Деление целых чисел. Делимое, делитель, частное

Деление - это арифметическое действие обратное умножению, посредством которого узнаётся, сколько раз одно число содержится в другом.

Число, которое делят, называют делимым , число, на которое делят, называют делителем , результат деления называют частным .

Подобно тому, как умножение заменяет неоднократно повторяемое сложение, деление заменяет неоднократно повторяемое вычитание. Например, число 10 разделить на 2 - значит узнать, сколько раз число 2 содержится в 10:

10 - 2 - 2 - 2 - 2 - 2 = 0

Повторяя операцию вычитания 2 из 10, мы находим, что 2 содержится в числе 10 пять раз. Это легко проверить сложив пять раз 2 или умножив 2 на 5:

10 = 2 + 2 + 2 + 2 + 2 = 2 · 5

Для записи деления используется знак: (двоеточие), ÷ (обелюс) или / (косая черта). Он ставится между делимым и делителем, при этом делимое записывается слева от знака деления, а делитель - справа. Например, запись 10: 5 означает, что число 10 делится на число 5. Справа от записи деления ставят знак = (равно), после которого записывают результат деления. Таким образом, полная запись деления выглядит так:

Эта запись читается так: частное десяти и пяти равняется двум или десять разделить на пять равно два.

Также деление можно рассматривать как действие, посредством которого одно число делится на столько равных частей, сколько единиц содержится в другом числе (на которое делится). Таким образом определяется сколько единиц содержится в каждой отдельной части.

Например, у нас есть 10 яблок, разделив 10 на 2 мы получим две равные части, каждая из которых содержит 5 яблок:

Проверка деления

Для проверки деления можно частное умножить на делитель (или наоборот). Если в результате умножения получится число, равное делимому, то деление выполнено верно.

Рассмотрим выражение:

где 12 - это делимое, 4 - это делитель, а 3 - частное. Теперь выполним проверку деления, умножив частное на делитель:

или делитель на частное:

Деление также можно проверить делением, для этого надо делимое разделить на частное. Если в результате деления получится число, равное делителю, то деление выполнено правильно:

Основное свойство частного

У частного есть одно важное свойство:

Частное не изменится, если делимое и делитель умножить или разделить на одно и то же натуральное число.

Например,

32: 4 = 8, (32 · 3) : (4 · 3) = 96: 12 = 8 32: 4 = 8, (32: 2) : (4: 2) = 16: 2 = 8

Деление числа самого на себя и единицу

Для любого натурального числа a верны равенства:

a : 1 = a
a : a = 1

Число 0 в делении

При делении нуля на любое натуральное число получается нуль:

0: a = 0

Делить на нуль нельзя.

Рассмотрим, почему нельзя делить на нуль. Если делимое не нуль, а любое другое число, например 4, то разделить его на нуль значило бы найти такое число, которое после умножения на нуль даёт в результате число 4. Но такого числа нет, потому что любое число после умножения на нуль даёт снова нуль.

Если же делимое тоже равно нулю, то деление возможно, но частным может служить любое число, потому что в этом случае любое число после умножения на делитель (0) даёт нам делимое (т. е. снова 0). Таким образом, деление хоть и возможно, но не приводит к единственному определённому результату.

Деление (математика)

Деле́ние (операция деления) - одно из четырёх простейших арифметических действий, обратное умножению . Деление - это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое. Существует несколько символов , используемых для обозначения оператора деления.

Рассмотрим, например, такой вопрос:

Сколько раз 3 содержится в 14?

Повторяя операцию вычитания 3 из 14, мы находим, что 3 «входит» в 14 четыре раза, и ещё «остаётся» число 2.

В этом случае число 14 называется делимым , число 3 - делителем , число 4 - (неполным) частным и число 2 - остатком (от деления) .

Результат деления также называют отношением .

Деление натуральных чисел

Обычно на остаток накладываются следующие ограничения (чтобы он был корректно, то есть однозначно, определён):

, ,

где - делимое, - делитель, - частное и - остаток.

Деление целых чисел

Деление произвольных целых чисел несущественно отличается от деления натуральных чисел - достаточно поделить их модули и учесть правило знаков.

Однако деление целых чисел с остатком определяется неоднозначно. В одном случае, (так же как и без остатка) рассматривают сначала модули и в результате остаток приобретает тот же знак, что делитель или делимое (например, с остатком (-1)); в другом случае понятие остатка напрямую обобщается и ограничения заимствуются из натуральных чисел:

.

Деление рациональных чисел

Отличие же заключается в том, что при делении многочленов основной упор делается на степени делимого и делителя, а не на коэффициенты. Поэтому обычно считается, что частное и делитель (а следовательно и остаток) определены с точностью до постоянного множителя.

Деление на ноль

По правилам стандартной арифметики деление на число 0 запрещено.

Другое дело - деление на бесконечно малую функцию или последовательность. Деление конечных функций на бесконечно малые приводит к появлению бесконечно больших, а отношение двух бесконечно малых называется неопределённостью 0/0, которую можно преобразовать (см. раскрытие неопределённостей) с тем, чтобы получить определённый результат.

Как следует из определения операции деления, результатом операции 0:0 может считаться любое действительное число, таким образом, значение операции 0:0 неопределенно и задача деления нуля на нуль имеет бесчисленное множество решений. . Это не соответствует стандартному определению бинарной операции , согласно которому результатом операции с двумя числами может быть только единственное значение.

Операции деления ненулевого числа на ноль не соответствует никакое действительное число.

Результат этой операции считается бесконечно большим и равным бесконечности :
, где
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным a или приближается к нему, то частное неограниченно увеличивается(по модулю).

Поскольку бесконечность не является действительным числом, то такая операция выходит за пределы алгебры действительных чисел, если бинарная операция в ней определяется как . .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Деление (математика)" в других словарях:

    Деление c остатком (деление по модулю, нахождение остатка от деления, остаток от деления) арифметическая операция, результатом которой является два целых числа: неполное частное и остаток от деления целого числа на другое целое число.… … Википедия

    Операция деления по модулю в различных языках программирования Язык Оператор Знак результата Делимое Ada mod Частное rem Делимое ASP Mod Не определено C (ISO 1990) % Не определено C (ISO 1999) … Википедия

    В Викисловаре есть статья «деление» Деление: Деление (биология) бесполый способ размножения живых организмов. Деление клетки Деление (математика) математическая операция. Деление с остатком … Википедия

    Функция y = 1/x. Когда x стремится к нулю справа, y стремится к бесконечности. Когда x стремится к нулю слева, y стремится к минус бесконечности … Википедия

    - (начало) «Математика в девяти книгах» (кит. трад. 九章算術 … Википедия

    I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия

    Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия

Определить, сколько раз нужно взять слагаемым меньшее число 2, чтобы получить большее число 6, значит определить, сколько раз число 2 содержится в 6, или сколько раз число 6 содержит 2.

Число 2 содержится в 6 три раза, ибо, чтобы получить 6, нужно взять сумму трех равных слагаемых:

Найти, сколько раз число 2 содержится в 6, значит разделить 6 на 2.

Определение . Деление есть такое действие, в котором по двум данным числам определяют, сколько раз одно число содержится в другом.

Данные числа в делении называются делимым и делителем , искомое называется частным .

Делимое есть то число, которое содержит другое.

Делитель есть то число, которое содержится в другом.

Частное показывает, сколько раз делитель содержится в делимом.

В данном примере делимое есть 6, делитель 2, частное 3.

Разделить 6 на 2 значит также разбить 6 на 2 равных слагаемых и отыскать их величину. Число 6 представится при помощи двух равных слагаемых в виде:

Каждое из равных слагаемых называется частью делимого.

Посредством деления целых чисел также узнается, как велико каждое слагаемое, если делимое разобьется на столько равных слагаемых, сколько в делителе единиц.

В этом случае делимое есть то число, которое делится или разбивается на равные части. Делитель показывает, на сколько равных частей делится делимое. Частное показывает, сколько приходится на каждую часть .

Способы деления

Имея два числа 12 и 4, мы можем разделить 12 на 4 различными способами.

    С помощью сложения мы можем определить, сколько раз нужно взять 4 слагаемым для того, чтобы получить в сумме 12. Так, взяв 4 слагаемым 3 раза, находим в сумме:

    следовательно, 4 содержится в 12 три раза.

    С помощью вычитания определяем, сколько раз можно из большего числа 12 вычесть меньшее 4. При этом мы вычитаем делитель до тех пор, пока это возможно. Так, вычитая последовательно из 12 по 4, имеем:

    12 - 4 = 8
    8 - 4 = 4
    4 - 4 = 0

    Отсюда находим, что можно вычесть 4 из 12 ровно три раза.

    Деление есть сокращенное вычитание равных вычитаемых.

    Наконец, посредством умножения , мы можем определить, на какое число нужно помножить 4, чтобы получить 12. Умножая последовательно 4 на 1, 2, 3, находим, что для того, чтобы получить 12, нужно 4 помножить на 3.

Различные случаи при делении

При делении целых чисел бывают два случая:

    Разделяя 12 на 4, мы находим в частном 3. Делитель 4 содержится ровно 3 раза в делимом 12. Вычитая последовательно из 12 по 4, мы могли вычесть число 4 ровно три раза и не получили никакого остатка. В этом случае говорят, что деление совершилось нацело или без остатка . Умножив частное 3 на делитель 4, получаем делимое 12.

    Разделяя 26 на 8, мы при последовательном вычитании получаем:

26 - 8 = 18
18 - 8 = 10
10 - 8 = 2

Остаток всегда меньше делителя . В этом случае говорят, что деление не совершается нацело или деление совершается с остатком .

Разделяя 26 на 8, мы могли вычесть делитель 8 три раза, и у нас получился остаток 2. Число 3 мы будем называть целым частным. Целое частное есть не полное частное, ибо оно не выражает вполне, сколько раз меньшее число содержится в большем. Число 8 не содержится в 26 ровно 3 раза. В этом случае говорят: число 8 содержится в 26 три раза и еще получается остаток. Умножив делитель 8 на целое частное 3, мы не получим делимого 26, а число 24 - меньшее делимого. Чтобы получить делимое, нужно к этому произведению прибавить еще остаток 2.

Целое частное иногда называют просто частным.

Итак, при делении мы имеем два случая:

    Деление нацело или без остатка. Когда делитель содержится в делимом ровное число раз, тогда деление совершается нацело или без остатка. Частное выражает, сколько раз делитель содержится в делимом. Делимое равно делителю, умноженному на частное. В этом случае деление есть действие в котором по данному произведению и одному из производителей находится другой производитель.

    Если дается произведение и множимое, отыскивают множитель, то есть число равных слагаемых; если дается произведение и множитель, отыскивают множимое, то есть величину равных слагаемых.

    Деление с остатком. Когда делитель не содержится в делимом ровное число раз, тогда деление не совершается нацело, или деление совершается с остатком. Остаток всегда меньше делителя и делимое равно произведению делителя на целое частное, сложенное с остатком.

При делении целых чисел делимое всегда уменьшается во столько раз, сколько в делителе единиц, поэтому деление есть действие, обратное умножению .

Знак деления

В нашем примере деление изображается письменно:

Знак деления прешел к нам от древних математиков.

Основные приемы при делении

Делить значит последовательно вычитать делитель из делимого, пока это возможно. Этот способ деления можно считать общим. Прием этот, однако, приводит к длинным вычислениям, если делимое очень велико, поэтому существуют различные сокращенные приемы деления.

Чтобы определить частное в том случае, когда оно выражается одной цифрой, прибегают к таблице умножения.

Чтобы разделить 27 на 3 мы пишем

Для частного выбираем такое число, чтобы, умножив делитель на частное, получить делимое. Чтобы найти цифру частного, мы пробуем умножать делитель на разные числа или, как обыкновенно говорят, задаемся разными числами, и сравниваем произвдение делителя на частное с делимым.

Разделяя 27 на 3 и перебирая в уме все произведения 3 на разные числа, содержащиеся в таблице умножения, находим, что произведение 3 × 9 составляет 27 и потому пишем в частном 9. Вычитая произведение делителя на частное из делимого, получаем в остатке нуль.

Само вычисление выражают письменно:

Деление совершилось нацело.

Иногда делитель не содержится в делимом ровное число раз; так, разделяя 27 на 4, мы не находим в таблице целого числа, которое, будучи помножено на 4, дало бы 27; тогда деление не совершается нацело.

Отыскивая целое частно, мы имеем при этом три случая:

Правило определения частного:

    Если при делении остаток более или равен делителю, цифра частного мала и ее нужно увеличить.

    Если произведение делителя на частное больше делимого, цифра частно велика и ее нужно уменьшить.

    Если остаток меньше делителя, цифра частного верна.

Это правило показывает, что при делении нужно для частного выбирать такое число, чтобы остаток был меньше делителя. Задаваться так, значит задаваться наибольшим целым числом.

В данном примере 27 не делится нацело на 4, а получается остаток 3; число 6 есть целое частное и

27 = 4 × 6 + 3 = 24 + 3

Делимое 27 равно произведению делителя 4 на целое частное 6, сложенному с остатком 3.

Деление многозначного числа на однозначное

Частное от деления многозначного числа на однозначное иногда выражается числом, состоящим также из нескольких цифр. В этом случае деление распадается на несколько отдельных действий.

Разделим 702 на 3. Частное содержит три цифры. Оно больше 100 и меньше 1000, ибо делимое больше 300 (3 × 100) и меньше 3000 (3 × 1000). Включая три цифры, частное содержит сотни, десятки и единицы. В данном случае разбиваем деление на три отдельных действия, то есть отыскиваем последовательно сотни, потом десятки и, наконец, единицы частного. Самое действие начинаем с сотен.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, деление изобразится письменно:

словесно:

    Отделяем 7 - одну цифру делимого; 3 в 7 содержится 2 раза, - пишем в частном 2; умножая на нее делителя 3 и вычитая произведение 6 из 7, получаем первый остаток 1.

    Сносим 3 - следующую цифру делимого; 3 в 13 содержится 4 раза, 3-жды 4 составляет 12; вычитая 12 из 13, получаем в остатке 1.

    Сносим 2 следующую цифру делимого; 3 в 12 содержится 4 раза, пишем в частном 4; 3-жды 4 составляет 12. Вычитая 12, получаем в остатке нуль и в частном 244.

Пример . Разделить 2417 на 3. Ход вычисления выразится письменно:

словесно:

    Отделив одну цифру 2, мы видим, что 3 в 2 не содержится целое число раз, поэтому нужно отделить две цифры; 3 в 24 содержится 8 раз, - пишем 8 в частном. Умножив 8 на делителя 3 и вычитая произведение 24, получаем в остатке нуль.

    Сносим следующую цифру 1; 3 в 1 не содержится, - пишем в частном нуль.

    Сносим следующую цифру 7; 3 в 17 содержится 5 раз, - пишем в частном 5; 3-жды 5 составляет 15; вычитая 15 из 17, получим в остатке 2 и целое частное 805.

Деление многозначного числа на многозначное

При делении многозначного числа на многозначное поступаем точно так же, как поступали при делении многозначного числа на однозначное.

Разделяя число 37207 на 47, мы прежде всего определяем, из скольких цифр состоит частное. Частное меньше 1000 и больше 100, ибо 37207 меньше 47000 (47 × 1000) и больше 4700 (47 × 100), следовательно, частное состоит из сотен, десятков и единиц. Начиная с сотен, мы определяем каждую цифру частного отдельно:

Итак, после деления имеем в целом частном 791 и в остатке 30.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, ход вычисления изобразится письменно:

словесно:

    Отделяем в делимом от левой руки к правой столько цифр, чтобы делитель мог содержаться в отделенной части делимого. В данном случае отделяем 3 цифры, 47 содержится в 372 семь раз; умножаем делитель 47 на 7, цифру частного, и, вычитая произведение 47 × 7 = 329 из 372, получаем в остатке 43.

    К остатку 43 сносим 0, следующую цифру делимого; 47 содержится в 430 девять раз, пишем в частном 9. Умножая 47 на 9 и вычитая произведение 423 из 430, получаем остаток 7.

    Сносим к остатку следующую цифру частного 7; 47 содержится в 77 один раз. Пишем единицу в частном.

Умножая ею делитель и вычитая 47 из 77, получаем в остатке 30 и в целом частно 791.

Пример . Разделить 671064 на 335. Деление изобразится письменно:

словесно:

    Отделяем 671 в делимом; 335 содержится в 671 два раза, пишем в частном 2. Умножая 335 на 2 и вычитая произведение 670, получим в остатке 1.

    Сносим 0, следующую цифру делимого; 335 не содержится в 10, - пишем для второй цифры частного 0.

    Сносим 6, следующую цифру делимого; 335 не содержится в 106, - пишем для третьей цифры частного 0.

    Сносим следующую цифру делимого 4; 335 содержится в 1064 три раза, - пишем в частном 3. Умножая делитель на 3 и вычитая произведение, получим в остатке 59 и в целом частном 2003.

Из предложенных примеров выводим следующее правило:

    Чтобы разделить многозначное число на однозначное или многозначное, нужно отделить в делимом от левой руки к правой столько цифр, сколько их находится в делителе. Если делитель не содержится, отделяют в делимом одной цифрой больше. Разделив отделенное число на делитель, получают первую цифру частного, умножают ей делитель и полученное произведение вычитают из отделенной части делимого.

    К остатку сносят следующую цифру делимого и снова задаются.

    Если при этом получается число меньше делителя, пишут в частном нуль, сносят следующую цифру и снова задаются.

    Получив новую цифру частного, поступают с нею так же, как и с первой цифрой.

    Деление продолжают до тех пор, пока не снесут всех цифр делимого и не получат таким образом всех цифр частного.

Всякий раз, когда приходится делить, нужно задаваться в частном такою цифрой, чтобы остаток был меньше делителя. Чтобы легче найти такую цифру частного, при делении многозначного числа на многозначное обращают внимание на одну или две старшие цифры делителя и задаются только ими в соответствующей части делимого. При этом в делимом и в делителе отделяют от правой руки к левой одинаковое число цифр. Так, определяя, сколько раз содержится 6373 в 27302, мы задаемся четырьмя, ибо 6 в 27 содержится 4 раза.

Полученная при этом цифра частного будет или равна или больше действительной. В последнем случае ее нужно уменьшить.

Иногда при делении не подписывают произведение цифры частного на делитель, а, подразумевая его в уме, подписывают один остаток. Сокращая таким образом деление, изображают его письменно:

словесно:

    8 в 43 содержится 5 раз; 5-ю 8 - сорок. Вычитая 40 из 43, получаем в остатке 3.

    Сносим 2; 8 в 32 содержится 4 раза; 4-жды 8 составляет 32. Вычитая 32, получим в остатке нуль.

    Сносим 8; 8 в 8-ми содержится 1 раз, 1-жды 8 составляет 8. Вычитая 8, получаем в остатке нуль и в частном 541.

Деление на 10, 100, 1000 и т. д.

Разделяя число на 10, мы десятки делимого обращаем в единицы, сотни в десятки, тысячи в сотни, вообще понижаем на единицу все порядки делимого. Этого мы достигаем, отделяя запятою цифру единиц. Число до запятой будет выражать частное, а после запятой - остаток.

Разделяя на 100, мы понижаем все порядки делимого на две единицы, для чего отделяем запятою от правой руки к левой две цифры и т. д. Отсюда правило:

Чтобы разделить какое-нибудь число на единицу с нулями, нужно от правой руки к левой отделить столько цифр, сколько нулей в делителе; тогда число до запятой выражает целое частное, а после запятой - остаток.

Пример . Разделяя 30207 на 100. Отделяя справа 2 цифры, находим 302,07. Целое частное будет 302, а остаток 7.

Деление на число, оканчивающееся нулями

Разделяя число 27057 на 400 и поступая при этом по общему правилу

мы замечаем, что две последние цифры делимого не оказывают никакого влияния на частное. Они являются в остатке без всякой перемены. Откуда правило:

Если делитель оканчивается нулями, отделяют в делимом запятою от правой руки к левой столько цифр, сколько зачеркнуто нулей в делителе, и делят часть делимого до запятой на значащие цифры делителя. Отделенные цифры делимого приписывают к остатку.

В данном примере деление представится в виде

Если делимое и делитель оканчиваются нулями, их зачеркивают поровну в делимом, делителе и производят деление; зачеркнутые нули делимого приписывают к остатку.

Чтобы разделить 27300 на 4100, делим 273 на 41:

Частное будет 6, а остаток 2700.

Число цифр частного. При делении отделяют в делимом от левой руки к правой столько цифр, сколько их находится во делителе, или одною больше. Каждой оставшейся цифре делимого соответствует особая цифра частного, следовательно, число цифр частного будет равно или разности числа цифр делимого и делителя или на единицу больше этой разности .

Зависимость между данными и искомыми деления

При делении целых чисел мы имеем два случая: а) деление нацело, или без остатка , и б) деление с остатком .

Каждому из этих случаев соответствует особая зависимость между данными и искомыми деления.

Деление нацело или без остатка

При делении нацело

    Частное равно делимому, разделенному на делитель .

    Разделяя 42 на 7, имеем в частном 6; следовательно,

    42 ÷ 7 = 6, или 6 = 42 ÷ 7

    Делимое равно делителю, умноженному на частное .

    Так как делитель и частное - два множителя, произведение которых равно делимому, то делитель равен делимому, разделенному на частное .

Деление с остатком

При делении с остатком

    Делимое равно произведению делителя на целое частное, сложенное с остатком .

    При делении 47 на 6, имеем в целом частном 7, в остатке 5.

    Делимое 47 = 6 × 7 + 5.

    Делимое без остатка делится нацело на делитель и на целое частное .

Разность делимого без остатка равна произведению делителя на целое частное, то есть эта разность при делении на делитель дает целое частное, при делении на целое частное дает делитель.

Несмотря на то что математика кажется большинству людей наукой сложной, это далеко не так. Многие математические операции довольно легко понять, особенно если знать правила и формулы. Так, зная таблицу умножения, можно быстро перемножать в уме Главное - постоянно тренироваться и не забывать правил умножения. То же самое можно сказать и о делении.

Давайте же разберем деление целых чисел, дробных и отрицательных. Вспомним об основных правилах, приемах и методах.

Операция деления

Начнем, пожалуй, с самого определения и названия чисел, которые участвуют в данной операции. Это значительно облегчит дальнейшее изложение и восприятие информации.

Деление - одна из четырех основных математических операций. Изучение ее начинается еще в начальной школе. Именно тогда детям показывают первый пример деления числа на число, объясняют правила.

В операции участвуют два числа: делимое и делитель. Первое - число, которое делят, второе - на которое делят. Результатом деления является частное.

Имеется несколько обозначений для записи данной операции: «:», «/» и горизонтальная черта - запись в виде дроби, когда вверху находится делимое, а внизу, под чертой - делитель.

Правила

При изучении той или иной математической операции учитель обязан познакомить учеников с основными правилами, которые следует знать. Правда, не всегда они запоминаются так хорошо, как хотелось бы. Именно поэтому мы решили немного освежить в вашей памяти четыре фундаментальных правила.

Основные правила деления чисел, которые стоит помнить всегда:

1. Делить на ноль нельзя. Это правило следует запомнить в первую очередь.

2. Делить ноль можно на любое число, но в итоге всегда будет ноль.

3. Если число поделить на единицу, мы получим то же число.

4. Если число разделить на само себя, мы получим единицу.

Как видите, правила довольно простые и легко запоминаются. Хотя некоторые и могут забывать такое простое правило, как невозможность или же путать с ним деление ноля на число.

на число

Одно из наиболее полезных правил - признак, по которому определяется возможность деления натурального числа на другое без остатка. Так, выделяют признаки делимости на 2, 3, 5, 6, 9, 10. Рассмотрим их подробнее. Они существенно облегчают выполнение операций над числами. Также приведем для каждого правила пример деления числа на число.

Данные правила-признаки довольно широко используются математиками.

Признак делимости на 2

Наиболее простой для запоминания признак. Число, которое оканчивается на четную цифру (2, 4, 6, 8) или 0, всегда делится на два нацело. Довольно просто для запоминания и использования. Так, число 236 оканчивается на четную цифру, а значит, делится на два нацело.

Проверим: 236:2 = 118. Действительно, 236 делится на 2 без остатка.

Данное правило наиболее известно не только взрослым, но и детям.

Признак делимости на 3

Как правильно выполнить деление чисел на 3? Запомнить следующее правило.

Число делится на 3 нацело в том случае, если сумма его цифр кратна трем. Для примера возьмем число 381. Сумма всех цифр будет составлять 12. Данное трем, а значит делится на 3 без остатка.

Также проверим данный пример. 381: 3 = 127, значит все верно.

Признак делимости чисел на 5

Тут также все просто. Разделить на 5 без остатка можно лишь те числа, которые оканчиваются на 5 либо же на 0. Для примера возьмем такие числа, как 705 или же 800. Первое заканчивается на 5, второе - на ноль, следовательно они оба делятся на 5. Это одно из простейших правил, которое позволяет быстро осуществлять деление на однозначное число 5.

Проверим данный признак на таких примерах: 405:5 = 81; 600:5 = 120. Как видите, признак действует.

Делимость на 6

Если вы хотите узнать, делится ли число на 6, то вам сначала нужно выяснить, делится ли оно на 2, а затем - на 3. Если да, то число можно без остатка разделить на 6. К примеру, число 216 делится и на 2, так как заканчивается на четную цифру, и на 3, так как сумма цифр равна 9.

Проверим: 216:6 = 36. Пример показывает, что данный признак действует.

Делимость на 9

Поговорим также и о том, как осуществить деление чисел на 9. На данное число делятся те сумма цифр которых кратна 9. Аналогично правилу деления на 3. Например, число 918. Сложим все цифры и получим 18 - число, кратное 9. Значит, оно делится на 9 без остатка.

Решим данный пример для проверки: 918:9 = 102.

Делимость на 10

Последний признак, который стоит знать. На 10 делятся только те числа, которые оканчиваются на 0. Данную закономерность довольно просто и легко запомнить. Так, 500:10 = 50.

Вот и все основные признаки. Запомнив их, вы сможете облегчить себе жизнь. Конечно, есть и другие числа, для которых существуют признаки делимости, но мы с вами выделили лишь основные из них.

Таблица деления

В математике существует не только таблица умножения, но и таблица деления. Выучив ее, можно с легкостью выполнять операции. По сути, таблица деления представляет собой таблицу умножения наоборот. Составить ее самостоятельно не представляет труда. Для этого следует переписать каждую строку из таблицы умножения таким образом:

1. Ставим произведение числа на первое место.

2. Ставим знак деления и записываем второй множитель из таблицы.

3. После знака равенства записываем первый множитель.

Например, возьмем следующую строку из таблицы умножения: 2*3= 6. Теперь перепишим ее согласно алгоритму и получим: 6 ÷ 3 = 2.

Довольно часто детей просят самостоятельно составить таблицу, таким образом развивая их память и внимание.

Если же у вас нет времени на ее написание, то можете воспользоваться представленной в статье.

Виды деления

Поговорим немного о видах деления.

Начнем с того, что можно выделить деление целых чисел и дробных. При этом в первом случае можно говорить об операциях с целыми числами и десятичными дробями, а во втором - только о дробных числах. При этом дробным может являться как делимое или делитель, так и оба одновременно. связано с тем, что операции над дробями отличаются от операций с целыми числами.

Исходя из чисел, которые участвуют в операции, можно выделить два вида деления: на однозначные числа и на многозначные. Наиболее простым считается деление на однозначное число. Здесь вам не нужно будет проводить громоздкие вычисления. К тому же хорошо может помочь таблица деления. Делить же на другие - двух-, трехзначные числа - тяжелее.

Рассмотрим примеры для данных видов деления:

14:7 = 2 (деление на однозначное число).

240:12 = 20 (деление на двузначное число).

45387: 123 = 369 (деление на трехзначное число).

Последним можно выделить деление, в котором участвуют положительные и отрицательные числа. При работе с последними следует знать правила, по которым происходит присвоение результату положительного или отрицательного значения.

При делении чисел с разными знаками (делимое - число положительное, делитель - отрицательное, или наоборот) мы получаем отрицательное число. При делении чисел с одним знаком (и делимое, и делитель - положительные или же наоборот) - получаем число положительное.

Рассмотрим для наглядности следующие примеры:

Деление дробей

Итак, мы с вами разобрали основные правила, привели пример деления числа на число, теперь поговорим о том, как правильно выполнять эти же операции с дробями.

Несмотря на то что деление дробей поначалу кажется довольно тяжелым делом, в действительности работать с ними не так уж и трудно. Деление дроби выполняется практически так же, как и умножение, но с одним отличием.

Для того чтобы разделить дробь, следует сначала умножить числитель делимого на знаменатель делителя и зафиксировать полученный результат в виде числителя частного. Затем умножить знаменатель делимого на числитель делителя и записать результат как знаменатель частного.

Можно сделать и проще. Переписать дробь делителя, поменяв местами числитель со знаменателем, а затем перемножить полученные числа.

Например, разделим две дроби: 4/5:3/9. Для начала перевернем делитель, получим 9/3. Теперь перемножим дроби: 4/5 * 9/3 = 36/15.

Как видите, все довольно легко и не сложнее, чем деление на однозначное число. Примеры на решаются просто, если не забывать данное правило.

Выводы

Деление - одна из математических операций, которые каждый ребенок изучает еще в начальной школе. Есть определенные правила, которые следует знать, приемы, облегчающие выполнение данной операции. Деление бывает с остатком и без, бывает деление отрицательных и дробных чисел.

Запомнить особенности данной математической операции довольно легко. Мы с вами разобрали наиболее важные моменты, рассмотрели не один пример деления числа на число, даже поговорили о том, как работать с дробными числами.

Если вы хотите улучшить свое знание математики, советуем вам запомнить эти несложные правила. Кроме того, можем посоветовать вам развивать память и навыки счета в уме, выполняя математические диктанты или просто пытаясь высчитать устно частное двух случайных чисел. Поверьте, эти навыки никогда не будут лишними.

В данной статье мы ознакомимся с понятием деления. Это многосоставной термин, который может применяться в самых разнообразных сферах деятельности человека, а также его следствия наблюдаются в природе живых организмов. Вне зависимости от области применения термина и/или среды протекания процесса, представляет собой крайне важное понятие.

Клеточное деление

Деление клетки - это образовательное явление, в ходе которого посредством деления одной клетки образуются две дочерние структуры, как правило, идентичные материалу материнской системы.

Прокариотическое деление включает в себя расчленение на две равные части. Этому предшествует удлинение клетки, последующее образование поперечной перегородки, и только потом расхождение.

Представители клеток эукариот могут делиться двумя способами: митозом и мейозом. Путь размножения будет зависеть от типа клетки.

Амитоз и подготовка

Клеточное деление включает в себя процессы амитоза и подготовки.

Прямое деление - это амитоз. Им называют прямую форму деления. Это происходит с интерфазным ядром посредством перетяжки и без создания веретена, через которое будет происходить разделение клеточных структур и информации ядра. Амитоз - это самый экономически выгодный вариант деления, что обусловлено его низкими требованиями к энергетическим затратам. Амитоз имеет ряд сходств с клеточным размножением прокариот.

Клетки бактерий чаще всего включают в себя молекулу ДНК в кольцевом виде. Она всегда одна и крепится к мембране клетки. Перед началом деления (размножения), ДНК начинает реплицироваться и образовывать 2 идентичные структуры молекул. Далее в ходе деления мембрана совершает врастание между данными 2 молекулами. Вследствие этого, по обе стороны веретена в разных концах клетки располагаются 2 фрагмента с наследственной информацией, которые идентичны между собой. Эту форму размножения называют бинарным делением.

Деление - это процесс, которому предшествует подготовка. Она начинается в определенной стадии цикла клетки, именуемого интерфазой. На этом этапе происходят важнейшие процессы, позволяющие клеткам размножаться. Осуществляется белковый биосинтез, удвоение важнейших структур. Также происходит удвоение хромосомы, состоящей из двух половин (хроматид). Длительность интерфазы у организмов животного и растительного происхождения занимает около 10-20 часов. Далее следует митоз.

Митоз и мейоз

Деление клетки - это путь ее размножения. Выделяют два основных пути: митоз и мейоз.

Митоз - форма передачи наследственной информации, в ходе которой сохраняется копия исходных хромосом. Одним из немногих преимуществ данного деления перед мейозом является отсутствие осложнений в клетке с любым показателем плоидности. Это обусловлено отсутствием обязательного использования хромосомной конъюгации на стадии профазы. Данный процесс включает в себя стадии профазы, метафазы, анафазы и телофазы, между которыми происходит интерфаза. Эти же этапы наблюдаются и в мейозе, однако они происходят дважды с некоторыми отличиями.

Мейоз - это деление клетки, в ходе которого наблюдается уменьшение хромосомного числа вдвое. Это равносильно для любой дочерней клетки. Первым, кто его описал у животных, стал В. Флемминг в 1882 году, а растительный мейоз объяснил Э. Страсбургер в 1888 году.

Посредством мейоза происходит образование гамет. В ходе редукции как споры, так и половые клеточные структуры с хромосомным набором приобретают себе по 1-й хромосоме из каждой хромосомы, образованной двумя хроматидами и содержащимися в клетке диплоидного типа. Дальнейшее оплодотворение позволит новому организму получить хромосомный набор в диплоидном виде. Кариотип остается неизменным.

Административно-территориальная форма деления территорий

Территориальное деление - это раздел территории, предусмотренный административно-территориальным устройством государства. Чаще всего это применимо к унитарным державам. В соответствии с их расчленением на отдельные области и участки, создается органная система, отвечающая за конкретную территорию. Обуславливаться разделение может в связи с природным, политическим, этническим и экономическим фактором. Административно-территориальную форму разделения применяют и в федеративных государствах. Однако, в отличие от унитарных структур, федерация обладает соответствующим типом устройства (федеративным).

Об АТД

Субъектам федерации чаще всего присваивается унитарное устройство административно-территориального набора правил о разделении. Единицы, которые являются субъектами федерации, чаще всего относятся к субъектам местного саморегулирования и управления. Перечень их прав определяется и охраняется особым сводом законов.

Территориальное деление - это разграничение, которое может быть следствием распада государства с подобной формой разделения. Ранее внутренняя административная граница может стать новым разграничением территории новообразованной страны. Однако чаще всего это становится проблемным вопросом, что ведет к образованию межгосударственных споров.

Деление в математике

В математике деление - это особая операция, обратная умножению. В математике его обозначают, применяя двоеточие, косую черту или обелюс, а также горизонтальную черточку.

Данное действие является подобным умножению, где происходит замена неоднократного повторения сложения числа. Однако результат деления - это противоположное действие, предполагающее в себе многократно повторяющееся вычитание.

Ознакомимся с делением на примере: 15/4=?

Из выражения следует вопрос о том, сколько раз число 4 повторяется при вычитании из 15.

Повторение отнимания четверки покажет нам содержание трех четверок и одной тройки. В таком случае 15 - это делимое, 4 - это делитель, тройное повторение четверки - это неполное частное, а 3 - это остаток. Конечный итог делительной работы также именуют отношением.

О числах

Никогда не забывайте о том, что деление и произведение - это разные понятия. Последнее относится к умножению. Упомянуть это здесь будет не лишним, так как часто люди задают подобные вопросы.

В настоящее время используется деление, применимое к огромному количеству чисел, созданных и условно разделенных человеком. На сегодня существует деление: натуральных, рациональных, комплексных и целых чисел, а также сюда входит деление многочленов, на ноль и алгебраическое.

«Разность - это деление». Подобное утверждение также часто бытует в интернет-источниках, однако это неверно. Разностью называют число (r), указывающее на суммарное количество единиц, которое образуется при вычитании одного компонента расчета из другого: a - b = c, где а - это уменьшаемое, b - это вычитаемое, а с - это разность. Данное определение равносильно и одинаково для любых форм чисел, например рациональных дробей или целых чисел и т. д. Не уподобляйтесь блондинкам, задающим вопрос "разность - это умножение или деление?". Разность - это действие, противоположное умножению.

Деление на ноль

В стандартном арифметическом наборе правил деление на ноль остается неопределенным.

Когда речь идет о делении на бесконечно малые функции или последовательности, отличные от нуля, то можно утверждать, что точки с функцией-делителем в виде нуля обладают неопределенной функцией частного. Если делить ограниченную и отдаленную от нуля функцию на бесконечно малую, то можно получить бесконечно большую. Неопределенностью называют отношение 2 бесконечно малых функций (0/0). Ее можно преображать, получая определенные результаты.

Что еще почитать