных касательных напряжений над средними составляет 10–15%.

Если рассмотреть распределение касательных напряжений при изгибе в сечении балки, показанной на рис. 1.14, то можно видеть, что они образуют момент относительно центра тяжести сечения. В общем случае изгиб такой балки в плоскости XOZ будет сопровождаться закручиванием.

Изгиб балки не сопровождается закручиванием, если нагрузка будет действовать в плоскости, параллельной XOZ , проходящей через точку, называемую центром изгиба. Эта точка характеризуетсятем, что момент всех касательных усилий в сечении балки относительно нее равен нулю.

Рис. 1.14. Касательные напряжения при изгибе швеллерной балки (точка А – центр изгиба)

Обозначив отстояние центра изгиба А от оси стенки балки через е , запишем условие равенства нулю моментакасательных усилий относительно точки А :

где Q 2 – касательное усилие в стенке, равное перерезывающей силе, т.е. Q 2 =N ;

Q 1 =Q 3 – усилие в пояске, определяемое на основании (1.38) зависимостью

Деформация сдвига (или угол сдвига) γ изменяется по высоте стенки балки так же, как и касательные напряжения τ, достигая наибольшей величины у нейтральной оси.

Как было показано, у балок с поясками изменение касательных напряжений по высоте стенки весьма незначительно. Это позволяет в дальнейшем рассматривать некоторый средний угол сдвига в стенке балки

Деформация сдвига приводит к тому, что прямой угол между плоскостью поперечного сечения балки и касательной к упругой линии изменяется на величину γ ср . Упрощенная схема деформации сдвига элемента балки показана на рис. 1.15.

Рис. 1.15. Схема деформации сдвига элемента балки

Обозначив стрелку прогиба, вызванную сдвигом через w сдв , можно записать:

С учетом правила знаков для перерезывающей силы N и угла поворота найдем

Поскольку ,

Интегрируя (1.47), получим

Постоянная a , входящая в (1.48), определяет перемещение балки как твердого тела и может быть принята равной любой величине, так как при определении суммарной стрелки прогиба от изгиба w изг и сдвига w сдв

появится сумма постоянных интегрирования w 0 +a , определяемая из граничных условий. Здесь w 0 – прогиб от изгиба в начале координат.

Положим в дальнейшем a =0. Тогда окончательно выражение для упругой линии, вызванной сдвигом, примет вид

Изгибная и сдвиговая составляющие упругой линии показаны на рис. 1.16.


Рис. 1.16. Изгибная (а ) и сдвиговая (б ) составляющие упругой линии балки

В рассмотренном случае угол поворота сечений при сдвиге равен нулю, поэтому и с учетом сдвига углы поворота сечений, изгибающие моменты и перерезывающие силы связаны только с производными упругой линии от изгиба:

Несколько иначе обстоит дело в случае действия на балку сосредоточенных моментов, которые, как будет показано ниже, не вызывают прогибов от сдвига, а приводят лишь к дополнительному повороту сечений балки.

Рассмотрим свободно опертую на жесткие опоры балку, в левом сечении которой действует момент М . Перерезывающая сила в этом случае будет постоянной и равной

Для правого опорного сечения соответственно получим

.(1.52)

Выражения (1.51)и (1.52) можно переписать в виде


Выражения в круглых скобках характеризуют относительную добавку к углу поворота сечения, вызванную сдвигом.

Если рассмотреть, например, свободно опертую балку, загруженную посередине ее пролета силой Р (рис. 1.18), то прогиб балки под силой будет равен

Прогиб от изгиба можно найти по таблицам изгиба балок. Прогиб от сдвига определяется по формуле (1.50) с учетом того, что .

Рис. 1.18. Схема свободно опертой балки, загруженной сосредоточенной силой

Как видно из формулы (1.55), относительная добавка к прогибу балки за счет сдвига имеет такую же структуру, что и относительная добавка к углу поворота, но с другим численным коэффициентом.

Введем обозначение

где β – численный коэффициент, зависящий от рассматриваемой конкретной задачи, устройства опор и нагрузки балки.

Проанализируем зависимость коэффициента k от различных факторов.

Если учесть, что , получим вместо (1.56)

Момент инерции сечения балки всегда может быть представлен в виде

,(1.58)

где α – численный коэффициент, зависящий от формы и характеристик поперечного сечения. Так, для балки двутаврового профиля по формуле (1.40) при ω =2F 1 найдем I = ωh 2 /3, т.е. α =1/3.

Заметим, что с ростом размеров поясков балки коэффициент α будет увеличиваться.

С учетом (1.58) вместо (1.57) можно записать:

Таким образом, значение коэффициента k существенно зависит от отношения длины пролета балки к ее высоте, от формы сечения (через коэффициент α ), устройства опор и нагрузки балки (через коэффициент β ). Чем относительно длиннее балка (h / L мало), тем меньше влияние деформации сдвига. Для балок прокатного профиля, имеющих отношение h / L меньше 1/10÷1/8, поправка на сдвиг практически может не учитываться.

Однако для балок с широкими поясками, таких, например, как киль, стрингеры и флоры в составе днищевых перекрытий влияние сдвига и при указанных h / L может оказаться значительным.

Следует отметить, что деформации сдвига оказывают влияние не только на увеличение прогибов балок, но в некоторых случаях и на результаты раскрытия статической неопределимости балок и балочных систем.


Общие понятия.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1) . Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

; (6.1)

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а) , то при чистом изгибе она деформируется следующим образом (рис. 6.1, б) :

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. .

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называется нейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. .

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной. До деформации сечения, ограничивающие элемент, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна, отстоящего на расстоянии от нейтрального слоя.

Длина этого волокна после деформации (длина дуги) равна. Учитывая, что до деформации все волокна имели одинаковую длину, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента в поперечном сечении (6.1)

Вспомним, что интеграл представляет собой момент инерции сечения относительно оси

Или

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя) с действующим в сечении моментом. Произведение носит название жесткости сечения при изгибе, Н· м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы и изгибающего момента

Поскольку,

то

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и - главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сечения относительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

Сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента действует еще продольная сила и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Определение поперечных сил и изгибающих моментов.

Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и.

Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.

Для определения и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и.

Установим следующие правила знаков для и:

  • Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке ;
  • Изгибающий момент в сечении положителен, если он вызывает сжатие верхних волокон.

Рис. .

Для определения данных усилий используем два уравнения равновесия:

1. ; ; .

2. ;

Таким образом,

а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;

б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.

При практическом вычислении руководствуются обычно следующим:

  1. Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражении для она дает положительное слагаемое.
  2. Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.

Рис. .

Построение эпюр и в балках.

Рассмотрим двухопорную балку (рис. 6.5, а) . На балку действует в точке сосредоточенный момент, в точке - сосредоточенная сила и на участке - равномерно распределенная нагрузка интенсивностью.

Определим опорные реакции и (рис. 6.5, б) . Равнодействующая распределенной нагрузки равна, а линия действия ее проходит через центр участка. Составим уравнения моментов относительно точек и.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки А (рис. 6.5, в) .

(рис. 6.5, г). Расстояние может изменяться в пределах ().

Значение поперечной силы не зависит от координаты сечения, следовательно, во всех сечениях участка поперечные силы одинаковы и эпюра имеет вид прямоугольника. Изгибающий момент

Изгибающий момент изменяется по линейному закону. Определим ординаты эпюры для границ участка.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки (рис. 6.5, д). Расстояние может изменяться в пределах ().

Поперечная сила изменяется по линейному закону. Определим для границ участка.

Изгибающий момент

Эпюра изгибающих моментов на этом участке будет параболической.

Чтобы определить экстремальное значение изгибающего момента, приравниваем к нулю производную от изгибающего момента по абсциссе сечения:

Отсюда

Для сечения с координатой значение изгибающего момента будет составлять

В результате получаем эпюры поперечных сил (рис. 6.5, е) и изгибающих моментов (рис. 6.5, ж).

Дифференциальные зависимости при изгибе.

(6.11)

(6.12)

(6.13)

Эти зависимости позволяют установить некоторые особенности эпюр изгибающих моментов и поперечных сил:

Н а участках, где нет распределенной нагрузки, эпюры ограничены прямыми, параллельными нулевой линии эпюры, а эпюры в общем случае – наклонными прямыми .

Н а участках, где к балке приложена равномерно распределенная нагрузка, эпюра ограничена наклонными прямыми, а эпюра - квадратичными параболами с выпуклостью, обращенной в сторону, противоположную направлению действия нагрузки .

В сечениях, где, касательная к эпюре параллельна нулевой линии эпюры .

Н а участках, где, момент возрастает; на участках, где, момент убывает .

В сечениях, где к балке приложены сосредоточенные силы, на эпюре будут скачки на величину приложенных сил, а на эпюре будут переломы .

В сечениях, где к балке приложены сосредоточенные моменты, на эпюре будут скачки на величину этих моментов.

Ординаты эпюры пропорциональны тангенсу угла наклона касательной к эпюре.

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)
Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.



После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.




Давайте рассмотрим пару примеров:
1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.
Для начала нам необходимо выбрать расчетную схему.


На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

P = m * g = 90 * 10 = 900 Н = 0.9 кН


М = P * l = 0.9 кН * 2 м = 1.8 кН*м


По таблице сортамента двутавров находим момент сопротивления двутавра №10.


Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа


После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа – верно, значит данный двутавр выдержит массу 90 кг.


2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.
Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).

Прямой изгиб. Плоский поперечный изгиб Построение эпюр внутренних силовых факторов для балок Построение эпюр Q и М по уравнениям Построение эпюр Q и М по характерным сечениям (точкам) Расчёты на прочность при прямом изгибе балок Главные напряжения при изгибе. Полная проверка прочности балок Понятие о центре изгиба Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жёсткости Дифференциальное уравнение изогнутой оси балки Метод непосредственного интегрирования Примеры определения перемещений в балках методом непосредственного интегрирования Физический смысл постоянных интегрирования Метод начальных параметров (универсальное уравнение изогнутой оси балки). Примеры определения перемещений в балке по методу начальных параметров Определение перемещений по методу Мора. Правило А.К. Верещагина. Вычисление интеграла Мора по правилу А.К. Верещагина Примеры определения перемещений посредством интеграла Мора Библиографический список Прямой изгиб. Плоский поперечный изгиб. 1.1. Построение эпюр внутренних силовых факторов для балок Прямым изгибом называется такой вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила. В частном случае, поперечная сила может быть равна нулю, тогда изгиб называется чистым. При плоском поперечном изгибе все силы расположены в одной из главных плоскостей инерции стержня и перпендикулярны его продольной оси, в той же плоскости расположены моменты (рис. 1.1, а,б). Рис. 1.1 Поперечная сила в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Поперечная сила в сечении m-n балки (рис. 1.2, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена вверх, а справа – вниз, и отрицательной – в противоположном случае (рис. 1.2, б). Рис. 1.2 Вычисляя поперечную силу в данном сечении, внешние силы, лежащие слева от сечения, берут со знаком плюс, если они направлены вверх, и со знаком минус, если вниз. Для правой части балки – наоборот. 5 Изгибающий момент в произвольном поперечном сечении балки численно равен алгебраической сумме моментов относительно центральной оси z сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Изгибающий момент в сечении m-n балки (рис. 1.3, а) считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по стрелке часов, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 1.3, б). Рис. 1.3 При вычислении изгибающего момента в данном сечении моменты внешних сил, лежащие слева от сечения, считаются положительными, если они направлены по ходу часовой стрелки. Для правой части балки – наоборот. Удобно определять знак изгибающего момента по характеру деформации балки. Изгибающий момент считается положительным, если в рассматриваемом сечении отсечённая часть балки изгибается выпуклостью вниз, т. е. растягиваются нижние волокна. В противоположном случае изгибающий момент в сечении отрицательный. Между изгибающим моментом М, поперечной силой Q и интенсивностью нагрузки q существуют дифференциальные зависимости. 1. Первая производная от поперечной силы по абсциссе сечения равна интенсивности распределенной нагрузки, т.е. . (1.1) 2. Первая производная от изгибающего момента по абсциссе сечения равна поперечной силе, т. е. . (1.2) 3. Вторая производная по абсциссе сечения равна интенсивности распределённой нагрузки, т. е. . (1.3) Распределенную нагрузку, направленную вверх, считаем положительной. Из дифференциальных зависимостей между М, Q, q вытекает ряд важных выводов: 1. Если на участке балки: а) поперечная сила положительна, то изгибающий момент возрастает; б) поперечная сила отрицательна, то изгибающий момент убывает; в) поперечная сила равна нулю, то изгибающий момент имеет постоянное значение (чистый изгиб); 6 г) поперечная сила проходит через нуль, меняя знак с плюса на минус, max M M, в противоположном случае M Mmin. 2. Если на участке балки распределенная нагрузка отсутствует, то поперечная сила постоянна, а изгибающий момент изменяется по линейному закону. 3. Если на участке балки имеется равномерно распределенная нагрузка, то поперечная сила изменяется по линейному закону, а изгибающий момент – по закону квадратной параболы, обращенной выпуклостью в сторону действия нагрузки (в случае построения эпюры М со стороны растянутых волокон). 4. В сечении под сосредоточенной силой эпюра Q имеет скачок (на величину силы), эпюра М - излом в сторону действия силы. 5. В сечении, где приложен сосредоточенный момент, эпюра М имеет скачок, равный значению этого момента. На эпюре Q это не отражается. При сложном нагружении балки строят эпюры поперечных сил Q и изгибающих моментов М. Эпюрой Q(M) называется график, показывающий закон изменения поперечной силы (изгибающего момента) по длине балки. На основе анализа эпюр М и Q устанавливают опасные сечения балки. Положительные ординаты эпюры Q откладываются вверх, а отрицательные – вниз от базисной линии, проводимой параллельно продольной оси балки. Положительные ординаты эпюры М откладываются вниз, а отрицательные – вверх, т. е. эпюра М строится со стороны растянутых волокон. Построение эпюр Q и М для балок следует начинать с определения опорных реакций. Для балки с одним защемленным и другим свободным концами построение эпюр Q и М можно начинать от свободного конца, не определяя реакций в заделке. 1.2. Построение эпюр Q и М по уравнениям Балка разбивается на участки, в пределах которых функции для изгибающего момента и поперечной силы остаются постоянными (не имеют разрывов). Границами участков служат точки приложения сосредоточенных сил, пар сил и места изменения интенсивности распределенной нагрузки. На каждом участке берется произвольное сечение на расстоянии х от начала координат, и для этого сечения составляются уравнения для Q и М. По этим уравнениям строятся эпюры Q и M. Пример 1.1 Построить эпюры поперечных сил Q и изгибающих моментов М для заданной балки (рис. 1.4,а). Решение: 1. Определение реакций опор. Составляем уравнения равновесия: из которых получаем Реакции опор определены правильно. Балка имеет четыре участка Рис. 1.4 нагружения: СА, AD, DB, BE. 2. Построение эпюры Q. Участок СА. На участке СА 1проводим произвольное сечение 1-1 на расстоянии x1 от левого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих слева от сечения 1-1: Знак минус взят потому, что сила, действующая слева от сечения, направлена вниз. Выражение для Q не зависит от переменной x1. Эпюра Q на этом участке изобразится прямой, параллельной оси абсцисс. Участок AD. На участке проводим произвольное сечение 2-2 на расстоянии x2 от левого конца балки. Определяем Q2 как алгебраическую сумму всех внешних сил, действующих слева от сечения 2-2: 8 Величина Q постоянна на участке (не зависит от переменной x2). Эпюра Q на участке представляет собой прямую, параллельную оси абсцисс. Участок DB. На участке проводим произвольное сечение 3-3 на расстоянии x3 от правого конца балки. Определяем Q3 как алгебраическую сумму всех внешних сил, действующих справа от сечения 3-3: Полученное выражение есть уравнение наклонной прямой линии. Участок BE. На участке проводим сечение 4-4 на расстоянии x4 от правого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих справа от сечения 4-4: 4 Здесь знак плюс взят потому, что равнодействующая нагрузка справа от сечения 4-4 направлена вниз. По полученным значениям строим эпюры Q (рис. 1.4, б). 3. Построение эпюры М. Участок м1. Определяем изгибающий момент в сечении 1-1 как алгебраическую сумму моментов сил, действующих слева от сечения 1-1. – уравнение прямой. Участок A 3Определяем изгибающий момент в сечении 2-2 как алгебраическую сумму моментов сил, действующих слева от сечения 2-2. – уравнение прямой. Участок DB 4Определяем изгибающий момент в сечении 3-3 как алгебраическую сумму моментов сил, действующих справа от сечения 3-3. – уравнение квадратной параболы. 9 Находим три значения на концах участка и в точке с координатой xk , где Участок BE 1Определяем изгибающий момент в сечении 4-4 как алгебраическую сумму моментов сил, действующих справа от сечения 4-4. – уравнение квадратной параболы находим три значения M4: По полученным значениям строим эпюру М (рис. 1.4, в). На участках CA и AD эпюра Q ограничена прямыми, параллельными оси абсцисс, а на участках DB и BE – наклонными прямыми. В сечениях C, A и B на эпюре Q имеют место скачки на величину соответствующих сил, что служит проверкой правильности построения эпюры Q. На участках, где Q  0, моменты возрастают слева направо. На участках, гдеQ  0, моменты убывают. Под сосредоточенными силами имеются изломы в сторону действия сил. Под сосредоточенным моментом имеет место скачок на величину момента. Это указывает на правильность построения эпюры М. Пример 1.2 Построить эпюры Q и М для балки на двух опорах, нагруженной распределенной нагрузкой, интенсивность которой меняется по линейному закону (рис. 1.5, а). Решение Определение реакций опор. Равнодействующая распределенной нагрузки равна площади треугольника, представляющего собой эпюру нагрузки и приложена в центре тяжести этого треугольника. Составляем суммы моментов всех сил относительно точек А и В: Построение эпюры Q. Проведем произвольное сечение на расстоянии x от левой опоры. Ордината эпюры нагрузки, соответствующая сечению, определяется из подобия треугольников Равнодействующая той части нагрузки, которая распложена слева от сечения Поперечная сила в сечении равна Поперечная сила изменяется по закону квадратной параболы Приравнивая уравнение поперечной силы нулю, находим абсциссу того сечения, в котором эпюра Q переходит через нуль: Эпюра Q представлена на рис. 1.5, б. Изгибающий момент в произвольном сечении равен Изгибающий момент изменяется по закону кубической параболы: Максимальное значение изгибающий момент имеет в сечении, где 0, т. е. при Эпюра М представлена на рис. 1.5, в. 1.3. Построение эпюр Q и M по характерным сечениям (точкам) Используя дифференциальные зависимости между М, Q, q и выводы, вытекающие из них, целесообразно строить эпюры Q и М по характерным сечениям (без составления уравнений). Применяя этот способ, вычисляют значения Q и М в характерных сечениях. Характерными сечениями являются граничные сечения участков, а также сечения, где данный внутренний силовой фактор имеет экстремальное значение. В пределах между характерными сечениями очертание 12 эпюры устанавливается на основе дифференциальных зависимостей между М, Q, q и выводами, вытекающими из них. Пример 1.3 Построить эпюры Q и М для балки, изображенной на рис. 1.6, а. Рис. 1.6. Решение: Построение эпюр Q и М начинаем от свободного конца балки, при этом реакции в заделке можно не определять. Балка имеет три участка нагружения: АВ, ВС, CD. На участках АВ и ВС распределенная нагрузка отсутствует. Поперечные силы постоянны. Эпюра Q ограничена прямыми, параллельными оси абсцисс. Изгибающие моменты изменяются по линейному закону. Эпюра М ограничена прямыми, наклонными к оси абсцисс. На участке CD имеется равномерно распределенная нагрузка. Поперечные силы изменяются по линейному закону, а изгибающие моменты – по закону квадратной параболы с выпуклостью в сторону действия распределенной нагрузки. На границе участков АВ и ВС поперечная сила изменяется скачкообразно. На границе участков ВС и CD скачкообразно изменяется изгибающий момент. 1. Построение эпюры Q. Вычисляем значения поперечных сил Q в граничных сечениях участков: По результатам расчетов строим эпюру Q для балки (рис. 1, б). Из эпюры Q следует, что поперечная сила на участке CD равна нулю в сечении, отстоящем на расстоянии qa a q от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение. 2. Построение эпюры М. Вычисляем значения изгибающих моментов в граничных сечениях участков: При мaаксимальный момент на участке По результатам расчетов строим эпюру М (рис. 5.6, в). Пример 1.4 По заданной эпюре изгибающих моментов (рис. 1.7, а) для балки (рис. 1.7, б) определить действующие нагрузки и построить эпюру Q. Кружком обозначена вершина квадратной параболы. Решение: Определим нагрузки, действующие на балку. Участок АС загружен равномерно распределённой нагрузкой, так как эпюра М на этом участке – квадратная парабола. В опорном сечении В к балке приложен сосредоточенный момент, действующий по часовой стрелке, так как на эпюре М имеем скачок вверх на величину момента. На участке СВ балка не нагружена, т. к. эпюра М на этом участке ограничена наклонной прямой. Реакция опоры В определяется из условия, что изгибающий момент в сечении С равен нулю, т. е. Для определения интенсивности распределенной нагрузки составим выражение для изгибающего момента в сечении А как сумму моментов сил справа и приравняем к нулю Теперь определим реакцию опоры А. Для этого составим выражение для изгибающих моментов в сечении как сумму моментов сил слева Расчетная схема балки с нагрузкой показана на рис. 1.7, в. Начиная с левого конца балки, вычисляем значения поперечных сил в граничных сечениях участков: Эпюра Q представлена на рис. 1.7, г. Рассмотренная задача может быть решена путем составления функциональных зависимостей для М, Q на каждом участке. Выберем начало координат на левом конце балки. На участке АС эпюра М выражается квадратной параболой, уравнение которой имеет вид Постоянные а, b, с находим из условия, что парабола проходит через три точки с известными координатами: Подставляя координаты точек в уравнение параболы, получим: Выражение для изгибающего момента будет Дифференцируя функцию М1, получим зависимость для поперечной cилы После дифференцирования функции Q получим выражение для интенсивности распределённой нагрузки На участке СВ выражение для изгибающего момента представляется в виде линейной функции Для определения постоянных а и b используем условия, что данная прямая проходит через две точки, координаты которых известны Получим два уравнения: ,b из которых имеем a 20. Уравнение для изгибающего момента на участке СВ будет После двукратного дифференцирования М2 найдём По найденным значениям М и Q строим эпюры изгибающих моментов и поперечных сил для балки. Помимо распределённой нагрузки к балке прикладываются сосредоточенные силы в трех сечениях, где на эпюре Q имеются скачки и сосредоточенные моменты в том сечении, где на эпюре М имеется скачок. Пример 1.5 Для балки (рис. 1.8, а) определить рациональное положение шарнира С, при котором наибольший изгибающий момент в пролете равен изгибающему моменту в заделке (по абсолютной величине). Построить эпюры Q и М. Решение Определение реакций опор. Несмотря на то, что общее число опорных связей равно четырем, балка статически определима. Изгибающий момент в шарнире С равен нулю, что позволяет составить дополнительное уравнение: сумма моментов относительно шарнира всех внешних сил, действующих по одну сторону от этого шарнира, равна нулю. Составим сумму моментов всех сил справа от шарнира С. Эпюра Q для балки ограничена наклонной прямой, так как q = const. Определяем значения поперечных сил в граничных сечениях балки: Абсцисса xK сечения, где Q = 0, определяется из уравнения откуда Эпюра М для балки ограничена квадратной параболой. Выражения для изгибающих моментов в сечениях, где Q = 0, и в заделке записываются соответственно так: Из условия равенства моментов получаем квадратное уравнение относительно искомого параметра х: Реальное значение x2x 1,029 м. Определяем численные значения поперечных сил и изгибающих моментов в характерных сечениях балки На рис.1.8, б показана эпюра Q, а на рис. 1.8, в – эпюра М. Рассмотренную задачу можно было решить способом расчленения шарнирной балки на составляющие ее элементы, как это показано на рис. 1.8, г. В начале определяются реакции опор VC и VB . Строятся эпюры Q и М для подвесной балки СВ от действия приложенной к ней нагрузки. Затем переходят к основной балке АС, нагрузив ее дополнительной силой VC , являющейся силой давления балки СВ на балку АС. После чего строят эпюры Q и М для балки АС. 1.4. Расчеты на прочность при прямом изгибе балок Расчет на прочность по нормальным и касательным напряжениям. При прямом изгибе балки в поперечных сечениях ее возникают нормальные и касательные напряжения (рис. 1.9). 18 Рис. 1.9 Нормальные напряжения связаны с изгибающим моментом, касательные напряжения связаны с поперечной силой. При прямом чистом изгибе касательные напряжения равны нулю. Нормальные напряжения в произвольной точке поперечного сечения балки определяются по формуле (1.4) где M – изгибающий момент в данном сечении; Iz – момент инерции сечения относительно нейтральной оси z; y – расстояние от точки, где определяется нормальное напряжение, до нейтральной оси z. Нормальные напряжения по высоте сечения изменяются по линейному закону и достигают наибольшей величины в точках, наиболее удалённых от нейтральной оси Если сечение симметрично относительно нейтральной оси (рис. 1.11), то Рис. 1.11 наибольшие растягивающие и сжимающие напряжения одинаковы и определяются по формуле,  – осевой момент сопротивления сечения при изгибе. Для прямоугольного сечения шириной b высотой h: (1.7) Для круглого сечения диаметра d: (1.8) Для кольцевого сечения   – соответственно внутренний и наружный диаметры кольца. Для балок из пластичных материалов наиболее рациональными являются симметричные 20 формы сечений (двутавровое, коробчатое, кольцевое). Для балок из хрупких материалов, не одинаково сопротивляющихся растяжению и сжатию, рациональными являются сечения, несимметричные относительно нейтральной оси z (тавр., П-образное, несимметричный двутавр). Для балок постоянного сечения из пластичных материалов при симметричных формах сечений условие прочности записывается так: (1.10) где Mmax – максимальный изгибающий момент по модулю; – допускаемое напряжение для материала. Для балок постоянного сечения из пластичных материалов при несимметричных формах сечений условие прочности записывается в следующем виде: (1.11) Для балок из хрупких материалов с сечениями, несимметричными относительно нейтральной оси, в случае, если эпюра М однозначна (рис. 1.12), нужно записать два условия прочности – расстояния от нейтральной оси до наиболее удалённых точек соответственно растянутой и сжатой зон опасного сечения; P – допускаемые напряжения соответственно на растяжение и сжатие. Рис.1.12. 21 Если эпюра изгибающих моментов имеет участки разных знаков (рис. 1.13), то помимо проверки сечения 1-1, где действуетMmax, необходимо произвести расчет по наибольшим растягивающим напряжениям для сечения 2-2 (с наибольшим моментом противоположного знака). Рис. 1.13 Наряду с основным расчетом по нормальным напряжениям в ряде случаев приходится делать проверку прочности балки по касательным напряжениям. Касательные напряжения в балки вычисляются по формуле Д. И. Журавского (1.13) где Q – поперечная сила в рассматриваемом поперечном сечении балки; Szотс – статический момент относительно нейтральной оси площади части сечения, расположенной по одну сторону прямой, проведенной через данную точку и параллельной оси z; b – ширина сечения на уровне рассматриваемой точки; Iz – момент инерции всего сечения относительно нейтральной оси z. Во многих случаях максимальные касательные напряжения возникают на уровне нейтрального слоя балки (прямоугольник, двутавр, круг). В таких случаях условие прочности по касательным напряжениям записывается в виде, (1.14) где Qmax – наибольшая по модулю поперечная сила; – допускаемое касательное напряжение для материала. Для прямоугольного сечения балки условие прочности имеет вид (1.15) А – площадь поперечного сечения балки. Для круглого сечения условие прочности представляется в виде (1.16) Для двутаврового сечения условие прочности записывается так: (1.17) где Szо,тmсax – статический момент полусечения относительно нейтральной оси; d – толщина стенки двутавра. Обычно размеры поперечного сечения балки определяются из условия прочности по нормальным напряжениям. Проверка прочности балок по касательным напряжениям производится в обязательном порядке для коротких балок и балок любой длинны, если вблизи опор имеются сосредоточенные силы большой величины, а также для деревянных, клёпанных и сварных балок. Пример 1.6 Проверить прочность балки коробчатого сечения (рис. 1.14) по нормальным и касательным напряжениям, если МПа. Построить эпюры в опасном сечении балки. Рис. 1.14 Решение 23 1. Построение эпюр Q и М по характерным сечениям. Рассматривая левую часть балки, получим Эпюра поперечных сил представлена на рис. 1.14,в. Эпюра изгибающих моментов показана на рис. 5.14, г. 2. Геометрические характеристики поперечного сечения 3. Наибольшие нормальные напряжения в сечение С, где действует Mmax (по модулю): МПа. Максимальные нормальные напряжения в балке практически равны допускаемым. 4. Наибольшие касательные напряжения в сечении С (или А), где действует max Q (по модулю): Здесь – статический момент площади полусечения относительно нейтральной оси; b2 см – ширина сечения на уровне нейтральной оси. 5. Касательные напряжения в точке (в стенке) в сечении С: Рис. 1.15 Здесь Szomc 834,5 108 см3 – статический момент площади части сечения, расположенной выше линии, проходящей через точку K1; b2 см – толщина стенки на уровне точки K1. Эпюры  и  для сечения С балки показаны рис. 1.15. Пример 1.7 Для балки, показанной на рис. 1.16, а, требуется: 1. Построить эпюры поперечных сил и изгибающих моментов по характерным сечениям (точкам). 2. Определить размеры поперечного сечения в виде круга, прямоугольника и двутавра из условия прочности по нормальным напряжениям, сравнить площади сечений. 3. Проверить подобранные размеры сечений балок по касательным напряжения. Дано: Решение: 1. Определяем реакции опор балки Проверка: 2. Построение эпюр Q и М. Значения поперечных сил в характерных сечениях балки 25 Рис. 1.16 На участках CA и AD интенсивность нагрузки q = const. Следовательно, на этих участках эпюра Q ограничивается прямыми, наклонными к оси. На участке DB интенсивность распределенной нагрузки q = 0, следовательно, на этом участке эпюра Q ограничивается прямой, параллельной оси х. Эпюра Q для балки показана на рис. 1.16,б. Значения изгибающих моментов в характерных сечениях балки: На втором участке определяем абсциссу x2 сечения, в котором Q = 0: Максимальный момент на втором участке Эпюра М для балки показана на рис. 1.16, в. 2. Составляем условие прочности по нормальным напряжениям откуда определяем требуемый осевой момент сопротивления сечения из выражения определяемый требуемый диаметр d балки круглого сечения Площадь круглого сечения Для балки прямоугольного сечения Требуемая высота сечения Площадь прямоугольного сечения Определяем требуемый номер двутавровой балки. По таблицам ГОСТ 8239-89 находим ближайшее большее значение осевого момента сопротивления 597см3, которое соответствует двутавру № 33 с характеристиками: A z 9840 см4. Проверка на допуск: (недогрузка на 1 % от допустимого 5 %) ближайший двутавр № 30 (W 2 см3) приводит к значительной перегрузке (более 5%). Окончательно принимаем двутавр № 33. Сравниваем площади круглого и прямоугольного сечений с наименьшей площадью А двутавра: Из трех рассмотренных сечений наиболее экономичным является двутавровое сечение. 3. Вычисляем наибольшие нормальные напряжения в опасном сечении 27 двутавровой балки (рис. 1.17, а): Нормальные напряжения в стенке около полки двутаврового сечения балки Эпюра нормальных напряжений в опасном сечении балки показана на рис. 1.17, б. 5. Определяем наибольшие касательные напряжения для подобранных сечений балки. а) прямоугольное сечение балки: б) круглое сечение балки: в) двутавровое сечение балки: Касательные напряжения в стенке около полки двутавра в опасном сечении А (справа) (в точке 2): Эпюра касательных напряжений в опасных сечениях двутавра показана на рис. 1.17,в. Максимальные касательные напряжения в балке не превышают допускаемых напряжений Пример 1.8 Определить допускаемую нагрузку на балку (рис. 1.18, а), если60МПа, размеры поперечного сечения заданы (рис. 1.19, а). Построить эпюру нормальных напряжений в опасном сечении балки при допускаемой нагрузке. Рис 1.18 1. Определение реакций опор балки. Ввиду симметрии системы 2. Построение эпюр Q и M по характерным сечениям. Поперечные силы в характерных сечениях балки: Эпюра Q для балки показана на рис. 5.18, б. Изгибающие моменты в характерных сечениях балки Для второй половины балки ординаты М – по осям симметрии. Эпюра М для балки показана на рис. 1.18, б. 3.Геометрические характеристики сечения (рис. 1.19). Разбиваем фигуру на два простейших элемента: двутавр – 1 и прямоугольник – 2. Рис. 1.19 По сортаменту для двутавра № 20 имеем Для прямоугольника: Статический момент площади сечения относительно оси z1 Расстояние от оси z1 до центра тяжести сечения Момент инерции сечения относительно главной центральной оси z всего сечения по формулам перехода к параллельным осям 4. Условие прочности по нормальным напряжениям для опасной точки «а» (рис. 1.19) в опасном сечении I (рис. 1.18): После подстановки числовых данных 5. При допускаемой нагрузке в опасном сечении нормальные напряжения в точках «а» и «b» будут равны: Эпюра нормальных напряжений для опасного сечения 1-1 показана на рис. 1.19, б.

Что еще почитать