Анализ основных причин аварий, произошедших на магистральных газопроводах. Авария на магистральном трубопроводе

3 ноября на участке в районе населенного пункта Алмазово Московской области высокого давления "Оборники- Щитниково" и начался пожар. Высота пламени достигала до 10 метров.
По предварительным данным, без газоснабжения могут находиться три населенных пункта - Балашиха, Монино, Черная.
В садовом товариществе "Алмаз-1" Щелковского района .

19 октября в городе Ижевске на подземном газопроводе высокого давления - трубу повредил подрядчик, проводивший работы по благоустройству пешеходного перехода. В результате аварии без газа остались два района города с населением около 110 тысяч человек (население Ижевска - около 600 тысяч человек) и 31 промышленное предприятие.

10 сентября в Москве в районе 89-го километра МКАД при проведении работ по опрессовке труб газопровода бригадой рабочих газовой службы . В результате аварии погибли три человека.

В ночь на 18 мая на участке магистрального газопровода Моздок-Казимагомед в Кизилюртовском районе республики Дагестан . В результате без газа остались города Кизилюрт и Хасавюрт, а также ряд населенных пунктов Кизилюртовского, Хасавюртовского и Казбековского районов республики. Жертв нет.

26 апреля на Дмитровском шоссе Москвы произошло . Во время опрессовки нового газоотвода в доме 64 произошел взрыв сжатого воздуха. Один человек погиб, с травмами различной тяжести были госпитализированы двое прохожих и прораб "Газтеплостроя".

2009
28 сентября произошел прорыв магистрального газопровода в районе 32-го километра Новорижского шоссе в ближнем Подмосковье. произошел в результате того, что водитель легкового автомобиля не справился с управлением и врезался в задвижку газопровода. В результате возник сильный пожар, мужчина погиб. Из-за аварии без газа остались две больницы, временно была прекращена подача газа в 1095 коттеджей, 200 квартир и семь котельных.

В ночь с 9 на 10 мая на Озерной улице на западе Москвы , признанный самым большим в послевоенной истории столицы. На его тушение ушло свыше 15 часов, пострадали пять человек, сгорели и получили повреждения более 80 автомашин. По данным специалистов Ростехнадзора, причиной взрыва на газопроводе стали нарушения при строительстве в 1980 году и при ремонте в 1996 году, а также некачественный материал, из которого сделан трубопровод.

2008
17 февраля (Новгородская область). При разрыве газопровода произошли загорание газа и значительный выброс пламени. Пламя из газопровода подожгло три строения, находившиеся от места разрыва на расстоянии примерно в 200 метров. Два частных жилых дома были полностью уничтожены. В них проживали 11 человек, среди которых было несколько детей. Двум жительницам сгоревших домов в связи с пережитым стрессом потребовалась медпомощь. Одна из них была госпитализирована в Валдайскую центральную районную больницу. В результате аварии в течение почти двух часов было перекрыто движение по федеральной трассе Москва - Санкт-Петербург.

13 января в результате взрыва на магистральном газопроводе в Тоснинском районе Ленинградской области возник пожар. В момент пожара высота огненного столба достигала 100 метров. На момент локализации пожара выгорело около 0,5 гектара окружающей газопровод территории. Жертв и пострадавших не было.

2007
В ночь на 26 июля произошли взрыв и пожар на магистральном газопроводе во Всеволжском районе Ленинградской области на участке Северная ТЭЦ (Петербург) - Лаврики (Ленинградская область). Газопровод является частью единой системы газоснабжения Санкт-Петербурга и области. Авария сопровождалась сильным выбросом пламени и дыма, принявшим форму гриба, что вызвало панику среди жителей города. В районе происшествия загорелся лес и торфяники на площади около двух гектаров. В борьбе с огнем были задействованы 25 пожарных расчетов. Пострадавших нет.

Материал подготовлен на основе информации РИА Новости

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности

Реферат

«Аварии на трубопроводах».

Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович

Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:

По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.


1. Общие сведения о состоянии системы трубопроводов в РФ на 2008

В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

Cтраница 1


Аварии газопроводов могут привести к тяжелым последствиям как для людей, так и для окружающей природы. Кроме того, при авариях теряется газ на участке между двумя кранами. Большой материальный урон несут потребители газа, которые вынуждены остановить свое производство или применить другие виды топлива. Расходы в результате аварии газопровода могут более чем в 30 раз превышать затраты, необходимые на ремонтные работы. При аварии нефтепровода происходит утечка нефти на участке между двумя задвижками. Это приводит к большим потерям нефти и засорению окружающей среды, а в некоторых случаях к остановке нефтепромысла или нефтеперерабатывающего завода.  

Аварией газопровода считается частичный или полный разрыв трубопровода с выходом газа в окружающую среду.  

При аварии газопровода с выходом газа на поверхность земли необходимо немедленно отключить газ и принять срочные меры по ликвидации аварии.  

Причинами, вызывающими аварии газопровода, могут быть некачественная сварка, перенапряжения в металле из-за неправильной укладки газопровода в траншею, оползни, размывы, корродирующее воздействие грунта, образование в зимнее время гидратиых пробок и другие.  


Одним из основных условий предупреждения аварий газопроводов, связанных с коррозией, эрозией и усталостью металла, яв-шется систематический и своевременный контроль их состояния.  

В полевых условиях при ликвидации аварий газопроводов, производстве ремонтов рабочее место электросварщика обязательно оборудуется деревянным лежаком. Основным рабочим инструментом электросварщика является держатель электродов, от которого в значительной мере зависит удобство работы. Держатель должен прочно удерживать электрод, обеспечивать надежный контакт и допускать быструю и удобную смену электродов без прикосновения к токоведущим и нагретым металлическим частям держателя. Держатель должен иметь минимальный вес и удобный захват. Наиболее существенной частью конструкции держателя электродов является устройство для зажатия электрода. По способу крепления электродов держатели подразделяются на вилочные, пружинные, зажимные и винтовые.  

Институт мерзлотоведения, изучивший причины аварий газопроводов, установил, что не прокладка трубопровода в зоне промерзания грунта явилась причиной этих аварий, а недоброкачественная сварка стыков.  

Значения физико-механических характеристик грунта основания и засыпки.  

По данным экспертизы, проведенной на месте аварии газопровода Уренгой-Центр П (февраль 1995 г.), одной из причин послужило защемление в грунте трубы, примыкающей к карстовой полости.  

Оц за 1 ч; т - 3 - - среднее время восстановления аварии газопровода диаметром Оц ч; LJ - длина г - й секции, км.  

В данной главе приведены результаты многолетних металлографических исследований разных групп трубных сталей, разрушенных при авариях газопроводов.  

Кроме отмеченных документов, эксплуатационные организации хранят также техническую приемочную документацию; журналы сварочных работ, сертификаты на материалы, журналы изоляции, журналы испытаний и др. К этой документации обращаются при анализе причин и [ выявлении виновников аварий газопроводов. В процессе текущего обслуживания этими документами не пользуются.  

РД 153-39.4-114-01. Правила ликвидации аварий и повреждений на магистральных нефтепроводах. Согласно РД, все отказы на МН делятся на аварии и инциденты.

Аварией считается внезапный вылив или истечение нефти в результате полного разрушения или частичного повреждения нефтепровода, резервуаров или другого оборудования, сопровождаемое одним или несколькими следующими событиями:

3. воспламенение нефти или взрыв ее паров;

4. загрязнение рек и других водоемов сверх пределов, установленных на качество воды;

5. утечка нефти более 10м 3 .

Инцидентом на магистральном нефтепроводе считается отказ или повреждение оборудования на объектах МН, отклонение от режимов технологического процесса, нарушение законодательных и правовых актов РФ и нормативных документов (устанавливающих правила ведения работ), которые могут сопровождаться утечками нефти менее 10м 3 без загрязнения водотоков. Инцидент происходит без признаков событий, описанных при аварии, но требует проведения ремонтных работ для восстановления дальнейшей безопасной эксплуатации МН.

Аварией на магистральном газопроводе считается неконтролируемый выброс газа в атмосферу или помещения КС, ГРС или автомобильных газонаполнительных станций (АГНКС), которые сопровождаются разрушением или повреждением газопровода или других его объектов, а также одним из следующих событий:

1. смертельный травматизм людей;

2. травмирование с потерей трудоспособности;

3. воспламенение газа или взрыв;

4. повреждение или разрушение объектов МГ;

5. потери газа более 10000м 3 .

Аварийной утечкой на МГ считается неконтролируемый выход транспортируемого газа в атмосферу, помещения КС, ГРС или АГНКС, без признаков событий, описанных выше, но требующий проведения ремонтных работ для обеспечения дальнейшей безопасной эксплуатации газопровода.

Причины аварий:

1. Нарушение требований технологии и государственных стандартов в процессе производства труб.

2. Отклонения от норм проектирования и строительства трубопроводов.

3. Несоблюдение правил эксплуатации трубопроводов.

4. Влияние природных явлений.

Организационно-технические мероприятия при проведении аварийно-восстановительных работ.

Последовательность на нефтепроводах:

1. сооружение земляного амбара или другой емкости для сбора нефти;

2. подготовка ремонтной площадки и размещение на ней технических средств;



3. отключение средств ЭХЗ;

4. вскрытие аварийного участка и сооружение ремонтного котлована;

5. освобождение аварийного участка от нефти;

6. вырезка дефектного участка или наложение муфты;

7. герметизация (перекрытие) внутренней полости нефтепровода;

8. монтаж и вварка новой катушки;

9. заварка отверстий для отвода нефти;

10. контроль качества сварных швов;

11. пуск нефтепровода в эксплуатацию;

12. изоляция отремонтированного участка нефтепровода;

13. включение средств ЭХЗ;

14. засыпка нефтепровода и восстановление обвалования.

Для устранения неполных разрывов поперечных стыков можно использовать двухстворчатые хомуты со свинцовой или резиновой прокладкой.

При небольших разрывах по основному металлу труб можно применять гладкие хомуты, которые привариваются к трубе.

При полном разрыве поперечных стыков, а т.ж. при разрывах продольных стыков труб поврежденные участки полностью удаляют, а на их место вваривают патрубки из труб того же размера. Для вырезки поврежденных участков используют безогневые технологии.

Последовательность на газопроводах:

1. отключение аварийного участка и освобождение его от газа;

2. отключение средств ЭХЗ;

3. земляные работы по сооружению ремонтного котлована;

4. вырезка отверстий в газопроводе для установки резиновых шаров;

5. установка резиновых шаров для изоляции полости МГ на ремонтируемом участке;

6. вырезка поврежденного участка;

7. вварка новой катушки;

8. проверка качества швов физическими методами контроля;

9. извлечение резиновых шаров;

10. заварка отверстий;

11. вытеснение воздуха из аварийного участка;

12. испытание швов отремонтированного участка под давлением 1 МПа;

13. нанесение изоляции;

14. Испытание трубопровода при рабочем давлении;

15. включение средств ЭХЗ;

16. засыпка трубопровода.

Свищи ликвидируются путем заварки.

По территории Обоянского района проходит магистральный газопровод «Щебелинка-Курск-Брянск».
Наиболее опасным участком является пересечение газопровода с рекой Псел в районе города Обоянь.

Вследствие аварии на газопроводе возможно возникновение следующих поражающих факторов:

  1. воздушная ударная волна;
  2. разлет осколков;
  3. термическое воздействие пожара.

Анализ аварий на магистральных газопроводах показывает, что наибольшую опасность представляют пожары, возникающие после разрыва трубопроводов, которые бывают двух типов: пожар в котловане (колонного типа) и пожар струевого типа в районах торцевых участков разрыва. Первоначальный возможный взрыв газа и разлет осколков (зона поражения несколько десятков метров), учитывая подземную прокладку газопровода и различные удаления объектов по пути трассы, возможные зоны поражения необходимо рассматривать конкретно для каждого объекта.
Возможные радиусы термического поражения приведены в Таблице 18.

Выводы:

При аварии на магистральном газопроводе возможно возгорание зданий и поражение людей при пожаре струевого типа на удалении от места аварии до 1200 м.

Учитывая существенное расширение границ селитебной зоны населенных пунктов после завершения строительства газопроводов часть зданий, сооружений и жилых домов попадают в зону поражающих факторов при аварии на данных магистральных газопроводах.

При возникновении пожара (взрыва газовоздушной смеси) на одном из участков магистрального газопровода радиус вероятной зоны поражения может достигать 0,5 км. Ожидается гибель персонала, получателей сжиженного газа свыше 30 человек и 1-3 единиц техники. Вероятное количество населения, попадающего в зону чрезвычайной ситуации до 1000 чел. (по признаку нарушения условий жизнеобеспечения). В результате аварии потеря газа может составить до 100 тыс. м3, экономический ущерб - до 7 тыс. МРОТ.

V. Аварии на магистральных нефтепроводах

По территории района проходит нефтепровод Мичуринск - Кременчуг "Дружба". Диаметр нефтепровода составляет 720 мм. Протяженность нефтепровода - 270 км. Рабочее давление 41 кг/см2. Производительность 30 тыс.т./сут. Количество нефти, находящейся в нефтепроводе составляет 106845 т, что значительно превышает величину порогового количества, определенного для ЛВЖ (50000 т). Магистральный нефтепровод по гражданской обороне не категорируется.
Виды возможных чрезвычайных ситуаций:

1. Разлив нефтепродуктов в результате разгерметизации линейного участка с последующим возгоранием и возможным взрывом паров нефтепродуктов. Так как нефтепродуктопровод проходит на значительном расстоянии от населенных пунктов и промышленных объектов, поэтому в случае взрыва или пожара они не пострадают. Тяжелые последствия прогнозируются на пересечениях с железными дорогами. В этом случае возможен выход из строя железных дорог, ЛЭП, значительный экономический ущерб.

2. Разлив нефтепродуктов в результате разгерметизации подводного перехода. В этом случае возможно попадание нефтепродуктов в реки (до 1,5 тыс. м3) и ее распространение вниз по течению, что приведет к гибели флоры и фауны, загрязнению прибрежной полосы нефтепродуктами.

Площадь вероятной зоны чрезвычайной ситуации - до 2000 м2 на суше и 48000 м 2 на реке. Вероятное количество населения, попадающее в зону чрезвычайной ситуации до 800 чел. Вероятные социально-экономические последствия при возникновении чрезвычайной ситуации:

  1. экономический ущерб - до 30 тыс. МРОТ;
  2. пострадавшие - до 150 чел.;
  3. нарушение условий жизнедеятельности - до 800 чел.

При распространении разлива нефтепродуктов возможно загрязнение рек и водоемов, вынесение нефтепродуктов на береговую линию и частично нарушение жизнедеятельности населения, проживающего в населенных пунктах, расположенных ниже по течению рек.

Наиболее вероятные причины разливов нефтепродуктов:

Аварии в результате внешней/внутренней коррозии стенок трубопровода;
аварии при воздействии высоких температур при пожаре;
аварии в результате хрупкого разрушения при низких температурах;
аварии на трубопроводах и оборудовании при стихийных бедствиях и террористических актах;
аварии в результате механических повреждений;
аварии в результате брака строительно-монтажных работ;
аварии в результате нарушения технологии перекачки нефтепродуктов.

Основными процессами при разлитии нефтепродуктов могут быть:

Растекание;
испарение;
дисперсия;
растворение;
эмульгирование.

Возможны следующие сценарии возможного поведения нефтепродуктов в районах аварий и разливов на воде в зависимости от сезона года:

1. Безледовый период.

Попадая в реку, ручей или источник, нефтепродукты начинают распространяться, увлекаясь поверхностным течением. При этом образуется вытянутое пятно. В общем случае нефтепродукты будут стремиться скапливаться в участках спокойной воды или в водоворотах на изгибах рек, в извилистых реках, ручьях или в других местах, где скорость течения замедляется. Островки нефтепродуктов могут образоваться в местах, где скапливаются деревья и мусор.
Перемещение и удаление нефтяных пятен от источника аварии будет в первую очередь определяться скоростью течения реки и направлением ветра. Под действием течения нефтепродукты переносится вниз по реке, а ветер сместит пятно к одному из берегов.

2. Ледовый период.

Перемещение пятна нефтепродуктов не зависит от направления ветра. Плавающие нефтепродукты, попав под лед, будут двигаться по подводной части ледяного поля, которая обычно имеет неровную поверхность. Подвижность нефтепродуктов уменьшается. Скорость перемещения пятна нефтепродуктов подо льдом составляет 10-50% от скорости потока в приледном слое воды толщиной 0,1 м, в зависимости от шероховатости нижней поверхности льда. При скоростях движения воды менее 0,1 м/с пятно нефтепродуктов под ледяным покровом может оставаться в неподвижном состоянии.

Распространение нефтепродуктов под ледяным покровом может находиться в виде отдельных капель, сливаться в небольшие пятна или сплошные ковры. При этом толщина этих образований не превышает 5-10 мм.

При нарастании льда неподвижные нефтепродукты вмерзают в лед и в дальнейшем находятся в толще льда в виде вмороженных капель или отдельных линз.

Характер распространения пятна нефтепродуктов зависит от формы русловой части реки, скорости течения и времени, прошедшего с момента начала аварии.

Локализация аварийного нефтезагрязнения воды и прибрежных территорий

Основным способом локализации распространения нефтепродуктов является установка боновых заграждений на локализационных площадках. На места установки боновых заграждений выезжают бригады аварийно-спасательных подразделений в соответствии с разработанным типовым или ситуационным планом. Технические средства - боновые заграждения, нефтесборщики для очистки загрязненных вод. На малых реках допускается создание земляных дамб с водопропускными трубами.

В ледовый период время локализации пятна нефтепродуктов зависит от времени на устройство во льду прорези и майны. Наименьшая допустимая толщина ледяного покрова для выполнения работ может определяться согласно РД153-39.4-114-01 (п. 5.7.39).

За границей боновых заграждений производят контроль наличия нефтепродуктов. В случае обнаружения нефтепродуктов устанавливают дополнительный рубеж боновых заграждений.

В период половодья состояние водного объекта характерно как для ледового, так и для безледового периода. В данном случае мероприятия и объемы работ планируются в зависимости от погодных условий, преобладания признаков ледового (безледового) периода и состояния подъездных путей к рубежам локализации.

Расстановка рубежей локализации производилась с учетом географических особенностей района, а также временем подхода нефтепродуктов к конкретному рубежу локализации. Выбор рубежа локализации определяется руководителем КЧС в зависимости от условий разлива, ситуации и метеорологических условий. При сложных метеорологических условиях рубежи локализации уточняются на основании конкретных гидрометеорологических условий.

Проведение АСНДР будет затруднено высокой температурой в очаге пожара, потребует применения специализированных формирований. Локализация и ликвидация последствий ЧС потребует привлечения значительных финансовых, материальных и людских ресурсов.

Что еще почитать