На что влияет неисправный дмрв. Как проверить расходомер воздуха собственными силами и что нужно для проверки? Разбираем, прочищаем, собираем

Самым очевидным и ранним признаком неисправного или сбоящего ДМРВ является мерцающее освещение приборной панели. Однако такой эффект могут вызвать многие неисправности. Поэтому необходимо протестировать бортовой компьютер автомобиля, чтобы убедиться, что это связано именно с датчиком массового расхода воздуха.

Поскольку ДМРВ играет важную роль в поддержании должного баланса воздуха и топлива внутри двигателя, его отказ может вызвать целый ряд проблем с производительностью силового агрегата. Они могут включать в себя небольшой пробег после заправки, дрожь при работающем двигателе, проблемы с запуском мотора, постукивание или шумы. Эти признаки могут появиться гораздо раньше, чем ДМРВ достигнет критического состояния и на приборной панели загорится индикатор, сообщающий о поломке.

Иногда датчик массового расхода воздуха загрязняется и поэтому начинает плохо работать. Несмотря на то что воздух, проходящий через ДМРВ, очищает его, микроскопические частицы мусора накапливаются на его внутренних поверхностях. Большие скопления загрязнителей приводят к поломке прибора. В этом случае деталь можно вернуть в первоначальное состояние путем простой очистки. Однако стоит помнить о том, что датчик представляет собой очень деликатный прибор и от неосторожного обращения он может прийти в полную негодность.

Существуют и другие неисправности ДМРВ. Например, если с самим прибором все в порядке, гофрированный провод, который соединяет его с бортовым компьютером, может прийти в негодность. В результате этого сигнал будет подаваться на центральный процессор с опозданием, что негативно отразится на работе двигателя. Чтобы убедиться в его работоспособности, необходимо прозвонить провод или другим подобным прибором.

Диагностика

Автомеханик может проверить бортовой компьютер в сервисном центре. Также это можно сделать самостоятельно, используя цифровой сканер для диагностики. Такие сканеры доступны в большинстве магазинов автозапчастей. И хотя все они работают немного по-разному, они, как правило, рассчитаны на подключение к порту для диагностики автомобиля OBD-II. Поэтому все сканеры могут считывать данные с компьютера.

После проверки сканер покажет один или несколько буквенно-цифровых кодов, которые можно при помощи справочника. Более продвинутые модели отображают краткую информацию о коде на экране. Если после расшифровки становится понятно, что неисправность связана с ДМРВ, то его необходимо заменить или отремонтировать. Стоит заметить, что датчики массового расхода воздуха редко подлежат ремонту, так как их проще и дешевле просто заменить.

Для обеспечения оптимального процесса сгорания топлива и соблюдения заданных экологических стандартов требуется максимально точно определять массовый расход воздуха, подаваемого в цилиндры двигателя, в зависимости от режимов его работы. Контроль этого процесса может осуществляется целым набором датчиков: датчик давления воздуха, датчик температуры, но наиболее популярным из них является датчик массового расхода воздуха (ДМРВ), который иногда еще называют расходомером. ДМРВ фиксирует количество (массу) воздуха, поступающего из атмосферы во впускной коллектор двигателя и передает эти данные электронному блоку управления для последующего расчета топливоподачи.

Виды и особенности работы расходомеров

Расшифровка аббревиатуры ДМРВ — датчик массового расхода воздуха. Устройство применяется в автомобилях с бензиновыми и дизельными двигателями. Он расположен во впускной системе между воздушным фильтром и дроссельной заслонкой и подключается к ЭБУ двигателя. При отсутствии или неисправности расходомера расчет количества поступающего воздуха осуществляется по положению дроссельной заслонки. Это не дает точного измерения, и на сложных режимах работы расход топлива повышается, поскольку массовый расход воздуха является ключевым параметром для вычисления количества впрыскиваемого топлива.

Принцип действия датчика массового расхода воздуха основан на измерении температуры воздушного потока, а потому этот тип расходомеров называют термоанемометрическими. Конструктивно различают два основных типа ДМРВ:

  • нитиевый (проволочный);
  • пленочный;
  • объемного типа с поворотной заслонкой (на данный момент практически не используется).

Конструкция и принцип действия проволочного датчика

Схема устройства проволочного ДМРВ

Нитиевой ДМРВ имеет следующее устройство:

  • корпус;
  • измерительная трубка;
  • чувствительный элемент — платиновая проволока;
  • терморезистор;
  • преобразователь напряжения.

Платиновая нить и терморезистор представляют собой резистивный мост. При отсутствии воздушного потока платиновая нить постоянно подогревается до заданной температуры путем прохождения через нее электрического тока. Когда дроссельная заслонка открывается и начинается движение воздуха, чувствительный элемент охлаждается, что снижает его сопротивление. Это провоцирует увеличение «нагревающего» тока для уравновешивания моста.

Преобразователь трансформирует происходящие изменения силы тока в выходное напряжение, которое передается ЭБУ двигателя. Последний, исходя из существующей нелинейной зависимости, рассчитывает количество подаваемого в камеры сгорания топлива.

Эта конструкция имеет один существенный недостаток — со временем возникают неисправности. Чувствительный элемент изнашивается, и его точность падает. Также они могут загрязняться, но для решения этой проблемы проволочные датчики массового расхода воздуха, устанавливаемые в современных автомобилях, имеют режим самоочистки. Он предполагает кратковременный разогрев проволоки до 1000°С при выключенном двигателе, что приводит к сжиганию скопившихся загрязнений.

Схема и особенности работы пленочного ДМРВ

Устройство пленочного ДМРВ

Принцип работы пленочного датчика во многом схож с нитиевым. Однако в этой конструкции есть несколько отличий. Вместо платиновой проволоки в качестве основного чувствительного элемента установлен кристалл кремния. Последний имеет платиновое напыление, состоящее из нескольких тончайших слоев (пленок). Каждый из слоев представляет собой отдельный резистор:

  • нагревательный;
  • терморезисторы (их два);
  • датчика температуры воздуха.

Кристалл с напылением помещен в корпус, который подключается в канал подачи воздуха. Он имеет особенную конструкцию, позволяющую выполнять измерение температуры не только входящего, но и отраженного потока. Поскольку всасывание воздуха достигается за счет разрежения, скорость движения потока очень высока, что препятствует скоплению загрязнений на чувствительном элементе.

Так же, как и в нитиевом датчике, чувствительный элемент нагревается до заданной температуры. При прохождении воздуха на терморезисторах возникает разница температур, на основе которой рассчитывается масса потока, поступающего из атмосферы. В таких конструкциях сигнал в ЭБУ двигателя может подаваться как в аналоговом формате (выходное напряжение), так и в более современном и удобном для обработки — цифровом.

Последствия и признаки неисправности ДМРВ

Как и для любого типа датчика двигателя, неисправности ДМРВ означают неверные расчеты ЭБУ двигателя и, как следствие, некорректная работа системы впрыска. Это может вызвать перерасход топлива или, напротив, недостаточную подачу, что снижает мощность мотора.

Наиболее яркие симптомы неисправности датчика:

  • Появление на приборной панели автомобиля сигнала «Check Engine».
  • Существенное увеличение расхода топлива при обычном режиме эксплуатации.
  • Снижение интенсивности разгона двигателя.
  • Сложности с запуском двигателя и возникновение самопроизвольных остановок в его работе (мотор глохнет).
  • Работа только на одном определенном уровне оборотов (низкие или высокие).

Если вы обнаружили признаки неисправности датчика массового расхода воздуха, попробуйте отключить его. Увеличение мощности двигателя будет подтверждением поломки ДМРВ. В этом случае его потребуется промыть или заменить. При этом необходимо подбирать датчик, рекомендованный производителем автомобиля (то есть оригинальный).

Датчик массового расхода воздуха (ДМРВ или расходомер) является важной деталью автомобиля, от исправной работы которой зависит мощность двигателя и его расход топлива. Обнаружить его можно под капотом машины, где он располагается между воздушным фильтром и воздушным патрубком, направленным к дроссельной заслонке. Задачей ДМРВ является измерение количества воздуха, проходящего в цилиндры, и передача данной информации электронному блоку управления, то есть «мозгам» машины. На основе данных датчика массового расхода воздуха блок управления принимает решение о необходимости увеличения или уменьшения подачи воздуха в горючую смесь.

При выходе из строя датчик массового расхода воздуха практически никогда не ремонтируется, а просто меняется на новый. Его устройство довольно простое, и он состоит из корпуса, в который помещен прибор для измерения затрат воздуха – термоанемометр. Достаточно повредить диагностическое устройство в процессе демонтажа ДМРВ или его очистки, и потребуется замена всего датчика. Выйти из строя он может также при большом сроке службы, но убедиться в его неисправности можно только после проверки.

Симптомы неисправности датчика массового расхода воздуха

Перед тем как приступать к проверке ДМРВ, необходимо понять по первичным симптомам, что он неисправен. О проблемах с датчиком могут говорить следующие симптомы:


Приведенные выше симптомы указывают, что воздух подается в горючую смесь не в том объеме, в котором необходимо. При этом данная проблема может наблюдаться не только при выходе из строя ДМРВ. В частных случаях неисправность может быть связана с отсутствием питания датчика по электропроводке или при появлении трещин в соединительных шлангах.

Как проверить ДМРВ на исправность

Имеется несколько основных методик проверки датчика массового расхода воздуха, которые позволяют убедиться в его неисправности.

Проверка ДМРВ в движении

Самый простой способ диагностики расходомера – это анализ работы двигателя при принудительном отключении датчика. Проверка происходит следующим образом:


Проверка ДМРВ мультиметром

Диагностировать проблему с датчиком можно при помощи мультиметра. Для этого необходимо сперва разобраться с конструкцией устройства и его «распиновкой», то есть распайкой проводов по плате. Из датчика массового расхода воздуха выходит 4 провода. В зависимости от модели ДМРВ и производителя, их цвета могут различаться, но в большинстве случаев они следующие:

  • Розовый (или розово-черный): провод к главному реле;
  • Зеленый: провод к заземлению;
  • Серый: провод к питанию;
  • Желтый: вход сигнала.

Для проверки датчика массового расхода воздуха мультиметр необходимо выставить в режим измерения постоянного напряжения и установить предел до 2 Вольт. Далее потребуется включить зажигание, но не заводить мотор. Когда это будет сделано, подключите красный щуп мультиметра к входу сигнала датчика (желтому проводу), а черный щуп к заземлению (зеленому проводу). Сделать это можно не «оголяя» провода, просунув щупы диагностического устройства сквозь резиновый уплотнитель разъема.

По результатам измерения можно сделать выводы о состоянии датчика:


Некоторые современные бортовые компьютеры позволяют смотреть напряжение на датчике массового расхода воздуха. В таких ситуациях можно обойтись без мультиметра.

Визуальный осмотр ДМРВ

Опытные автомобилисты могут определить неисправность датчика массового расхода воздуха по его внешнему виду. Первым делом необходимо снять ДМРВ, а далее его внимательно осмотреть. Признаками неисправности является попадание жидкости в воздушный патрубок и датчик ДМРВ (или наличие механических повреждений).


Чаще всего жидкость может оказаться в датчике по следующим причинам:

  • Повышенный уровень масла в картере. В такой ситуации в датчик попадает масло;
  • Забитый маслоотбойник системы вентиляции картера;
  • Несвоевременная замена воздушного фильтра, из-за чего грязь попадает на термоанемометр ДМРВ.

Самым простым и надежным способом диагностировки проблем с датчиком массового расхода воздуха является его замена на рабочее устройство. Например, можно снять подходящий рабочий датчик с другого автомобиля, установить его и убедиться, что стабилизировалась работа двигателя. В такой ситуации можно сразу идти покупать новый датчик без диагностики его мультиметром или другими способами.

Датчики расхода воздуха Air Flow Sensors

Датчик расхода воздуха служит для измерения количества (объёма или массы) потребляемого двигателем воздуха. Значение массы входящего воздуха, измеренное непосредственно датчиком массового расхода воздуха или рассчитанное блоком управления двигателем по его объему, является одним из базовых параметров в определении длительности открытия . Датчик расхода воздуха устанавливается после воздушного фильтра перед дроссельной заслонкой . Со стороны входной части корпуса датчика расхода воздуха расположена сетка или ламинирующие соты, выравнивающие поток воздуха по всей площади воздухомера.

Существуют различные конструкции датчиков расхода воздуха , но каждый из них можно отнести к одному из двух типов - датчики объёмного расхода воздуха, и датчики массового расхода воздуха. Датчики массового расхода воздуха (ДМРВ) более предпочтительны, так как измеряют непосредственно массовый расход воздуха (ДМРВ учитывает температуру и давление атмосферного воздуха), за счёт чего блок управления двигателем может более точно рассчитывать необходимое количество впрыскиваемого топлива.
Кроме того, конструкция датчика массового расхода воздуха (ДМРВ) не имеет подвижных механических частей. Но из-за сложного устройства датчиков массового расхода воздуха, в ранних системах управления двигателями применялись в основном датчики объёмного расхода воздуха. Датчики объёмного расхода воздуха менее предпочтительны, так как измеряют только объём протекающего воздуха. А масса воздуха (как и любых других газов), заполняющего, к примеру, объём равный одному литру, очень сильно зависит от его давления и температуры.

Блок управления двигателем рассчитывает массовый расход воздуха, дополнительно учитывая атмосферное давление и показания датчика температуры воздуха во впускной тракте. Каждый из этих датчиков имеет свою погрешность, в результате чего рассчитанное значение массового расхода воздуха может несколько отличаться от фактического расхода. Блок управления двигателем рассчитывает по значению массы поступившего в двигатель воздуха в значение массы топлива, необходимое для каждого цилиндра. Следует отметить, что все расходомеры воздуха определяют непрерывный расход, а топливо впрыскивается форсунками порциями, синхронно с тактами работы цилиндров.
Выходной сигнал датчика расхода воздуха может быть аналоговым либо цифровым. В первом случае в зависимости от расхода воздуха изменяется напряжение выходного сигнала датчика, во втором случае изменяется частота или скважность выходного сигнала датчика. Например, выходной сигнал некоторых датчиков массового расхода воздуха производства GM, MITSUBISHI представляет собой прямоугольное напряжение с изменяющейся частотой. С увеличением потока протекающего через датчик воздуха, увеличивается частота выходного сигнала.

Датчик объёмного расхода воздуха

Большинство датчиков объёмного расхода воздуха работают по одному из двух принципов: используется либо принцип подсчёта вихрей Кармана (некоторые датчики производства MITSUBISHI, CHRISLER...), либо принцип смещения ползунка потенциометра при помощи лопасти, размещённой в потоке расходуемого двигателем воздуха. Датчики расхода воздуха работающие по принципу подсчёта вихрей Кармана обладают высокой надёжностью, так как не имеют подвижных механических частей.

Датчик объёмного расхода воздуха,работающий на принципе подсчета вихрей Кармана.

Датчик объёмного расхода воздуха, с механическим измерительным потенциометром.


Датчик объёмного расхода воздуха потенциометрического типа производства BOSCH.
Датчики объёмного расхода воздуха работающие по принципу смещения ползунка потенциометра при помощи измерительной лопасти обладают низкой надёжностью, так как их конструкция включает подвижные механические элементы. Лопасть такого датчика подпружинена и размещена в потоке расходуемого двигателем воздуха так, что с увеличением потока воздуха лопасть смещается пропорционально потоку. Поток расходуемого двигателем воздуха имеет пульсирующий характер, и для уменьшения эффекта пульсаций измерительной лопасти синхронно пульсациям воздушного потока, лопасть датчика соединена с демпфером. С измерительной лопастью механически связан ползунок потенциометра, который за счёт этого смещается на величину, пропорциональную величине потока воздуха. Мерой объёма протекающего через датчик воздуха является выходное напряжение этого измерительного потенциометра. Измерительный потенциометр датчика объёмного расхода воздуха выполнен на керамической подложке. На подложку нанесены резисторы делителя напряжения, выводы которых размещены в ряд и покрыты контактным резистивным слоем. Ползунок потенциометра прижат к контактному резистивному слою, благодаря чему напряжение на ползунке равно напряжению в точке контакта с резистивным слоем.

Потенциометр датчика объёмного расхода воздуха производства BOSCH.
При каждом изменении положения лопасти, ползунок перемещается по контактному резистивному слою, скользя по нему. Такие перемещения ползунка постепенно истирают контактный резистивный слой, что с течением времени приводит к возникновению "потертости" измерительного потенциометра. При попадании ползунка в зону "потертости", где контактный резистивный слой изношен вплоть до керамической подложки, электрический контакт между ползунком и резистивным слоем ухудшается, вследствие чего выходное напряжение потенциометра уже не соответствует положению подвижной лопасти расходомера - то есть, выходное напряжение датчика не соответствует величине расходуемого двигателем воздуха. Типичной неисправностью датчиков объёмного расхода воздуха работающих по принципу смещения ползунка потенциометра, является механический износ резистивного слоя. Так же часто встречается подклинивание лопасти датчика. Причинами подклинивания лопасти могут быть износ опор лопасти, деформация (искривление) лопасти из-за сильных хлопков во впускном коллекторе или из-за загрязнения воздушных каналов датчика. Методика диагностирования датчика объёмного расхода воздуха работающего по принципу смещения ползунка потенциометра аналогична методике диагностирования потенциометрического датчика положения дроссельной заслонки (или любого другого потенциометрического датчика положения).

Датчик массового расхода воздуха Mass Air Flow Sensor (MAF Sensor)

Измерительным элементом датчика массового расхода воздуха является разогретый до определённой заданной температуры проволочный или плёночный элемент. Протекающий поток воздуха охлаждает этот элемент, но электрическая схема (обычно, встроенная в расходомер) управляет мощностью его подогрева и разогревает измерительный элемент до его прежней температуры. Чем больший поток воздуха проходит через расходомер, тем большая требуется мощность подогрева для поддержания заданной температуры измерительного элемента. Таким образом, мощность подогрева измерительного элемента расходомера является мерой величины протекающего через датчик потока воздуха. Величина тока подогрева измерительного элемента преобразуется в выходной сигнал датчика - в большинстве случаев в аналоговое напряжение, в некоторых типах расходомеров в прямоугольное напряжение с изменяющейся частотой.

Датчик массового расхода воздуха BOSCH HFM5

Существует несколько конструкций датчиков массового расхода воздуха, но в последние годы большое распространение получил датчик массового расхода воздуха HFM 5 производства BOSCH.

Датчик массового расхода воздуха BOSCH HFM5.
Выходной сигнал датчика массового расхода воздуха BOSCH HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне 0...5V. Напряжение выходного сигнала датчика зависит от величины и направления проходящего через датчик потока воздуха. При нулевом расходе воздуха (двигатель остановлен, зажигание включено) выходное напряжение датчика массового расхода воздуха равно 1,00V. Когда двигатель работает, через датчик протекает воздух, и чем больше поток воздуха, тем выше значение выходного напряжения датчика. На определённых режимах работы двигателя могут возникать кратковременные обратные потоки воздуха - когда воздух движется по направлению от впускного коллектора двигателя к воздушному фильтру. Датчик массового расхода воздуха BOSCH HFM5 способен регистрировать обратные потоки воздуха, при этом его выходное напряжение снижается до значений меньших 1,00 V пропорционально величине обратного потока. Если сигнал от датчика массового расхода воздуха имеет отклонения от нормы, работа двигателя существенно ухудшается - повышается расход топлива, уменьшается "приёмистость" двигателя, на устоявшихся режимах работа двигателя становится нестабильной, появляется затруднённый холодный пуск двигателя. Отклонения параметров выходного сигнала могут быть связанны с "ухудшением" характеристик датчика массового расхода воздуха, подсосом "неучтенного" воздуха во впускной тракт, нестабильностью питающего напряжения датчика. В случае попадания на измерительный элемент датчика загрязнений, снижается скорость реакции датчика на изменения величины воздушного потока, а так же снижается точность измерения, что, в итоге, приводит к приготовлению топливовоздушной смеси с неправильным составом. Интенсивное отложение загрязнений на чувствительном элементе датчика может возникнуть вследствие несвоевременной замены воздушного фильтра. Иногда наблюдаются повреждения датчика, когда выходной сигнал постоянно находится в пределах 1,00V и при увеличении потока воздуха не изменяется. Двигатель при этом нормально запускается, но сразу глохнет. В большинстве случаев блок управления двигателем может определить только полностью неисправный расходомер. "Ухудшение" характеристик датчика определяются блоком управления в редких случаях.

Проверка выходного сигнала датчика BOSCH HFM5

Для просмотра осциллограммы напряжения выходного сигнала датчика массового расхода воздуха BOSCH HFM5, рекомендуется воспользоваться дифференциальным осциллографическим щупом. Разъём дифференциального осциллографического щупа должен быть подключен к дифференциальному аналоговому входу №6 USB Autoscope II. Чёрный зажим типа "крокодил" дифференциального осциллографического щупа должен быть подсоединён к "массе" двигателя диагностируемого автомобиля. Отрицательный пробник щупа (чёрного цвета) должен быть подсоединён параллельно "сигнальной массе" датчика (клемма №3 разъёма датчика), положительный пробник щупа (красного цвета) должен быть подсоединён параллельно сигнальному выводу датчика (клемма №5 разъёма датчика).

Схема подключения к датчику массового расхода воздуха BOSCH HFM5.


  1. точка подключения чёрного зажима типа "крокодил" дифференциального осциллографического щупа;

  2. точка подключения отрицательного пробника дифференциального осциллографического щупа (чёрного цвета);

  3. точка подключения положительного пробника дифференциального осциллографического щупа (красного цвета).

Измерение времени переходного процесса при подаче питания.

В момент включения зажигания происходит подача питающих напряжений на датчики и исполнительные механизмы системы управления двигателем, в том числе и на датчик расхода воздуха. Сразу после подачи питания на датчик массового расхода воздуха BOSCH HFM5 происходит разогрев его чувствительного элемента до рабочей температуры, при этом, пока температура датчика стабилизируется, возникает переходный процесс.

Осциллограмма выходного напряжения исправного датчика массового расхода воздуха BOSCH HFM5 при подаче питающих напряжений.
A: (двигатель остановлен) и равно 0,99 V;
AT питания на датчик и равно ~0,5 mS.
Время переходного процесса выходного сигнала исправного датчика не превышает единиц миллисекунд (mS). Загрязнения, отложившиеся на чувствительном элементе датчика, разогреваются вместе с ним. Если количество отложившихся загрязнений значительно, время разогрева его чувствительного элемента до рабочей температуры увеличивается, соответственно, увеличивается и продолжительность переходного процесса.

Осциллограмма выходного напряжения неисправного датчика массового расхода воздуха BOSCH HFM5 при подаче питающих напряжений.
A: значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению выходного сигнала ДМРВ при нулевом расходе воздуха (двигатель остановлен) и равно 0,92V;
AT значение интервала времени между двумя маркерами. В данном случае соответствует времени переходного процесса выходного сигнала при подаче питания на датчик и равно ~70mS.
Время переходного процесса выходного сигнала датчика с загрязнённым измерительным элементом может достигать десятков, а иногда и сотен миллисекунд.

Измерение выходного напряжения при нулевом потоке воздуха.

Измерение значения напряжения выходного сигнала датчика при нулевом расходе воздуха проводится при остановленном двигателе и включенном зажигании. Для датчика массового расхода воздуха BOSCH HFM5 нулевому расходу воздуха соответствует значение выходного напряжения равное 1V±0,02 V.

Измерение выходного напряжения при резкой перегазовке.

Измерение максимального значения напряжения выходного сигнала датчика при резкой перегазовке проводится путём резкого открытия дроссельной заслонки на короткое время (не более одной секунды) при условии, что переключатель режима работы трансмиссии находится в положении "Neutral" и двигатель прогрет до рабочей температуры. Внимание . Методика измерения максимального значения напряжения выходного сигнала датчика расхода воздуха при резкой перегазовке применима только в том случае, если педаль акселератора диагностируемого двигателя соединена с дроссельной заслонкой механически (при помощи троса / рычагов) и только для атмосферных двигателей (диагностируемый двигатель не оснащён турбиной / компрессором). В момент резкой перегазовки происходит следующее. При работе двигателя на оборотах холостого хода без нагрузки, заполняющий впускной коллектор воздух, сильно разрежён, так как приток воздуха во впускной коллектор ограничен дроссельной заслонкой и клапаном холостого хода. Абсолютное давление во впускном коллекторе при этом ниже атмосферного на 0,6...0,7 Bar. Масса заполняющего коллектор разрежённого воздуха незначительна. При резком открытии дроссельной заслонки, воздух резко устремляется через открытую дроссельную заслонку во впускной коллектор и быстро заполняет объём коллектора до тех пор, пока абсолютное давление в нём не достигнет значения близкого к атмосферному. Этот процесс происходит очень быстро, вследствие чего поток воздуха через датчик расхода воздуха достигает значений близких к максимальным. После того как абсолютное давление во впускном коллекторе достигнет близкого к атмосферному, величина потока протекающего через датчик воздуха становится пропорциональной частоте вращения коленчатого вала двигателя.

Осциллограмма напряжения выходного сигнала исправного BOSCH HFM5 при резкой перегазовке. Напряжения выходного сигнала исправного датчика массового расхода воздуха BOSCH HFM5 сразу после резкого открытия дроссельной заслонки должно кратковременно возрасти до значения не менее 4,0V. В случае значительного загрязнения чувствительного элемента датчика, скорость реакции датчика снижается, и форма осциллограммы напряжения выходного сигнала датчика становится несколько "сглаженной". Отложившиеся на чувствительном элементе датчика загрязнения образуют теплоизолятор, снижающий интенсивность охлаждения чувствительного элемента датчика, что приводит к уменьшению тока подогрева и выходного сигнала датчика (соответственно, уменьшается и количество подаваемого в цилиндры топлива).

Осциллограмма напряжения выходного сигнала неисправного датчика массового расхода воздуха BOSCH HFM5 при резкой перегазовке.
Вследствие снижения скорости реакции, способность датчика регистрировать быстрые изменения величины и направления потока воздуха ухудшается. Как следствие, после резкого открытия дроссельной заслонки, напряжение выходного сигнала такого датчика уже "не успевает" достичь значения 4,0V. Неисправности датчика массового расхода воздуха BOSCH HFM5 устраняются только путём его замены.

Автомобильный двигатель имеет множество режимов работы и для каждого из них необходима горючая смесь правильной консистенции, другими словами идеальное соотношение воздуха и топлива. Именно за этим следит датчик массового расхода воздуха (ДМРВ, расходомер, MAF - Mass Airflow).

Главной задачей расходомера является - определять количество воздуха, которое поступает в цилиндры и передавать эту информацию в ЭБУ, который уже делает соответствующие выводы и решает увеличить или сократить количество воздуха или топлива. ДМРВ состоит из: пластикового корпуса и термоанемометра, который производит измерение затрат воздуха.

Нарушения в работе датчика массового расхода воздуха чреваты перебоями в работе всего . Повредить или вывести из строя расходомер очень просто, достаточно будет чрезмерного усилия при очистке или демонтаже ДМРВ. При этом ремонту этот датчик не подлежит, устранить неисправность можно лишь путем полной его замены.

Признаки неисправности ДМРВ:

  1. Неровная работа двигателя на холостых.
  2. Ухудшение динамики разгона - «тупой разгон».
  3. Слишком высокие или низкие холостые обороты.
  4. Увеличенный расход топлива.
  5. Двигатель не запускается.

Впрочем нельзя исключать и других причин, по которым ДМРВ может не работать. Например, если в шланге, соединяющем расходомер и дроссельный модуль, имеются трещины, повреждена проводка датчика или есть другие проблемы с питанием датчика массового расхода воздуха, может выглядит как неисправный.

Как проверить ДМРВ?

Способ Первый - отключение датчика

Отключите разъем датчика, затем попробуйте завести мотор. При отключенном ДМРВ контроллер начинает работать в аварийном режиме, а приготовление топливно-воздушной смеси происходит с учетом положения дроссельной заслонки о котором сообщает другой не менее важный датчик под названием ДПДЗ (). Обороты мотора должны быть в районе 1500 об/мин. Сядьте за руль и попробуйте проехаться, если во время разгона вы почувствовали, что машина "ожила" и заметно улучшилась динамика, делаем вывод - неисправен ДМРВ .

Способ Второй - прошивка ЭБУ

В случае если вы заменили штатную прошивку ЭБУ на другую (с отличающимися настройками), попытайтесь сделать вот что: подсуньте под упор заслонки тонкую пластину толщиной 1 мм. В результате у вас должны подняться обороты, затем достаньте фишку с ДМРВ. Если мотор продолжит работать и не заглохнет - скорее всего, причина кроется в прошивке.

Что еще почитать