Общая масса молекул днк в 46. Решение задач по молекулярной биологии

2.3 Молекулярная масса, содержание и локализация в клетке ДНК и РНК; виды ДНК и РНК

Молекулярную массу ДНК определяют в основном гидродинамическим и электронно-микроскопическим методами, хотя это можно делать, измеряя светорассеяние растворов ДНК и некоторыми другими способами.

В основе гидродинамического метода лежит линейная зависимость константы седиментации ДНК, определяемой при ультрацентрифугировании растворов ДНК, от ее молекулярной массы, которую можно установить по калибровочной кривой или расчитать по формуле: 0,445lgM=1.819+lg(s20?w-2.7), где s20?w - константа седиментации, приведенная путем экстраполирования к бесконечному разведению (s), стандартной температуре (20 С) и вязкости воды (w).

Электронно-микроскопический метод определения молекулярной массы ДНК основан на измерении длины вытянутых молекул ДНК. Известно, что на 0,1 нм протяженности ее молекулы приходится масса, равная 197 Да. Умножая это значение на экспериментально найденную длину, находят значение молекулярной массы. Молекулярная масса эукариотических ДНК выше, чем у ДНК прокариот (например, в одной из хромосом плодовой мушки дрозофилы она достигает 7,9 х 10 10). Кроме того, в состав митохондрий и хлоропластов входят кольцевые молекулы ДНК с молекулярной массой 10 6 -10 7 . ДНК этих органелл называют цитоплазматической; она составляет примерно 0,1% всей клеточной ДНК.

В зависимости от места локализации ДНК в клетке различают ядерную, митохондриальную, хлоропластную, центриольную и эписомальную ДНК. Ядерная ДНК у эукариот резко превалирует над ДНК других субклеточных структур. Так, в митохондриях обнаружено от 0,5*10 6 до 5*10 16 г ДНК, в хлоропластах - от 10? 16 до 150*10? 16 , а в центриолях - 2*10 16 г, что составляет несколько процентов от ядерной ДНК. В таком же соотношении находится содержание ДНК в бактериальной хромосоме и эписомах - внехромосомных, самостоятельно реплицирующихся детерминантах наследственности у микроорганизмов, обеспечивающих перенос генетической информации, например, об устойчивости к антибиотикам (иначе их называют R-факторами, т.е. факторами резистентности). Обсуждается вопрос о существовании экстрахромосомной ДНК, транспортируемой, или коммуникационной, ДНК, цитоплазматической мембранной ДНК, мелкодисперсной сверхскрученной ДНК. По функциональному назначению различают рибосомальную ДНК (рДНК) и сателлитную ДНК (стДНК).

Кроме внутриклеточной ДНК существует также ДНК, входящая в состав вирусов и бактериофагов. Количество ее в вирусах значительно ниже, чем в клетках бактерий (тысячные доли пикограмма).

Молекулярные массы РНК определяют теми же методами, что и ДНК, но, кроме того, используют электрофорез в полиакриламидном геле, так как пробег РНК в геле обратно пропорционален их молекулярным массам. Что касается содержания и локализации РНК в клетках, то оно не отличается ни однообразием, ни стабильностью: в клетках, где идет интенсивный биосинтез белков, содержание РНК в несколько раз превышает таковое ДНК (например, в печени крысы РНК в 4 раза больше, чем ДНК), но там, где синтез белка мал, соотношение ДНК и РНК может быть обратным (например, в легких крысы РНК в 2 раза меньше, чем ДНК).

По функциональному значению и молекулярным массам, равно как и по локализации в клеточном содержимом, РНК делят на следующие виды.

1. Транспортные РНК (тРНК) отличаются сравнительно невысокими значениями молекулярных масс (25-30 тыс. дальтон). тРНК составляют 10 % от всех РНК. Эти РНК локализованы в гиалоплазме клетки, ядерном соке, бесструктурной части хлоропластов и митохондрий и приобретают специфическую конфигурацию в виде клеверного листа. Они осуществляют кодирование аминокислот и перенос их в рибосомальный аппарат клетки в процессе биосинтеза белков.

2. Рибосомальные РНК (рРНК) характеризуются в основном большими молекулярными массами (1-1,5 млн. дальтон), молекулы крупные, в их состав входит до 5 000 нуклеотидов. Они локализованы в рибосомах, являясь их структурной основой и выполняя в них разнообразные функции (формирование активного центра рибосомы; Обеспечение взаимодействия рРНК и тРНК).

3. Информационные, или матричные, РНК (мРНК) обладают молекулярными массами, варьирующими в широких пределах (от 300 000 до 4*10 6). мРНК синтезируются в ядре в процессе транскрипции на определенном участке молекулы ДНК (гене). Функцией мРНК является перенос генетической информации о структуре белка от ДНК к месту синтеза белка, на рибосомы.

4. Вирусные РНК отличаются разнообразными и высокими молекулярными массами, лежащими в основном в пределах нескольких миллионов дальтон. Они являются составными частями вирусных и фаговых рибонуклеопротеинов, несут всю информацию, необходимую для размножения вируса в клетках хозяина.

В современной литературе обсуждается вопрос о целесообразности выделения в отдельные категории еще нескольких видов РНК: ядерной, хромосомной, митохондриальных, низкомолекулярных регуляторных, антисмысловых.

Азот и его соединения

Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объ - ему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент...

Алкалоиды растительного сырья

Белки

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков -- мономеров. Соответственно и молекулярная масса белков находится в пределах 10000-1000000. Так, в составе рибонуклеазы (фермента...

Висмут и его соединения в природе

Висмут относится к малоподвижным водным мигрантам и его концентрация в подземных водах составляет около 20 мкг/дм3, в морских водах - 0.02 мкг/дм3. В таких концентрациях висмут не оказывает негативного влияния на качество воды...

Коксование каменных углей

Органическую массу угля образуют соединения, в основе которых находятся углерод, водород, кислород, сера и азот. Углерод Углерод является основным элементом ископаемых углей...

Определение содержания железа +2 в керамических образцах

Глина представляет собою коллоидный пластический материал вторичного происхождения, образовавшийся в результате распада и разложения некоторых видов первичных пород...

Расчет насадочной ректификационной колонны периодического действия для разделения бинарной смеси метиловый спирт – бензол

Масса аппарата рассчитывается по формуле, (6.38) где - масса корпуса, кг; - масса насадки, кг; - масса днища, кг; - масса крышки, кг; - масса максимальной нагрузки на опоры, кг. Вычислим составляющие суммы. Масса корпуса равна, (6...

Структура и деформационно-прочностные свойства изопренового каучука

Структура изопренового каучука рассматривается на двух уровнях: молекулярном и надмолекулярном. Молекулярный уровень характеризуется структурой повторяющихся звеньев, структурой полимерной цепи...

Количество Содержание, кг/ч, кмоль/ч, масс. доли мольн. доли 105 26283 250,3 0,169732 0,034593 3,63 18 123477 6859,8 0,797400 0,948062 17,07 34 4067,8 119,6 0,026269 0,016529 0,56 244 548,2 2,25 0,003540 0,000311 0,08 139 467,6 3,36 0,003020 0,000464 0,06 16 1,8 0,113 0...

Технологический расчет абсорбера для очистки углеводородного газа от сероводорода регенерированным водным раствором диэтаноламина

МПа, К, МПа, К 0,75 4.605 190.55 0.0104 3.4538 142.91 0.00780 0,1 4.875 305.43 0.0986 0.4875 30.54 0.00986 0,08 4.248 369.82 0.1524 0.3398 29.59 0.01219 0,06 3.795 425.16 0.2010 0.2277 25.51 0.01206 0,01 9.000 373.6 0.1000 0.0900 3.74 0.00100 У 1,00 4.6 232.29 0...

Технологический расчет абсорбера для очистки углеводородного газа от сероводорода регенерированным водным раствором диэтаноламина

Коэффициенты в формуле для расчета энтальпии идеального газа Энтальпии, кДж/кг А В С D 0,5372 154,15 15,12 0,0519 56,62 650,3 349,3 0,1343 58,65 23,63 0,4139 56,15 445,7 59,9 0,1576 33,65 26,31 0,5380 35,58 390,9 61,6 0,1558 34,72 26,08 0,5455 39,22 393,4 61,3 0,0152 87...

Технологический расчет абсорбера для очистки углеводородного газа от сероводорода регенерированным водным раствором диэтаноламина

Коэффициенты в формуле для расчета энтальпии идеального газа Энтальпии, кДж/кг А В С D 0,5459 154,15 15,12 0,0519 56,62 650,3 355 0,1365 58,65 23,63 0,4139 56,15 445,7 60.84 0,1604 33,65 26,31 0,5380 35,58 390,9 62.7 0,1581 34,72 26,08 0,5455 39,22 393,4 62.2 0...

Токсическое влияние таллия

Атомная масса Таллия составляет 204...

Характеристика процесса адсорбции

Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Ленгмюра...

Химическая связь и строение вещества

Радиусы атомов и молекул выражаются очень малыми величинами, и в стомиллионных долях сантиметра и обычно измеряются в ангстремах, 1А равен 10-8 см. Радиус молекулы СО2 равен 1,66 10-8 см, что равно 1,66 А. Диаметр молекулы N2 равен 3,1 10-8 см, а это равно 3,1 А...

краткое содержание других презентаций

«Подготовка к олимпиадам по биологии» - Коммулятивный эффект. Последовательность. Витамин. Этапы подготовки учащихся к олимпиадам и интеллектуальным конкурсам. Общие методические рекомендации. Желаем успехов на заочном этапе турнира. Формирование умений учащихся. Взаимосвязанная совокупность популяций. Метод биологических исследований. Насиживание самцов страуса яиц. Поперечный срез. Методика подготовки к олимпиадам и интеллектуальным турнирам по биологии.

«Билет по биологии» - Ряд отличий. Пармелия. Лишайники. Клетка. Органоида. АТФ. Безжизненные местообитания. Единица строения и жизнедеятельности организмов. Роль белков в организме. Роль белков.

«Типовые задания ЕГЭ по биологии» - Соответствие между признаком организма и царством. В5 Сопоставление особенностей строения и функционирования организма. Обобщение и применение знаний. Сопоставление особенностей строения и функционирования. Сопоставление биологических объектов. Отбор. Умение работать. Типичные ошибки при выполнении заданий ЕГЭ по биологии. Комплекс. Организмы. Установление последовательности биологических объектов.

«ГИА по биологии» - Структура и содержание стандарта по биологии. Распределение отметок по пятибалльной шкале. Число экзаменов. Устный экзамен по биологии. Диаграмма распределения отметок участников. Итоговая аттестация обучающихся. Рекомендации. Контрольные измерительные материалы 2013 г. Формы проведения. Государственная итоговая аттестация. Подготовку к экзамену. Проблемы итоговой аттестации по биологии. Структура биологического образования.

«С5 по биологии» - Общая масса всех молекул ДНК. Биосинтез белка. ДНК. Определение длины. Вычисление количества нуклеотидов. Определите число аминокислот. Определите последовательность нуклеотидов. Решение задач части С5. Первичная структура инсулина. Молекулярная биология. Задачи. Молекулярная масса. Деление клетки. Участок цепи молекулы ДНК. Число нуклеотидов. Сколько содержится нуклеотидов А, Т, Г, во фрагменте молекулы ДНК.

«Тестирование по биологии» - Споры бактерий. Проверочная работа по биологии. Сколько видов тканей существует в организме человека и животных. Половые части цветка. Печень. Образование органических веществ. Многочисленные органоиды. Растения по типу питания. Генеративный орган растения. Функции. Карп. Существование клеток. Пищеварительная система. Наружный скелет. Наземные позвоночные. Хлорофилл. Животные. Эвглена зелёная. Скорпионы.

1) Общая масса молекул ДНК в 46 хромосомах ядра соматической клетки человека составляет 6·10 -9 мг. Определите, чему равна масса всех молекул ДНК в ядрах в конце интерфазы, конце телофазы мейоза I и телофазы мейоза II. Ответ поясните.

Ответ: 1) В интерфазе при подготовке к мейозу в ядре происходит удвоение ДНК, поэтому масса ДНК в ядре составляет 2 х 6·10 -9 = 12·10 -9 мг.

2)В конце телофазы мейоза 1 образуется две клетки, масса ДНК в каждом ядре равна 6·10 -9 мг (в ядрах находятся по 23 двухроматидные хромосомы);

3)Перед мейозом 2 не происходит удвоения ДНК. В ядрах половых клеток (телофаза 2) находится гаплоидный набор хромосом (23 однохроматидные хромосомы), поэтому масса молекул ДНК в ядрах- 3·10 -9 мг .

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в конце телофазы мейоза 1 и телофазы мейоза 2. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Ответ: 1)Перед началом мейоза хромосомный набор в клетках двойной(2п)-28хрососом, в интерфазе происходит удвоение молекул ДНК, поэтому число молекул ДНК- 56 молекул (4с). 2) В первом делении мейоза расходятся гомологичные хромосомы, состоящие из двух хроматид, поэтому в конце телофазы мейоза 1 хромосомный набор в клетках одинарный (п)- из 14хромосом, число молекул ДНК- 2с (28 молекул ДНК). 3) Во втором делении мейоза расходятся хроматиды, поэтому в конце телофазы 2 мейоза хромосомный набор в клетках одинарный (п)-14 хромосом, число молекул ДНК равно 14 молекулам (1с).

В клетках одного из видов пшеницы содержится 28 хромосом. Определите число хромосом и молекул ДНК при образовании пыльце в тычинке на стадиях профазы мейоза 1, профазы 2 и телофазы мейоза 2. Объясните полученные результаты.

Ответ: 1) В профазе 1 мейоза число хромосом равно 28 (хромосомы состоят из двух хроматид), а число молекул ДНК равно 56 , потому что в интерфазе происходит удвоение молекул ДНК.

2) В профазе 2 мейоза число хромосом равно14, так как после первого деления число хромосом уменьшается в 2 раза. (но хромосомы состоят из двух хроматид), а число молекул ДНК равно 28, потому что после первого деления удвоения ДНК не происходит. 3) В конце телофазы 2 число хромосом равно 14(однохроматидные хромосомы), число молекул ДНК равно тоже 14.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.


Ответ: 1) перед началом мейоза число молекул ДНК – 56, так как они удваиваются, а число хромосом не изменяется – их 28;

2) в анафазе мейоза I число молекул ДНК 56, число хромосом – 28, к полюсам клетки расходятся гомологичные хромосомы;

3) в анафазе мейоза II число хромосом – 28, к полюсам клетки расходятся сестринские хроматиды и становятся самостоятельными хромосомами (но все они в одной клетке), число молекул ДНК – 28, после первого деления удвоения ДНК не происходит, поэтому число ДНК уменьшилось в 2 раза.

В клетках эндосперма семян лилии 21 хромосома. Как изменится число хромосом и молекул ДНК в конце телофазы мейоза1 и мейоза2 по сравнению с интерфазой у этого организма? Ответ поясните.

Ответ: 1) Эндосперм цветковых растений имеет триплоидный набор хромосом (3п), значит, число хромосом в одинарном наборе (п) равно 7хромосомам. Перед началом мейоза хромосомный набор в клетках двойной(2п) из 14 хромосом, в интерфазе происходит удвоение молекул ДНК, поэтому число молекул ДНК- 28 (4с). 2) В первом делении мейоза расходятся гомологичные хромосомы, состоящие из двух хроматид, поэтому в конце телофазы мейоза 1 хромосомный набор в клетках одинарный (п) из 7 хромосом, число молекул ДНК- 14 (2с).

3) Во втором делении мейоза расходятся хроматиды, поэтому в конце телофазы 2 мейоза хромосомный набор в клетках одинарный (п)-7 хромосом, число молекул ДНК равно одному-7 (1с).

1 если в молекуле днк на долю аденина приходится 10% то сколько % составлять цитозин в клетке 2 определите молекулярную массу гена в котором запр

ограмирован белок состоящий из 400 аминокислот. средняя масса нуклеотидов в молекуле ДНК

3 В одной молекуле ДНК на долю тимини приходится 18% определите% соотношение других нуклеотидов в молекуле ДНК

КОМУ ЗНАКОМО, ПОМОГИТЕ! :) 1. Какую длинну имеет часть молекулы ДНК, которая кодирует молекулу инсулина, если известно, что в состав

этой молекулы входит 51 аминокислота, а линейная длина одного нуклеотида в нуклеиновой кислоте равна 3,4 ангстрем?

2. Какую массу имеет часть молекулы ДНК, которая кодирует молекулу инсулина, если известно, что в состав этой молекулы входит 51 аминокислота, а средняя молекулярная масса одного нуклеотида равна 345 а. о. м.

Длинна фрагмента молекулы ДНК равна 68 нм, что составляет 10% от длинны всей молекулы. На долю адениловых нуклеотидов в данной молекулз ДНК приходится 1

2%. Определите относительную молекулярную массу фрагмента молекулы, принимая во внимание, что относительная молекулярная масса одного нуклеотида равна 354, и число всех видов нуклеотидов в данной молекуле ДНК.

1. Что характерно для мутации (возникает при скрещивании, при кроссинговере, возникает внезапно в ДНК или в хромосомах)?

2. Признаки какой изменчивости передаются потомству (модификационной, мутационной)?
3. Что подвергается изменениям при возникновении мутаций (генотип, фенотип)?
4. Наследуются признаки генотипа или фенотипа?
5. Для какой изменчивости характерны следующие признаки: возникают внезапно, могут быть доминантными или рецессивными, полезными или вредными, наследуются, повторяются (мутационная, модификационная)?
6. Где происходят мутации (в хромосомах, в молекулах ДНК, в одной паре нуклеотидов, в нескольких нуклеотидах)?
7. В каком случае мутация проявляется фенотипически (в любом, в гомозиготном организме, в гетерозиготном организме)?
8. Какова роль мутаций в эволюционном процессе (увеличение изменчивости, приспособление к окружающей среде, самосовершенствование организма)?
9. От чего зависит фенотип (от генотипа, от окружающей среды, ни от чего не зависит)?
10. Чем определяется размах изменчивости признаков организма (окружающей средой, генотипом)?
11. Признаки какой изменчивости выражаются в виде вариационного ряда и вариационной кривой (мутационной, модификационной)?
12. Какие признаки обладают узкой нормой реакции (качественные, количественные), какие более пластичны (качественные, количественные)?
13. Какая форма естественного отбора в популяции приводит к образованию новых видов (движущий, стабилизирующий), какая - к сохранению видовых признаков (движущий, стабилизирующий)?

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.

Что еще почитать