Практические рекомендации по эксплуатации деаэратора. Деаэрация воды в котельных без подвода пара

Иностранная терминология

В значительной части зарубежных систем технических терминов нет единого термина «деаэратор» для описания элемента тепловой схемы станции в виде бака с колонкой; например, в немецком колонка называется Entragaserdom, и понятие «деаэратор» (Entgaser) относится только к ней, а бак запаса питательной воды - Speisewasserbehälter. В последнее время и в некоторых русскоязычных публикациях (о нетрадиционных для наших предприятий конструкциях либо переводных) бак отделяют от деаэратора.

Назначение

  • Защита трубопроводов и оборудования от коррозии .
  • Недопущение воздушных пузырей, нарушающих проходимость гидравлических систем, нормальную работу форсунок и т. д.
  • Защита насосов от кавитации .

Принцип действия

В жидкости газ может присутствовать в виде:

  • собственно растворённых молекул ;
  • микропузырьков (порядка 10 −7 ), образующихся вокруг частиц гидрофобных примесей;
  • в составе соединений, разрушающихся на последующих стадиях технологического цикла с выделением газа (например, NaHCO 3).

В деаэраторе происходит процесс массообмена между двумя фазами : жидкостью и парогазовой смесью. Кинетическое уравнение для концентрации растворённого в жидкости газа при его равновесной (с учётом содержания во второй фазе) концентрации , исходя из закона Генри , выглядит как

,

где - время; f - удельная поверхность раздела фаз; k - скоростной коэффициент, зависящий, в частности, от характерного диффузионного пути , который газ должен преодолеть для выхода из жидкости. Очевидно, для полного удаления газов из жидкости требуется (парциальное давление газа над жидкостью должно стремиться к нулю, то есть выделившиеся газы должны эффективно удаляться и замещаться паром) и бесконечное время протекания процесса. На практике задаются технологически допустимой и экономически целесообразной глубиной дегазации.

В термических деаэраторах, основанных на принципе диффузионной десорбции , жидкость нагревается до кипения ; при этом растворимость газов близка к нулю, образующийся пар (выпар) уносит газы ( снижается), а коэффициент диффузии высок (растёт k ).

В вихревых деаэраторах собственно обогрева жидкости не происходит (это делается в теплообменниках перед ними), а используются гидродинамические эффекты, вызывающие принудительную десорбцию : жидкость разрывается в самых слабых местах - по микропузырькам газа, а затем в вихре фазы разделяются силами инерции под действием разности плотности .

Кроме того, известны небольшие установки, где некоторая степень деаэрации достигается облучением жидкости ультразвуком . При облучении воды ультразвуком интенсивностью порядка 1 Вт /см 2 происходит снижение на 30-50 %, k возрастает примерно в 1000 раз, что приводит к коагуляции пузырьков с последующим выходом из воды под действием Архимедовой силы .

Выпар

Выпар - это смесь выделившихся из воды газов и небольшого количества пара, подлежащая эвакуации из деаэратора. Для нормальной работы деаэраторов распространённых конструкций его расход (по пару по отношению к производительности) должен составлять не менее 1-2 кг/т, а при наличии в исходной воде значительного количества свободной или связанной углекиcлоты - 2-3 кг/т. Чтобы избежать потерь рабочего тела из цикла, выпар на крупных установках конденсируют . Если охладитель выпара, применяемый для этой цели, устанавливается на исходной воде деаэратора (как на рис.), она должна быть достаточно сильно недогрета до температуры насыщения в деаэраторе. При использовании выпара на эжекторах он конденсируется на их холодильниках, и специальный теплообменник не нужен.

Термические деаэраторы

Термические деаэраторы классифицируютя по давлению.

Атмосферные деаэраторы (см. рис.) требуют наименьшей толщины стенок; выпар удаляется из них самотёком под действием небольшого избытка давления над атмосферным. Вакуумные деаэраторы могут работать в условиях, когда на котельной нет пара; однако им требуется специальное устройство для отсоса выпара (вакуумный эжектор) и б́ольшая толщина стенок, к тому же бикарбонаты при низких температурах разлагаются не полностью и есть опасность повторного подсоса воздуха по тракту до насосов . Деаэраторы ДП имеют больш́ую толщину стенок, зато их применение в схеме ТЭС позволяет сократить количество металлоёмких ПВД и использовать выпар как дешёвую рабочую среду для пароструйных эжекторов конденсатора ; деаэрационная приставка конденсатора, в свою очередь, является вакуумным деаэратором.

Как теплообменные аппараты термические деаэраторы могут быть смесительными (обычно, греющие пар и/или вода подаются в объём деаэратора) или поверхностными (греющая среда отделена от нагреваемой поверхностью теплообмена); последнее часто встречается у вакуумных подпиточных деаэраторов теплосетей.

По способу создания поверхности контакта фаз смесительные деаэраторы подразделяются на струйные , плёночные и барботажные (встречаются смешанные конструкции).

В струйных и плёночных деаэраторах основным элементом является колонка деаэратора - устройство, в котором вода стекает сверху вниз в бак, а греющий пар поднимается снизу вверх на выпар, попутно конденсируясь на воде. В небольших деаэраторах колонка может быть интегрирована в один корпус с баком; обычно же она выглядит как вертикальный цилиндр, пристыкованный сверху к горизонтальному баку (цилиндрической ёмкости с эллиптическими либо коническими днищами). Сверху находится водораспределитель, снизу - парораспределитель (например, кольцевая перфорированная труба), между ними - активная зона. Толщина колонки данной производительности определяется допустимой плотностью орошения активной зоны (расходом воды через единицу площади).

В деаэраторах струйного типа вода проходит активную зону в виде струй, на которые она может быть разбита 5-10 дырчатыми тарелками (кольцевые с центральным проходом пара чередуются с круговыми меньшего диаметра , обтекаемыми по краю). Струйные деаэрационные устройства имеют простую конструкцию и малое паровое сопротивление, но интенсивность деаэрации воды сравнительно низка. Колонки струйного типа имеют большую высоту (3,5-4 м и более), что требует высокого расхода металла и неудобно при ремонтных работах. Такие колонки применяются как первая ступень обработки воды в двухступенчатых деаэраторах струйно-барботажного типа.

Также существуют форсуночные (капельные) деаэраторы , где вода разбрызгивается из форсунок в капельном виде; эффективность за счёт измельчения фазы велика, однако работа форсунок ухудшается при засорении и при сниженных расходах, а на преодоление сопротивления сопел уходит очень много электроэнергии .

В деаэраторах с колонками плёночного типа поток воды расчленяется на пленки, обволакивающие насадку-заполнитель, по поверхности которой вода стекает вниз. Применяется насадка двух типов: упорядоченная и неупорядоченная. Упорядоченную насадку выполняют из вертикальных, наклонных или зигзагообразных листов, а также из укладываемых правильными рядами колец, концентрических цилиндров или других элементов. Преимущества упорядоченной насадки - возможность работы с высокими плотностями орошения при значительном подогреве воды (20-30 °C) и возможность деаэрации неумягчённой воды. Недостаток - неравномерность распределения потока воды по насадке. Неупорядоченная насадка выполняется из небольших элементов определенной формы, засыпаемых произвольно в выделенную часть колонки (кольца, шары , сёдла , омегаобразные элементы). Она обеспечивает более высокий коэффициент массоотдачи, чем упорядоченная насадка. Пленочные деаэраторы малочувствительны к загрязнению накипью, шламом и окислами железа, но более чувствительны к перегрузке.

В деаэраторах барботажного типа поток пара, который вводится в слой воды, дробится на пузыри . Преимуществом этих деаэраторов является их компактность при высоком качестве деаэрации. В них происходит некоторый перегрев воды относительно температуры насыщения, соответствующей давлению в паровом пространстве над поверхностью. Величина перегрева определяется высотой столба жидкости над барботажным устройством. При движении увлекаемой пузырьками пара воды вверх происходит её вскипание , способствующее лучшему выделению из раствора не только кислорода , но и углекислоты , которая в деаэраторах других типов удаляется из воды не полностью; в том числе разлагаются и бикарбонаты NaHCO 3 , турбулизация жидкости. Эффективность барботажных устройств снижается при значительном уменьшении удельного расхода пара. Для обеспечения глубокой деаэрации вода в деаэраторе должна подогреваться не менее чем на 10 °C, если нет возможности для увеличения расхода выпара. Барботажные устройства могут быть затопленными в баке в виде перфорированных листов (при этом трудно обеспечить беспровальный режим) или устанавливаться в колонке в виде тарелок.

Показатели и обозначения

Производительность деаэратора - расход деаэрированной воды на выходе из деаэратора. В деаэраторах типа ДВ при использовании в качестве греющей среды (теплоносителя) перегретой деаэрированной воды расход последней в производительность не входит.

Полезная вместимость деаэраторного бака - расчетный полезный объём бака, определяемый в размере 85 % его полного объёма.

ГОСТ устанавливает ряды для подбора ёмкости баков (для ДА 1-75 м³, ДП 65-185 м³) и производительности (1-2800 /). Деаэратор обозначается по принципу ДА(ДП,ДВ)-(производительность, т/ч)/(полезная вместимость бака, м³) ; колонки отдельно КДА(КДП)-(производительность) , баки БДА(БДП)-(вместимость) .

Вихревые деаэраторы

Литература

  • Рихтер Л. А., Елизаров Д. П., Лавыгин В. М. Глава третья. Деаэраторы // Вспомогательное оборудование тепловых электростанций. - М .: Энергоатомиздат, 1987. - 216 с.
  • Кувшинов О. М. Ржа? Долой кислород! . kwark.ru . «Наука и жизнь » № 12 (2006). Архивировано из первоисточника 8 апреля 2012. Проверено 3 сентября 2011.
  • Кувшинов О. М. Щелевые деаэраторы КВАРК - эффективное устройство для деаэрации жидкости . kwark.ru . «Промышленная энергетика» № 7 (2007).

Вакуумный деаэратор применяется для деаэрации воды, если ее температура ниже 100 °С (температура кипения воды при атмосферном давлении).

Областью для проектирования, монтажа и эксплуатирования вакуумного деаэратора являются водогрейные котельные (особенно в блочном варианте) и тепловые пункты. Так же вакуумные деаэраторы активно используются в пищевой промышленности для деаэрации воды необходимой в технологии приготовления широкого спектра напитков.

Вакуумной деаэрации подвергаются потоки воды идущей на подпитку тепловой сети, котлового контура, сети горячего водоснабжения.

Особенности работы вакуумного деаэратора.

Так как процесс вакуумной деаэрации происходит при относительной невысоких температурах воды (в среднем от 40 до 80 °С в зависимости от типа деаэратора) для работы вакуумного деаэратора не требуется использование теплоносителя с температурой выше 90 °С. Теплоноситель необходим для нагрева воды перед вакуумным деаэратором. Температура теплоносителя до 90 °С обеспечивается на большинстве объектов, где потенциально возможно применить вакуумный деаэратор.

Основное отличие вакуумного деаэратора от атмосферного деаэратора в системе отвода выпара из деаэратора.

В вакуумном деаэраторе выпар (парогазовая смесь образующаяся при выделении из воды насыщенных паров и растворенных газов) удаляется при помощи вакуумного насоса.

В качестве вакуумного насоса можно использовать: вакуумный водокольцевой насос, водоструйный эжектор, пароструйный эжектор. Они различны по конструкции, но основаны на одном принципе - уменьшение статического давления (создание разряжения - вакуума) в потоке жидкости при увеличении скорости потока.

Скорость потока жидкости увеличивается либо при движении через сужающееся сопло (водоструйный эжектор), либо при закручивании жидкости при вращении рабочего колеса.

При удалении выпара из вакуумного деаэратора давление в деаэраторе падает до давления насыщения соответствующего температуре воды поступающей в деаэратор. Вода в деаэраторе находится в точке кипения. На границе раздела фаз вода - газ возникает разница концентраций по растворенным в воде газам (кислород, углекислота) и соответственно появляется движущая сила процесса деаэрации.

От эффективности работы вакуумного насоса зависит качество деаэрированной воды после вакуумного деаэратор.

Особенности установки вакуумного деаэратора.

Т.к. температура воды в вакуумном деаэраторе ниже 100 °С и соответственно давление в вакуумном деаэраторе ниже атмосферного - вакуум, возникает главный вопрос при проектировании и эксплуатации вакуумного деаэратора - как подать деаэрированную воду после вакуумного деаэратора далее в систему теплоснабжения. В этом заключается основная проблема использования вакуумного деаэратора для деаэрации воды на котельных и тепловых пунктах.

В основном это решалось установкой вакуумного деаэратора на высоте не менее 16 м, что обеспечивало необходимую разницу давлений между разряжением в деаэраторе и атмосферным давлением. Вода самотеком стекала в аккумуляторный бак расположенным на нулевой отметке. Высота установки вакуумного деаэратора выбиралась из расчета максимально возможного вакуума (-10 м.вод.ст.), высоты столба воды в аккумуляторном баке, сопротивления сливного трубопровода и перепада давлений необходимого для обеспечения движения деаэрированной воды. Но это влекло за собой ряд существенных недостатков: увеличение первоначальных затрат на строительство (этажерка высотой 16 м с площадкой обслуживания), возможность замерзания воды в сливном трубопроводе при прекращении подачи воды в деаэратор, гидроудары в сливном трубопроводе, трудности в осмотре и обслуживании деаэратора в зимний период.

Для блочных котельных, которые активно проектируются и монтируются данное решение на применимо.

Вторым вариантом решения вопроса подачи деаэрированной воды после вакуумного деаэратора является использование промежуточного бака запаса деаэрированной воды - деаэраторного бака и насосов подачи деаэрированной воды. Деаэраторный бак находится под таким же разряжением, что и сам вакуумный деаэратор. По сути дела вакуумный деаэратор и деаэраторный бак представляют собой один сосуд. Основная нагрузка ложится на насосы подачи деаэрированной воды которые забирают деаэрированную воду из под вакуума и подают ее далее в систему. Для предотвращения возникновения явления кавитации в насосе подачи деаэрированной воды необходимо обеспечить высоту водяного столба (расстояние между зеркалом воды в деаэраторном баке и осью всаса насоса) на всасе насоса не менее величины указанной в паспорте насоса как кавитационный запас или NPFS. Кавитационный запас в зависимости от марки и производительности насоса колеблется в диапазоне от 1 до 5 м.

Преимуществом второго варианта компоновки вакуумного деаэратора является возможность устанавливать вакуумный деаэратор на небольшой высоте, в помещении. Насосы подачи деаэрированной воды обеспечат перекачивание деаэрированной воды далее в аккумуляторные баки или на подпитку. Для обеспечения стабильного процесса перекачивания деаэрированой воды из деаэраторного бака важно правильно подобрать насосы подачи деаэрированной воды.

Повышение эффективности работы вакуумного деаэратора.

Так как вакуумная деаэрация воды проводится при температуре воды ниже 100 °С повышаются требования к технологии процесса деаэрации. Чем ниже температура воды, тем выше коэффициент растворимости газов в воде, тем сложнее процесс деаэрации. Необходимо повышать интенсивность процесса деаэрации, соответственно применяются конструктивные решения на основе новых научных разработок и экспериментов в области гидродинамики и массопереноса.

Использование высокоскоростных течений с турбулентным массопереносом при создании условий в потоке жидкости для дополнительного снижения статического давления относительно давления насыщения и получения перегретого состояния воды позволяет значительно повысить эффективность процесса деаэрации и уменьшить габаритные размеры и вес вакуумного деаэратора.

Для комплексного решения вопроса установки вакуумного деаэратора в помещении котельной на нулевой отметке с минимальной габаритной высотой был разработан, испытан, и успешно введен в серийное производство блочный вакуумный деаэратор БВД. При высоте деаэратора чуть менее 4 м блочный вакуумный деаэратор БВД позволяет производить эффективную деаэрацию воды в диапазоне производительностей от 2 до 40 м3/ч по деаэрированной воде. Блочный вакуумный деаэратор занимает пространство в помещении котельной не более чем 3х3 м (в основании) в своем самом производительном исполнении.

Чтобы понять принцип работы деаэратора, необходимо разобраться, зачем вообще деаэрируют воду.

Для чего нужен деаэратор на ТЭЦ

Коррозия металла возникает на поверхности металла, там где происходит соприкосновение с водой, затем разрушение идет внутрь металла. Коррозия в основном зависит от содержания растворенного кислорода в воде и углекислоты(она затрудняет образование защитного слоя окислов металла).

Скорость коррозии стали имеет линейную зависимость от концентрации кислорода в воде. Причем эта зависимость прямопропорциональна(если увеличить концентрацию кислорода в 2 раза то и скорость коррозии также вырастет в 2 раза).

Трубопроводы с холодной водой(менее 25 С) мало подвержены коррозии. При повышении температуры, если Вы не хотите платить за ремонт и простой безумно дорогого оборудования(например может случиться пережег трубок в паровом котле, поломка подогревателей, выход из строя трубопроводной арматуры и т д) необходимо применять химические или термические методы для удаления растворенных газов из воды.

Для отечественных и зарубежных котлов существуют нормы качества питательной воды, в которых в зависимости от температуры и давления котла указаны требования к содержанию кислорода в питательной воде.

Простой, но очень интересный пример

Пример взят из книги, расчеты приведенные там опустим, чтобы не забивать голову ненужной информацией.

  • Расход сетевой воды в сети ГВС — 400 т/ч
  • Диаметр трубопровода – Ду300
  • Содержание кислорода в начальной точке трубы 9,3 мг/кг
  • Содержание кислорода в конечной точке трубы 4,15 мг/кг (50% кислорода пошло на коррозию)
  • Тепловая сеть работает 5000 ч в год

Суть в том, что в год такая труба теряет по 0,55 мм толщины своей стенки из-за коррозии. А теперь представьте, что будет через несколько лет с нашей трубой 325х8 ? Вот поэтому то и нужно рассмотреть как работает деаратор паровых котлов ТЭЦ.

Виды деаэраторов

Термические деаэраторы паротурбинных установок электростанций делятся:

По назначению на:

  1. деаэраторы питательной воды паровых котлов;
  2. деаэраторы добавочной воды и обратного конденсата внешних потребителей;
  3. деаэраторы подпиточной воды тепловых сетей.

По давлению греющего пара на:

  1. деаэраторы повышенного давления (ДП), работающие при давлении 0,6-0,8 МПа, а на АЭС - до 1,25 МПа и использующиеся в качестве деаэраторов питательной воды ТЭС и АЭС;
  2. атмосферные деаэраторы (ДА), работающие при давлении 0,12 МПа;
  3. вакуумные (ДВ), в которых деаэрация происходит при давлении ниже атмосферного: 7,5-50 кПа.

По способу обогрева деаэрируемой воды на:

  1. деаэраторы смешивающего типа со смешением греющего пара и обогреваемой деаэрируемой воды. Этот тип деаэраторов применяется на всех без исключения ТЭС и АЭС;
  2. деаэраторы перегретой воды с внешним предварительным нагревом воды отборным паром.

По конструктивному выполнению (по принципу образования межфазной поверхности) на:

Деаэраторы с поверхностью контакта, образующейся в процессе движения пара и воды:

  • а) струйно-барботажные;
  • б) пленочного, типа с неупорядоченной насадкой;
  • в) струйного (тарельчатого) типа;

Деаэраторы с фиксированной поверхностью контакта фаз (пленочного типа с упорядоченной насадкой).

По способу увеличения поверхности контакта воды с греющим паром деаэраторы делятся на

  • капельные
  • струйные
  • пленочные
  • с насадками
  • барботажные
  • комбинированные.

В капельных деаэраторах вода подается в деаэратор в виде капель при помощи форсунок или сопел. Распыление воды на капли обеспечивает высокую эффективность деаэрации воды, однако из-за засорений сопл капельные деаэраторы недостаточно надежны в эксплуатации. Кроме того, применение сопл и форсунок требует значительного расхода электроэнергии на распыление.

В струйных деаэраторах вода, подаваемая в верхнюю часть колонки деаэратора, поступает в водораспределительное устройство, под которым установлено несколько дырчатых тарелок (сит или противней). Сливаясь струями из распределителя и тарелок, вода образует дождевую занесу, которая пересекается потоком греющего пара, подаваемого в нижнюю часть колонки.

В пленочных деаэраторах вода подается через сопло и, ударяясь о розетку, разбрызгивается на расположенные под ней вертикальные (концентрические пли прямоугольные) листы. Тонкие пленки деаэрируемой воды стекают вниз по листам, а греющий пар проходит между листами снизу вверх.

В деаэраторах с насадками вода, подаваемая в верхнюю часть колонки деаэратора, разделяется на отдельные струи, которые стекают на насадку, заполняющую деаэрационную колонку. Назначение насадки - дробление потока на тончайшие струйки и пленки. Греющий пар подается между элементами насадки снизу вверх навстречу воде. В качестве насадки используют деревянные решетки, кольца Рашига, металлические керамические кольца, элементы специальной формы. Кольца элементы в определенном порядке или беспорядочно размещаются на поддерживающей их сетке. В результате этого происходит эффективное взаимодействие воды с греющим паром.

В барботажных деаэраторах контакт пара и воды осуществляется благодаря пропуску пара через слой жидкости. Барботаж обеспечивает в несколько раз (от 3 до 10) большую поверхность контакта воды и пара, чем при дроблении воды на струи. Однако использование барботажных деаэраторов затрудняется тем, что тепла пара, поступающего на барботаж, обычно недостаточно для подогрева воды до температуры насыщения.
Как правило, барботаж применяют в качестве второй ступени деаэрации в сочетании со струйным или насадочным методом распределения воды. Такие деаэраторы называются двухступенчатыми. В струйно-барботажных деаэраторах нагрев воды до температуры насыщения и первоначальное газоудаление происходят в малогабаритных струйных колонках, а окончательная деаэрация осуществляется при обработке воды паром в барботажном устройстве, размещенном в баке-аккумуляторе.

В комбинированных деаэраторах сочетается несколько способов разделения воды на струи и капли.

По давлению в деаэраторе, при котором происходит процесс деаэрации, термические деаэраторы разделяют на вакуумные, атмосферные, среднего и повышенного давления. В вакуумных деаэраторах удаление газов протекает при давлении ниже атмосферного (

Виды деаэраторов


Виды термических деаэраторов для турбин существуют для установки в котельных, электростанциях ТЭС, АЭС для деаэрации воды: по назначению, по давлению греющего пара, по способу обогрева деаэрируемой воды, по конструктивному выполнению. Весь список на helpinginer.ru

Деаэрация питательной и подпиточной воды в котельной

Деаэрацией питательной и подпиточной воды паровой котельной называется освобождение питательной воды от рас­творенного в ней воздуха, в состав которого входят кислород и двуокись углерода. Будучи растворенными в воде, кислород и двуокись углерода вызы­вают коррозию питательных трубопроводов и поверхностей нагрева котла, вследствие чего оборудование котла выходит из строя.

Существует ряд различных устройств для деаэрации питатель­ной воды. Наибольшее распространение получили термические деаэраторы атмосферного типа низкого давления (0,02-0,025 МПа) и повышенного давления (0,6 МПа), а также вакуумные с давлением ниже атмосферного. Последние применяют в котельных с водо­грейными котлами, так как в этих котельных отсутствует пар и де­газация питательной воды осуществляется за счет вакуума, созда­ваемого водоструйными эжекторами.

Термический деаэратор служит для удаления из питательной и подпиточной воды растворенного в ней кислорода и двуокиси углерода путем нагрева ее до температуры кипения. На рис. 5 показана схема работы атмосферного деаэратора смешивающего типа. Деаэратор состоит из бака 1 и колонки 13, внутри которой устано­влен ряд распределительных тарелок 5, 6 и 12. Питательная вода (конденсат) от насосов поступает в верхнюю часть деаэратора на

Рис. 5. Атмосферный Деаэратор смешивающего типа с Охладителем выпара

1 - бак (аккумулятор), 2 - выпуск питательной воды из бака, 5 - водоуказательное стекло, 4 - манометр, 5, 6 и 12 - тарелки, 7 - спуск воды в дренаж, 8 - автоматический регулятор подачи химически очищенной воды, 9 - охладитель пара, 10 - выпуск пара в атмосферу, 11 я 15 - трубы, 13 - деаэраторная колонка, 14 - паро­распределитель, 16 - впуск воды в гидравлический затвор, 17 - гид­равлический затвор, 18 - выпуск лишней воды из гидравлического затвора

распределительную тарелку 12; по другому трубопроводу через ре­гулятор 8 на тарелку 12 подводится в качестве добавки химически очищенная вода; с тарелки питательная вода отдельными и равно­мерными струйками распределяется по всей окружности деаэраторной колонки и стекает вниз последовательно через ряд располо­женных одна под другой промежуточных тарелок 5 и 6 с мелкими отверстиями.

Пар для подогрева воды вводится в деаэратор по трубе 15 к па­рораспределитель 14 снизу под водяную завесу, образующуюся при стекании воды с тарелки на тарелку, и, расходясь во все стороны, поднимается вверх, навстречу питательной воде, нагревая ее до 104 - 106°С, что соответствует избыточному давлению в деаэраторе 0,02 — 0,025 МПа (0,20 — 0,25 кгс/см 2).

При этой температуре воздух вы­деляется из воды и вместе с остатком несконденсировавшегося па­ра уходит через вестовую трубу 11, расположенную в верхней части деаэрационной головки, непосредственно в атмосферу или охладитель пара 9.

Освобожденная от кислорода и подогретая вода выливается в сборный бак 1, расположенный под колонкой деаэратора, откуда расходуется для питания котлов.

Во избежание значительного повышения давления в деаэраторе на нем устанавливают два гидрозатвора, а также гидравлический затвор 17 на случай образования в нем разрежения. При превыше­нии давления может произойти взрыв деаэратора, а при разрежении атмосферное давление может смять его.

Деаэратор снабжают водоуказательным стеклом 3 с тремя кра­нами - паровым, водяным и продувочным, регулятором уровня во­ды в баке, регулятором давления и необходимой измерительной ап­паратурой. Для надежной работы питательных насосов деаэратор устанавливают на высоте не менее 7 м над насосом.

Воду обескислороживают также фильтрованием ее через слой обыкновенных стальных стружек, которые окисляются из-за растворенного в воде кислорода.

Технологическая схема деаэрации исходной воды в производственной котельной.

Строительство представленной ниже схемы позволило решить две проблемы:

1. В схеме водоподготовки использованы российские корпуса скорых фильтров с импортной насыпкой и управлением, что позволило значительно снизить жесткость исходной воды за счет большей ионообменной емкости смолы.

2. Применение дополнительного теплообменника привело к значительной экономии топлива.

По существующей технологической схеме производственной котельной химически очищенная вода поступает на пароводяной подогреватель и с температурой t = 50 — 60 градусов Цельсия поступает в деаэратор, где догревается барботированием греющего пара до температуры t = 102 — 104 градуса Цельсия. После деаэратора питательная вода поступает на питательный насос и через экономайзер в верхний барабан парового котла. Температура уходящих газов при этом 140 — 160 градусов Цельсия.

Согласно литературы (Д.М. Хзмамен. «Теория горения и топочные устройства», город Москва, Энергия, 1976 год) для уменьшения низкотемпературной сернистой коррозии температура металла в экономайзере котла должна быть около 75 градусов Цельсия, но не ниже 70.

При установке пластинчатого теплообменника производства ОАО «Альфа Лаваль Поток» марки М15-М мощностью 1000 мкал/час и охладителя выпара деаэратора марки М10-М мы обеспечиваем: во-первых — охлаждение питательной воды из деаэратора до температуры 74 градуса Цельсия; во-вторых — нагрев воды с ХВО вначале на М10-М и затем на М15-М. Предполагаемый тепловой перепад t = 28 градусов Цельсия.

Экономический эффект достигается за счет экономии греющего пара на нагрев исходной воды в деаэраторе. Например, мощность М15-М составляет 1000 мкал/час и соответственно в год составит:

Q год. = 1000 мкал/час * 24 часа * 360 дней = 8,640,000 мкал/год.

Теплота сгорания низшая в пересчете на сухое топливо мазута топочного по ГОСТ 10585-63

Деаэрация питательной и подпиточной воды в котельной


Деаэрация питательной и подпиточной воды в котельной Деаэрацией питательной и подпиточной воды паровой котельной называется освобождение питательной воды от рас­творенного в ней воздуха, в состав

ДЕАЭРАЦИЯ = ЗАЩИТА ОТ КОРРОЗИИ

Каталог Все

Работа деаэратора.

Работа деаэратора зависит от эффективности работы устройства, отводящего выделившуюся из воды парогазовую смесь. В качестве устройства, отводящего парогазовую смесь, служит вакуумный водокольцевой насос.

Деаэратор принцип работы.

Принципа работы деаэратора основывается на создании над поверхностью контакта фаз (вода-газ) нулевого парциального давления растворенных в воде коррозионно-активных газов (кислород и углекислота).

Это достигается за счет снижения давления в деаэраторе до давления насыщения согласно температуры воды, поступающей в деаэратор и за счет удаления из внутреннего объема деаэратора образованной парогазовой смеси. При достижении давления насыщения парциальное давление над поверхностью воды равно парциальному давлению водяных паров, а парциальное давление растворенных газов стремится к нулю. Возникает разница концентраций растворенных газов в воде и парогазовой смеси над водой.

Установка деаэратора.

Установка деаэратора производится с учетом уровня вакуума в деаэраторе. Высота установки деаэратора и деаэраторного бака определяется значением вакуума, температурой воды и столбом воды на всасе подающего насоса.

Типы деаэраторов.

Производительность деаэраторов находится в диапазоне от 100 л/ч до 100 м3/ч.

Назначение деаэратора.

Деаэрация подпиточной воды тепловых сетей.

Деаэрация воды сетевого контура котельной.

Деаэрация воды котлового контура котельной.

Деаэрация воды системы ГВС.

Деаэрация питательной воды паровых котлов.

Деаэрация воды на технологию.

Конструкция деаэратора.

Конструкция деаэратора позволяет выполнять глубокую деаэрацию воды при температуре воды 65 °С.

В конструкции деаэратора реализованы две ступени деаэрации. Первая ступень – кавитационная, вторая ступень – пленочная.

На первой ступени поток исходной воды проходит через рабочие сопла, где происходит интенсивное вскипание воды с образование большого количества парогазовых пузырей внутри потока воды. При движении воды через сопло с изменяющейся геометрией увеличивается скорость движения потока и падает статическое давление в воде. При снижении статического давления в потоке воды до давления ниже давления насыщения происходит взрывное вскипание внутри потока воды. Высокая скорость потока воды создает условия для интенсивного перемешивания и дробления парогазовых пузырей с образованием поверхности контакта фаз, значительно превосходящей поверхность контакта в струйно-капельных деаэраторах.

На второй ступени поток воды с парогазовыми пузырями поступает на переливную тарелку, где происходит отделение парогазовых пузырей от воды. Далее вода в виде пленки стекает по вертикальной поверхности в нижнюю часть деаэратора.

Повышение интенсивности процесса деаэрации позволяет снизить габаритные размеры и массу деаэратора.

Схема деаэратора.

Поток исходной химочищенной воды проходит через водоводяной теплообменник, где нагревается до температуры 65 °. В качестве греющей среды используется прямая котловая вода.

Нагретая вода поступает на вход деаэратора, где происходит деаэрация воды под вакуумом, глубина которого зависит от температуры воды. С увеличением температуры глубина вакуума снижается.

После деаэратора деаэрированная вода сливается в деаэраторный бак, где происходит накопление деаэрированной воды. Давление в деаэраторе и деаэраторном баке имеет одинаковое значение, вакуум создается и поддерживается вакуумными водокольцевыми насосами. Деаэратор устанавливается непосредственно над деаэраторным баком. Крепление деаэратора — фланцевое.

Деаэрированная вода из деаэраторного бака подается насосами деаэрированной воды далее по схеме на подпитку теплосети или в аккумуляторные баки.

Высота установки деаэраторного бака с установленным над ним деаэратором определяется кавитационным запасом насосов подачи деаэрированной воды. В среднем при расходе подпиточной воды 50 м3/ч расстояние между зеркалом воды в деаэраторном баке и осью всаса насоса составляет 5 м.

Создание вакуума и откачивание выделившейся парогазовой смеси обеспечивает вакуумный водокольцевой насос. Для работы вакуумного насоса необходим постоянный расход холодной воды. Например вакуумный насос для вакуумного деаэратора производительностью 50 м3/ч потребляет до 500 л/ч воды.

После вакуумного насоса отработанная вода сбрасывается в бак газоотделитель, откуда ее можно вернуть в цикл водоподготовки, добавив в основной поток воды, поступающей на деаэратор.

В качестве рабочей воды для вакуумного насоса рекомендуем использовать химочищенную воду до теплообменника.

Деаэрация воды в котельных бывает нескольких видов

Деаэрация воды в котельных - это докотловая водоподготовка, во время которой из воды удаляются растворенный кислород и углекислота. Дело в том, что при нагревании воды в котельных именно растворенный кислород оказывает отрицательное влияние на оборудование. Но необходимо сказать, что даже после проведения деаэрации может потребоваться применение специальных химических реагентов, чтобы снизить концентрацию растворенных газообразных веществ.

Для связывания в сетевой и питательной среде кислорода можно применять комплексные реагенты, с помощью которых можно не только уменьшить концентрацию углекислоты и кислорода до приемлемого уровня, но также и привести в норму уровень рН котельной воды, а также предотвратить образование известковых отложений. Таким образом, в некоторых случаях приемлемого качества воды в котельных можно достичь даже без использования оборудования для деаэрации.

Химическая деаэрация заключается в добавлении в котловую воду реагентов, с помощью которых можно связать присутствующие там растворенные газообразные вещества, провоцирующие возникновение коррозии. Для водогрейных котлов рекомендуется применять комплексные реагенты - ингибиторы отложений и коррозий. Для удаления растворенного кислорода можно воспользоваться реагентами, специально предназначенными водоподготовки паровых котлов, при этом можно даже обойтись без деаэрации. В некоторых случаях, если оборудование деаэрации работает некорректно, то для нормализации воднохимического режима котлов можно использовать специальные реагенты.

В любой воде в больших количествах имеются агрессивные растворенные газы, в основном углекислота и кислород, которые и способствуют появлению коррозии трубопроводов и оборудования. Термическая деаэрация воды в котельных позволяет существенно снизить количество газов. Коррозионно-активные газы проникают в питательную воду из окружающей атмосферы, либо в процессе ионного обмена. Но самое большое негативное воздействие оказывает кислород, являясь причиной коррозии. Что касается углекислоты, то она выступает в качестве своеобразного катализатора, усиливая действие кислорода. Но она и сама в состоянии оказывать негативное воздействие.

Термическая деаэрация используется чаще всего. Во время нагрева воды в котельной при постоянном давлении происходит выделение растворенных газов. По мере увеличения температуры, когда она доходит до кипения, концентрация газов постепенно снижается до минимума, вследствие чего вода полностью от них освобождается. Если воду в котельной не нагреть до температуры кипения, остаточное содержание в ней газов будет увеличиваться. Причем, влияние данного параметра довольно существенное. Существуют определенные нормы, регламентирующие состояние воды в котельных, и если недогреть воду хотя бы на один градус, добиться соответствия этим нормам не удастся.

Поскольку концентрация растворенных газов в воде котельных очень маленькая, то недостаточно просто удалить их из воды - очень важно полностью освободить от них установку деаэрации. Для того, чтобы этого добиться, приходится подавать избыточный пар в установку, в количестве гораздо большем, чем требуется для доведения воды до кипения. Если взять расход пара в количестве обрабатываемой воды в пределах 15-20 кг/т, то выпар будет составлять 2-3 кг/т, а его снижение может привести к значительному ухудшению воды в котельной. Помимо этого емкость установки деаэрации должна быть достаточно большой, чтобы вода могла пробыть в ней не менее 20-30 минут. Такой длительный промежуток времени требуется не только для выведения газов, но и для полного разложения карбонатов.

Вакуумная деаэрация воды в котельных применяется тогда, когда в котельных установлены водогрейные котлы. В этом случае деаэраторы могут работать при температуре в пределах 40-90 градусов.

Но при всех своих положительных качествах системы водоочистки и водоподготовки путем вакуумной деаэрации обладают и существенными недостатками - высокая металлоемкость, очень много вспомогательного оборудования (вакуумные эжекторы и насосы, баки и т.д.), необходимость монтировать их на возвышенности.

Деаэратор - техническое устройство, реализующее процесс деаэрации некоторой жидкости (обычно воды), то есть её очистки от присутствующих в ней нежелательных газовых примесей (кислород и двуокись углерода). Будучи растворенными в воде, эти газы вызывают коррозию питательных трубопроводов и поверхностей нагрева котла, вследствие чего оборудование выходит из строя. На паротурбинных станциях применяют термическую деаэрацию воды.

Принцип действия термических деаэраторов основан на том, что абсолютное давление над жидкостью - это сумма парциальных давлений газов и пара.

Если увеличить парциальное давление пара так, что при одновременном удалении выпара (это смесь выделившихся из воды газов и небольшого количества пара, подлежащая эвакуации из деаэратора), то как следствие получим суммарное парциальное давление газов . Тогда по закону Генри (равновесная массовая концентрация газов в растворе пропорционально парциальному давлению в газовой среде над раствором) т.е растворенные газы отсутствуют. Увеличения парциального давления пара в свою очередь можно добиться увеличением температуры воды до температуры насыщения при данном давлении при .

Классификация термических деаэраторов.

По назначению: деаэраторы питательной воды паровых котлов; добавочной воды и обратного конденсата внешних потребителей; подпиточной воды тепловой сети.

По давлению греющего пара: повышенного давления (0,6-0,8 МПа)(Д ); атмосферные (0,12 МПа)(ДА ); вакуумные (7,5-50 кПа)(ДВ ).

По способу обогрева деаэрированой воды: смесительного типа (со смешением греющего пара с обогреваемой водой); деаэраторы перегретой воды с внешним предварительным подогревом воды отборным паром.

По конструкции (по принципу образования межфазной поверхности): с поврхностью контакта образующейся в турбулентном режиме (стройно-барбатажный, пленочного типа с неупорядоченной насадкой, струйый тарельчатого типа); с фиксированной поверхностью контакта фаз (пленочного типа с упорядоченной насадкой).

Принципиальная схема деаэрационной установки.

Рис. Атмосферный деаэратор смешивающего типа: 1 - бак (аккумулятор), 2 - выпуск питательной воды из бака, 3 - водоуказательное стекло, 4 - манометр, 5, 6 и 12 - тарелки, 7 - спуск воды в дренажный бак, 8 - автоматический регулятор подачи Химически очищенной воды, 9 - охладитель пара, 10 - выпуск пара в атмосферу, 11 и 15 - трубы, 13 - деаэраторная колонка, 14 - парораспределитель, 16 - впуск воды в гидравлический затвор, 17 - гидравлический затвор, 18 - выпуск лишней воды из гидравлического затвора

Деаэратор состоит из бака 1 и колонки 13, внутри которой установлен ряд распределительных тарелок 5, 6 и 12. Питательная вода (конденсат) от насосов поступает в верхнюю часть деаэратора на распределительную тарелку 12; по другому трубопроводу через регулятор 8 на тарелку 12 подводится в качестве добавки химически очищенная вода; с тарелки питательная вода отдельными и равномерными струйками распределяется по всей окружности деаэраторной колонки и стекает вниз последовательно через ряд расположенных одна под другой промежуточных тарелок 5 и 6 с мелкими отверстиями. Пар для подогрева воды вводится в деаэратор по трубе 15 и парораспределитель 14 снизу под водяную завесу, образующуюся при стекании воды с тарелки на тарелку, и, расходясь во все стороны, поднимается вверх, навстречу питательной воде, нагревая ее. При этой температуре воздух выделяется из воды и вместе с остатком несконденсировавшегося пара уходит через вестовую трубу 11, расположенную в верхней части деаэрациопной головки, непосредственно в атмосферу или охладитель пара 9. Освобожденная от кислорода и подогретая вода выливается в сборный бак 1, расположенный под колонкой деаэратора, откуда расходуется для питания котлов. Во избежание значительного повышения давления в деаэраторе на нем устанавливают два гидрозатвора, а также гидравлический затвор 17 на случай образования в нем разрежения. При превышении давления может произойти взрыв деаэратора, а при разрежении атмосферное давление может смять его. Деаэратор снабжают водоуказательным стеклом 3 с тремя кранами - паровым, водяным и продувочным, регулятором уровня воды в баке, регулятором давления и необходимой измерительной аппаратурой. Для надежной работы питательных насосов деаэратор устанавливают на высоте не менее 7 м над насосом.

Н.Н. Громов, главный инженер АП «Теплосеть» Красногорского района

В последнее время большое количество паровых котлов (ДКВр, ДЕ, Е и т.д.) переводится в водогрейный режим, при этом деаэраторы котельных остаются без пара. Эффективный метод, разработанный и апробированный в течение 10 лет в АП «Теплосеть» Красногорского района, позволяет без переделок деаэратора дегазировать воду без подвода пара и без недостатков вакуумной деаэрации.

Термическая деаэрация

В воде всегда содержатся растворенные агрессивные газы, прежде всего кислород и углекислота, которые вызывают коррозию оборудования и трубопроводов. Коррозионно-активные газы попадают в исходную воду в результате контакта с атмосферой и других процессов, например, ионном обмене. Основное коррозионное воздействие на металл оказывает кислород. Углекислота ускоряет действие кислорода, а также обладает самостоятельными коррозионными свойствами.

Для защиты от газовой коррозии применяется деаэрация (дегазация) воды. Наибольшее распространение нашла термическая деаэрация. При нагреве воды при постоянном давлении растворенные в ней газы постепенно выделяются. Когда температура повышается до температуры насыщения (кипения), концентрация газов снижается до нуля. Вода освобождается от газов.

Недогрев воды до температуры насыщения, соответствующей данному давлению, увеличивает остаточное содержание в ней газов. Влияние этого параметра весьма существенно. Недогрев воды даже на 1 °С не позволит достичь требований «Правил...» для питательной воды паровых и водогрейных котлов.

Концентрация растворенных в воде газов очень мала (порядка мг/кг), поэтому недостаточно выделять их из воды, а важно еще удалить их из деаэратора. Для этого приходится подавать в деаэратор избыточный пар или выпар, сверх количества, необходимого для нагрева воды до кипения. При общем расходе пара 15-20 кг/т обрабатываемой воды, выпар составляет 2-3 кг/т. Снижение выпара может существенно ухудшить качество деаэрированной воды. Кроме того, бак деаэратора должен иметь значительный объем, обеспечивающий пребывание в нем воды не менее 20 ... 30 минут. Длительное время необходимо не только для удаления газов, но и для разложения карбонатов.

Деаэраторы атмосферного типа с подводом пара

Для деаэрации воды в котельных с паровыми котлами применяются в основном термические двухступенчатые деаэраторы атмосферного типа (ДСА), работающие при давлении 0,12 МПа и температуре 104 °С. Такой деаэратор состоит из деаэрационной головки, имеющей две или более перфорированные тарелки, или другие специальные устройства, благодаря которым исходная вода, разбиваясь на капли и струи, падает в аккумуляторный бак, встречая на своем пути движущийся противотоком пар. В колонке происходит нагрев воды и первая стадия ее деаэрации. Такие деаэраторы требуют установки паровых котлов, которые усложняют тепловую схему водогрейной котельной и схему химводоподготовки.

Вакуумная деаэрация

В котельных с водогрейными котлами, как правило, применяются вакуумные деаэраторы, которые работают при температурах воды от 40 до 90 °С.

Вакуумные деаэраторы имеют множество существенных недостатков: большая металлоемкость, большое количество дополнительного вспомогательного оборудования (вакуумные насосы или эжекторы, баки, насосы), необходимость расположения на значительной высоте для обеспечения работоспособности подпиточных насосов. Главным же недостатком является наличие существенного количества оборудования и трубопроводов, находящихся под разряжением. В результате через уплотнения валов насосов и арматуры, неплотности во фланцевых соединениях и сварных стыках в воду поступает воздух. При этом эффект деаэрации полностью пропадает и даже возможен рост концентрации кислорода в подпиточной воде по сравнению с исходной.

Атмосферная деаэрация без подвода пара

В последнее время большое количество паровых котлов переводится в водогрейный режим. Эффективный способ деаэрации в котельных с такими котлами разработан и прошел длительную проверку в АП «Теплосеть» Красногорского района.

Вода после натрий-катионитной установки подогревается до 106-110 °С и впрыскивается в головку атмосферного деаэратора, где капли воды за счет снижения давления вскипают. При кипении из воды вместе с паром удаляются и коррозионно-агрессивные газы, причем более активно, чем в деаэраторах с подводом пара. Схема реализована на оборудовании, которое эксплуатировалось в паровой котельной с тремя котлами ДКВр 10/13, при переводе в водогрейный режим с параметрами теплоносителя 115/70 °С. При этом деаэратор типа ДСА не требует доработок. Для нагрева подпиточной воды использованы паровые сетевые подогреватели, доработанные для работы на греющей воде с температурой 110-113 °С, а не на паре. На технические решения, примененные в котельных Красногорского района, получен патент РФ.

Данная схема исключает недостатки вакуумной деаэрации и деаэрации с подводом пара. Достоинством новой схемы деаэрации является ее простота и надежность, позволяющая ей устойчиво работать в любой водогрейной котельной.

Кроме того

При переводе в водогрейный режим котлов ДКВр 10/13 с параметрами теплоносителя 115/70 °С по схеме ЦКТИ мы столкнулись с уменьшением теплопроизводительности котлоагрегата (она не уменьшается при графике 150/70). Такое уменьшение было недопустимо по нагрузке на теплосеть, поэтому нами были разработаны и внедрены изменения в схему ЦКТИ. Конструктивно изменения не значительны, но позволили улучшить циркуляцию в задних экранах и увеличить теплопроизводительность котла до требуемой. Схема движения воды в контуре котла запатентована. Котлы эксплуатируются уже 10 лет без нареканий.

Что еще почитать