Водяной лед. Водяной лёд на Марсе находится неглубоко

Учёные, анализирующие данные с Красной планеты, утверждают: есть все основания считать, что Phoenix раскопал то, зачем летел — водяной лёд под тонким слоем грунта. Доказательство — сублимация яркого материала, который оказался открыт при удалении верхнего пласта почвы.

Последние дни на Марсе для американского зонда сложились непросто. Исследователи приступили к анализу образцов грунта. Причём им пришлось преодолеть ряд трудностей. О частично заклинившей дверце печки мы рассказывали . Но это было только начало.

Когда пробы всё же высыпали в щель, оказалось, что почва Марса какая-то слипшаяся. Большие крупинки цепляются друг за друга, и ни одна не желает попадать в печь. Дело в том, что отверстие печки прикрыто защитной сеткой с отверстиями по одному миллиметру. Исследователи рассчитывали нагревать (чтобы выполнить анализ образовавшихся газов) именно такие небольшие песчинки.

Позже был придуман способ «переупрямить» грунт. Ковш робота заставили вибрировать над открытой печкой, так, чтобы самые мелкие частицы марсианской породы понемногу ссыпались в печь. Аналогично образцы песка были доставлены и в микроскоп.

Кстати, слипание грунта учёные объясняют присутствием очень мелких частиц, заполняющих промежутки между более крупными гранулами, возможно, вместе с неким компонентом, играющим роль цемента.

Образец марсианского песка в микроскопе. Масштабная линейка - один миллиметр (фото NASA/JPL-Caltech/University of Arizona).

Проба, попавшая в микроскоп, продемонстрировала около тысячи отдельных частиц, многие из которых — в десять раз меньше диаметра человеческого волоса.

Исследователи говорят, что увидели тут, по меньшей мере, четыре разных минерала. К примеру, там есть большие чёрные стекловидные частицы и маленькие красные.

Эксперты полагают, что этот набор отражает историю грунта — кажется, что первоначальные частицы вулканического происхождения за счёт выветривания сократились в размерах до крупинок с более высокой концентрацией железа.

Теперь относительно льда. "Подозрения" у учёных появились ещё в начале июня. Но нагрев первой пробы в печке признаков водяного пара не выявил.

Зато исследователи Марса получили доказательства присутствия льда благодаря снимкам траншеи «Додо-Златовласка» (Dodo-Goldilocks), вырытой роботом ранее (вернее, это сначала были две соседние траншеи, которые позже соединили в одну, отсюда и двойное имя). Несколько светлых комочков почвы, присутствующих вначале, исчезли на более поздних кадрах.

«Это должен быть лёд, - заявил научный руководитель миссии Питер Смит (Peter Smith) из университета Аризоны (University of Arizona, Tucson). — Эти комки практически полностью исчезли в течение нескольких дней, что есть идеальное доказательство того, что это — лёд. Ранее высказывалась идея, что яркие материалы — это соль. Но соль испариться не может».

Вверху: траншея Dodo-Goldilocks, отснятая 13 июня. Ширина этой выемки составляет 22, а длина 35 сантиметров. Наибольшая глубина (участок в нижней части кадра) достигает 8 сантиметров. Внизу: кадры, снятые уже 15 и 18 июня (20-й и 24-й сол миссии). Светлые участки становятся меньше, а в левом нижнем углу траншеи исчезает несколько гранул светлого материала (фотографии NASA/JPL-Caltech/University of Arizona/Texas A&M University).

Также при рытье ряда траншей вокруг аппарата рука робота наткнулась на жёсткий грунт под сравнительно тонким слоем мягкого. Причём примерно на одной и той же глубине во всех траншеях.

Водный лед, полученный из пресной и морской воды, используют для охлаждения, хранения и транспортирования продуктов питания.

Широкое применение льда в качестве охлаждающей среды объясняется прежде всего его физическими свойствами, а также экономическими факторами. Температура плавления водного льда при атмосферном давлении 0°С, удельная теплота плавления 334,4 Дж/кг, плотность 0,917 кг/м3, удельная теплоемкость 2,1 кДж/(кг*К), теплопроводность 2,3 Вт/(м*К). При переходе воды из жидкого состояния в твердое (лед) происходит увеличение объема на 9%.

Естественный лед заготавливают путем вырезания или выпиливания крупных блоков изо льда, образовавшегося на естественных водоемах, послойного намораживания воды на горизонтальных площадках, наращивания сталактитов в градирнях. (Особым спросом для пищевых целей пользуется гренландский и антарктический лед как наиболее чистый. Возраст гренландского льда более 100 000 лет.) Лед хранят на площадках в буртах, укрытых насыпной изоляцией, и в льдохранилищах с постоянной и временной теплоизоляцией.

Искусственный водный лед получают с помощью льдогенераторов трубчатого типа, где лед образуется внутри труб вертикального кожухотрубного испарителя, в межтрубном пространстве которого кипит жидкий аммиак. Вода поступает в трубы испарителя сверху через водораспределительное устройство, в которое она подается насосом из бака, смонтированного под кожухом аппарата. В отверстия труб вставляют насадки, благодаря которым вода, поступающая в трубы, закручивается и пленкой стекает по их внутренней поверхности, частично замерзая. Не замерзшая вода собирается в бак, откуда опять подается в водораспределительное устройство. Благодаря непрерывной циркуляции из воды удаляется воздух, поэтому лед получается прозрачным. Когда стенки ледяных цилиндриков достигают толщины 4-5 мм, намораживание прекращают, насос останавливают, испаритель отключают от всасывающей стороны машины и соединяют с ее нагнетательной стороной, в результате чего в испаритель поступают горячие пары аммиака при давлении конденсации. Эти пары вытесняют из испарителя жидкий аммиак в ресивер (сборник аммиака), прогревают стенки труб, намороженный лед отделяется от стенок и под действием силы тяжести сползает вниз. При выходе из труб ледяные цилиндрики попадают под вращающийся нож, который разрезает их на части определенной высоты. Готовый лед падает в бункер и дальше по льдоскату выводится из льдогенератора.

Искусственный лед получают путем замораживания чистой пресной или морской воды в льдогенераторах. Качество льда, его форма, размер и способ получения, хранения и доставки потребителю обусловлены назначением и спецификой применения.

Матовый лед изготавливают из питьевой воды без какой-либо ее обработки в процессе замораживания. В отличие от естественного он имеет молочный цвет, обусловленный наличием большого количества пузырьков воздуха, которые образуются в процессе превращения воды в лед. Пузырьки уменьшают проницаемость льда для световых лучей, и он становится непрозрачным.

Прозрачный лед по виду напоминает стекло. Для его получения в форму наливают воду и при помощи форсунок продувают через нее сжатый воздух. Проходя через замораживаемую воду, oн захватывает и увлекает за собой пузырьки воздуха. Прозрачный лед изготавливают в виде кусков небольших размеров и используют для охлаждения напитков.

Лед с бактерицидными добавками предназначен для охлаждения рыбы, мяса, птицы и некоторых видов овощей путем непосредственного соприкосновения с ними. Бактерицидные добавки снижают обсеменённость продуктов микроорганизмами.

В зависимости от формы и массы искусственный лед бывает блочный (5-250 кг), чешуйчатый, прессованный, трубчатый, снежный.

Блочный лед дробят на крупный, средний и мелкий.

Чешуйчатый лед получают путем напыления воды на вращающийся барабан, плиту или цилиндр, являющиеся испарителями хладагента. Вода на поверхности барабана быстро замерзает, а образовавшийся лед при его вращении срезается фрезами или ножом. Льдогенераторы производят от 60 до 5000 кг/сут такого льда. Чешуйчатый лед эффективен при охлаждении рыбы, мясных изделий, зеленых овощей, некоторых плодов. Наибольший коэффициент теплоотдачи достигается, когда при охлаждении продукты плотно сопри-касаются со льдом.

В результате смешивания дробленого водного льда с различными солями помимо теплоты таяния льда поглощается теплота растворения соли в воде, что позволяет существенно понизить температуру смеси. Раствор может быть охлажден до криогидратной точки.

Использование льда в технике.

Ледяная гидросмесь. В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5--7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10--15 до 30--45 минут.

Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ -- иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец. Использование льда для постройки искусственных островов описывается в фантастическом романе Ледяной остров.

Новые исследования формирования водяного льда на ровной поверхности меди при температурах от -173 °C до -133 °C показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.

Находящееся агрегатном состоянии, которому свойственно иметь газообразную или жидкую форму при комнатной температуре. Свойства льда начали изучать сотни лет назад. Около двухсот лет тому назад ученые обнаружили, что вода - не простое соединение, а сложный химический элемент, состоящий из кислорода и водорода. После открытия формула воды стала иметь вид Н 2 О.

Строение льда

Н 2 О состоит из двух атомов водорода и одного атома кислорода. В спокойном состоянии водород располагается на вершинах атома кислорода. Ионы кислорода и водорода должны занимать вершины равнобедренного треугольника: кислород располагается на вершине прямого угла. Такое строение воды называется диполем.

Лед состоит на 11.2% процента из водорода, а остальное - это кислород. Свойства льда зависят от его химического строения. Иногда в нем присутствуют газообразные или механические образования - примеси.

Лед встречается в природе в виде немногочисленных кристаллических видов, которые устойчиво сохраняют свое строение при температурах от нуля и ниже, но при нуле и выше он начинает плавиться.

Структура кристаллов

Свойства льда, снега и пара совершенно разные и зависят от В твердом состоянии Н 2 О находится в окружении четырех молекул, расположенных в углах тетраэдра. Так как координационная численность низкая, то лед может иметь ажурную структуру. Это отображается на свойствах льда и его плотности.

Формы льда

Лед относится к распространенным в природе веществам. На Земле есть следующие его разновидности:

  • речной;
  • озерный;
  • морской;
  • фирновый;
  • глетчерный;
  • грунтовый.

Есть лед, напрямую образующийся сублимационным путем, т.е. от парообразного состояния. Такой вид принимает скелетовидную форму (мы их называем снежинки) и агрегатов дендритного и скелетного роста (изморозь, иней).

Одной из самых распространенных форм являются сталактиты, т. е. сосульки. Они растут по всему миру: на поверхности Земли, в пещерах. Этот вид льда образуется путем стекания капель воды при разнице температур около нуля градусов в осенне-весенний период.

Образования в виде ледяных полос, появляющихся по краям водоемов, на границе воды и воздуха, а также по краю луж, называются ледяными заберегами.

Лед может образовываться в пористых грунтах в виде волокнистых прожилок.

Свойства льда

Вещество может находиться в разных состояниях. Исходя из этого, возникает вопрос: а какое свойство льда проявляется в том или ином состоянии?

Ученые выделяют физические и механические свойства. Каждое из них имеет свои особенности.

Физические свойства

К физическим свойствам льда относят:

  1. Плотность. В физике неоднородная среда представлена пределом отношения массы вещества самой среды к объему, в котором она заключена. Плотность воды, как и других веществ, является функцией температур и давления. Обычно в расчетах используют постоянную плотность воды, равную 1000 кг/м 3 . Более точный показатель плотности учитывается только тогда, когда необходимо очень точно провести расчеты ввиду важности получаемого результата разности плотностей.
    При проведении расчетов плотности льда учитывается, какая вода стала льдом: как известно, плотность соленой воды выше, чем дистиллированной.
  2. Температура воды. Обычно происходит при температуре ноль градусов. Процессы замерзания происходят скачками с выделением теплоты. Обратный процесс (таяние) происходит при поглощении того же количества тепла, которое было выделено, но без скачков, а постепенно.
    В природе встречаются условия, при которых происходит переохлаждение воды, но она не замерзает. Некоторые реки сохраняют жидкое состояние воды даже при температуре -2 градуса.
  3. количество теплоты, которое поглощается при нагревании тела на каждый градус. Есть удельная теплоемкость, которая характеризуется количеством теплоты, необходимой для нагрева килограмма дистиллированной воды на один градус.
  4. Сжимаемость. Еще одно физическое свойство снега и льда - сжимаемость, влияющая на уменьшение объема под воздействием повышенного внешнего давления. Обратная величина называется упругостью.
  5. Прочность льда.
  6. Цвет льда. Это свойство зависит от поглощения света и рассеивания лучей, а также от количества примесей в замерзшей воде. Речной и озерный лед без посторонних примесей виден в нежно-голубом свете. Морской лед может быть совершенно другим: голубым, зеленым, синим, белым, коричневым, иметь стальной оттенок. Иногда можно увидеть черный лед. Такой цвет он приобретает из-за большого количества минералов и различных органических примесей.

Механические свойства льда

Механические свойства льда и воды определяются сопротивлением воздействию внешней среды по отношению к единице площади. Механические свойства зависят от структуры, солености, температуры и пористости.

Лед - это упругое, вязкое, пластичное образование, но бывают условия, при которых он становится твердым и очень хрупким.

Морской лед и пресноводный различаются: первый намного пластичнее и менее прочный.

При прохождении кораблей обязательно учитываются механические свойства льда. Также это важно при использовании ледяных дорог, переправ и не только.

Вода, снег и лед обладают схожими свойствами, которые определяют характеристики вещества. Но в то же время на эти показания влияют и многие другие факторы: температура окружающей среды, примеси в твердом веществе, а также исходный состав жидкости. Лед - это одно из самых интересных веществ на Земле.

Лёд - минерал с химической формулой H2O, представляет собой воду в кристаллическом состоянии.

Химический состав льда: Н - 11,2%, О - 88,8%. Иногда лед содержит газообразные и твердые механические примеси. В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С.

Кристаллическая структура льда похожа на структуру алмаза: каждая молекула Н20 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76А и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917).

Свойства льда: Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309).

Формы нахождения льда: В природе лёд - очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко.
Ледяные сталактиты, называемые в просторечии "сосульки", знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности - ледяные антолиты.

Образование и месторождения льда: Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на нее нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются т.наз. подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) - установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.

Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

Многообразие льда:

I. Атмосферный лед: снег, иней, град.

Атмосферный лед - ледяные частицы, взвешенные в атмосфере или выпадающие на земную поверхность (твердые осадки), а также ледяные кристаллы или аморфный налет, образующийся на земной поверхности, на поверхности наземных предметов и на лететельных аппаратах в воздухе.
Снег - твердые осадки, выпадающие в виде снежинок. Снег выпадает из многих видов облаков, в особенности из слоисто-дождевых (снегопад). Снег - типичный зимний вид осадков, образующий снежный покров.
Иней - тонкий неравномерный слой ледяных кристаллов, образующийся на почве, траве и наземных предметах из водяного пара атмосферы при охлаждении земной поверхности до отрицательных температур, более низких, чем температура воздуха.
Град - атмосферные осадки в виде частичек льда круглой или неправильной формы (градин) размером 5-55 мм. Град выпадает в теплое время года из мощных кучево-дождевых облаков, сильно развитых вверх, обычно при ливнях и грозах.

II. Водный лед (ледяной покров) , образующийся на поверхности воды и в массе воды на различной глубине: внутриводный, донный лед.

Ледяной покров - сплошной лед, образующийся в холодное время года на поверхности океанов, морей, рек, озер, искусственных водоемов, а также приносимый из соседних районов. В высокоширотных областях существует круглогодично.
Внутриводный лед - скопление первичных ледяных кристаллов, образующихся в толще воды и на дне водного объекта.
Донный лед - лед, откладывающийся на дне водоема или взвешенный в воде. Донный лед наблюдается на дне рек, морей и небольших озер, на погруженных в воду предметах и в мелких местах. Донный лед образуется при кристаллизации переохлажденной воды, имеет рыхлую пористую структуру.

III. Подземный лед.

Подземные льды - льды, находящиеся в верхних слоях земной коры. Подземные льды встречаются в областях распространения многолетнемерзлых пород. По времени образования различают современный и ископаемый подземный лед, по происхождению:
а). первичный лед , возникающий в процессе промерзания рыхлых отложений;
б). вторичный лед - продукт кристаллизации воды и водяных паров (а) в трещинах (жильный лед), (б) в порах и пустотах (пещерный лед), (в) погребенный лед, формирующийся на земной поверхности, а затем перекрытый осадочными породами.

IV. Ледниковый лед.

Ледниковый лед - монолитная ледяная порода, слагающая ледник. Ледниковый лед образуется в основном из скопления снега в результате его уплотнения и преобразования.

А также:

Игольчатый лед - лед, образующийся при спокойной воде на поверхности реки. Игольчатый лед имеет вид призматических кристаллов с осями, расположенными в горизонтальном направлении, что придает льду слоистое строение.
Серо-белый лед - молодой лед толщиной 15-30 см. Обычно при сжатиях серо-белый лед торосится.
Серый лед - молодой лед толщиной 10-15 см. Обычно при сжатиях серый лед наслаивается.
Поверхностный лед - кристаллический лед, возникающий на поверхности вод.
Сало - поверхностные первичные ледяные образования, состоящие из иглообразных и пластинчатых кристаллов в виде пятен или тонкого сплошного слоя серого цвета.
Забереги - полосы льда, окаймляющие берега водотоков, озер и водохранилищ, при незамерзающей остальной части водного пространства.

Кунгурская ледяная пещера расположенная в Пермской области, на правом берегу реки Сылвы. Кунгурская ледяная пещера образовалась несколько тысяч лет назад, когда талые и дождевые воды постепенно вымыли в гипсовой толще Ледяной горы огромные полости и тоннели.

По мнению современных ученых, возраст Ледяной пещеры составляет около 10-12 тысяч лет. Пещера возникла на месте моря, обмелевшего в связи с поднятием Уральского хребта и преимущественно состоит из гипсовых и известняковых пород. Общая протяженность ее изученной части составляет около 5,6 километров. Из них 1,4 километра оборудованы для проведения экскурсий.

Первым человеком, начавшим проводить регулярные экскурсии по Ледяной пещере был внучатый племянник выдающегося ученого, исследователя Русской Америки - К.Т. Хлебникова - Алексей Тимофеевич Хлебников. В 1914 году Хлебников, взяв пещеру в аренду у местной общины крестьян, начал устраивать ее платные показы для жителей Кунгура и гостей города. Благодаря стараниям Алексея Хлебникова, весть о "кунгурском чуде" быстро разлетелась по разным уголкам страны. После смерти Хлебникова в 1951 году, экскурсии по ледяной пещере организовывались сотрудниками стационара Уральского филиала Российской академии наук, а в 1969 году, когда наплыв туристов увеличился до 100 тысяч человек в год, было открыто Кунгурское бюро путешествий и экскурсий. В 1983 году на месте сгоревшего деревянного здания бюро был построен современный туристический комплекс "Сталагмит", способный принять одновременно до 350 туристов.

ЛЕДЯНОЕ ВИНО

Ледяное вино (фр. Vin de glace, итал. Vino di ghiaccio, англ. Ice wine, нем. Eiswein) - десертное вино, изготовленное из винограда, замороженного на лозе. Ледяное вино имеет средний уровень алкоголя (9-12%), значительное содержание сахара (150-25 г/л) и высокую кислотность (10-14 г/л). Обычно его готовят из сортов Рислинг или Видал.
Сахар и другие растворённые вещества не замерзают, в отличие от воды, что позволяет выжимать более концентрированное виноградное сусло из замороженного винограда; в результате получается малое количество более концентрированного, очень сладкого вина.
Из-за трудоемкого и рискованного процесса производства относительно малого количества ледяное вино довольно дорого. На изготовление 350 мл такого вина уходит по 13-15 кг винограда. Из 50 тонн винограда получается всего 2 тонны вина.

ЛЕДЯНЫЕ ЗАГАДКИ

Бросьте маленький кубик льда в частично заполненный водой стакан. Затем возьмите кусок нити, длиною сантиметров 30. Задача состоит в том, чтобы вытащить кубик льда из стакана, используя только нить как подъемное устройство. Нельзя делать петель из нити, передвигать стакан и касаться кубика льда пальцами. Ваши предложения?

Полный правильный ответ таков: Положите середину нити на верхнюю грань кубика. Теперь насыпьте некоторое количество соли поверх нити (практика покажет сколько нужно сыпать). Из-за соли лед под ниткой немного подтает, соленая вода стечет с кубика, концентрация соли уменьшится, и вода опять замерзнет вокруг нити, вморозив ее в лед. Через несколько минут вы сможете поднять нить вместе с кубиком льда.

ЛЕДЯНОЙ ДОМ

Исторический роман "Ледяной дом" (автор Лажечников И.И.) - один из лучших русских исторических романов, изображающий мрачную эпоху царствования императрицы Анны Иоанновны, засилье временщика Бирона и немцев при русском дворе, получившее название "бировщины". "Ледяной дом" вышел в свет в августе 1835 года.
В 1740 году императрица Анна Иоанновна устроила шутовскую свадьбу Ледяном Доме. Потехи ради для императрицы на берегу Hевы между Зимним дворцом и Адмиралтейством был построен целый город изо льда с домом, воротами, ледяными скульптурными украшениями. Так этот исторический факт описывает И.И. Лажечников в своем романе:

Шутовская свадьба в Ледяном доме

Шутовская свадьба в Ледяном доме открывала российские торжества по случаю заключения Белградского мира. Возглавлял процессию свадебного маскарада сам Волынский, а за каретою министра шествовал слон под войлочными попонами...
Жениха с невестою усадили на слона, отвезли их в Ледяной дом. На льду Невы, приветствуя живого собрата, раздался рев слона ледяного внутри которого музыканты сидели, на трубах играя. Из хобота слона рвался к нему фонтан горящий. По бокам от дома стояли пирамиды ледяные с фонарями . Народ толпился возле, потому что в пирамидах были выставлены "смешные картины" (не всегда пристойные, в духе брачных эпиталам Катулла).
Молодых со слона ссадили, повели их в баню сначала, где они парились. Потом их в Ледяной дом пустили. Двери налево из передней обнажали убранство спальни. Над туалетом зеркала висели, и лежали тут часики карманные, изо льда сделанные. По соседству со спальней была комната для отдохновения после утех брачных. Перед ледяными диванами высился стол ледяной, на котором посуда изо льда (блюда, стаканы, графины и рюмки). Все это было разукрашено в разные цвета - очень красиво!
Из Ледяного дома часовые не выпустили новобрачных:
- Вы куда навострились? От государыни императрицы велено вам всю ночку здесь провести... Ступай и ложись!
За ледяными стенами страшно кричал ледяной слон, выпуская нефть из хобота на двадцать четыре фута кверху. Дельфиньи пасти тоже полыхали нефтью, как геенна огненная. Салютовали молодым ледяные пушки, бросая вокруг ядра ледяные с треском ужасным...
Молодожен раздели. На голову Бужениновой водрузили чепец ночной изо льда, кружева в котором заменял жесткий иней. На ноги Голицына приладили колодки ледяных туфель. На ледяные простыни уложили новобрачных - под ледяные одеяла... А в пирамидах всю ночь вращались подвижные доски смешных картин...
В восемь утра молодых вынесли - закоченевших. Этой ночи - первой их ночи! - было им никогда не забыть.

КРИОТЕРАПИЯ

История человечеств содержит множество примеров использования холодной воды и льда для продления красоты и активного долголетия. Фельдмаршал Суворов каждый день обливался холодной водой, а Екатерина Вторая обтирала лицо льдом. И сегодня в России много приверженцев учения П. Иванова, которые дважды в день обливаются холодной водой.
Конец ХХ века ознаменовался качественным изменением подхода к использованию омолаживающего влияния холода на организм человека, на смену природным агентам льду и холодной воде, пришли процедуры,основанные на применении экстремально низких температур – криотерапия.

Криогенная физиотерапия представляет собой сплав новейших достижений в области физики и физиологии и по праву относится к технологиям ХХI века. Научный анализ векового опыта позволил определить механизм стимулирующего действия холода на человеческое тело.

Криотерапия - самая быстрая и комфортная косметологическая процедура.
Суть криогенной терапии состоит в том, что человек на короткое время (2-3 минуты) по шею погружается в слой охлажденного до температуры -140 °С газа. Температура и время процедуры подобраны с учетом особенностей кожного покрова человеческого тела, поэтому в ходе процедуры охладится успевает только тонкий поверхностный слой в котором расположены тепловые рецепторы, а сам организм не успевает испытать заметного переохлаждения.

Более того, благодаря особым свойствам холодного газа процедура достаточно комфортна, ощущение холода неожиданно приятно особенно в летнее время.
Причиной популярности криотерапии является то, что воздействие на кожные холодовые рецепторы вызывает в организме мощный выброс эндорфинов. Для того чтобы получить такой же эффект необходимо 1,5 – 2 часа интенсивной физической нагрузки. Процедура дает колоссальный косметический эффект особенно при лечении целлюлита . Список позитивных результатов от применения криотерапии можно продолжать до бесконечности, так как эта процедура нормализует иммунитет и обмен веществ, т.е. устраняет первопричины всех болезней. Но, для успеха нужно использовать специальное оборудование и соблюдать методику криотерапевтического воздействия.

ЗАГАДКИ ВОДЫ

Вода – удивительное вещество. В отличие от других аналогичных соединений она имеет много аномалий. К ним относятся необычно высокая температура кипения и теплота парообразования. Вода характеризуется высокой теплоемкостью, которая позволяет использовать ее в качестве теплоносителя в теплоэнергетических установках. В природе это свойство проявляется в смягчении климата вблизи больших водоемов. Необычно высокое поверхностное натяжение воды обусловило ее хорошую способность смачивать поверхности твердых тел и проявлять капиллярные свойства, т.е. способность подниматься вверх по порам и трещинам пород и материалов вопреки земному притяжению.

Весьма редкое свойство воды проявляется при ее превращении из жидкого состояния в твердое. Этот переход связан с увеличением объема, а следовательно, с уменьшением плотности.
Ученые доказали, что вода в твердом состоянии имеет ажурное строение с полостями и пустотами. При плавлении они заполняются молекулами воды, поэтому плотность жидкой воды оказывается выше плотности твердой. Поскольку лед легче воды, то он плавает на ней, а не опускается на дно, что играет в природе очень важную роль.

Интересно, что если над водой создать высокое давление и затем ее охладить до замерзания, то образующийся лед в условиях повышенного давления плавится не при 0°C, а при более высокой температуре. Так, лед, полученный при замерзании воды, который находится под давлением 20000 атм, в обычных условиях плавится только при 80°C.

Еще одна аномалия жидкой воды связана с неравномерным изменением ее плотности при изменении температуры. Уже давно установлено, что наибольшей плотностью вода обладает при температуре +4°C. При охлаждении воды в водоеме более тяжелые поверхностные слои тонут, в результате чего происходит хорошее перемешивание теплой и более легкой глубинной воды с поверхностной. Погружение поверхностных слоев происходит лишь до тех пор, пока вода в водоеме охлаждается до +4°C. После этого порога плотность более холодных поверхностных слоев не увеличивается, а уменьшается и они плавают на поверхности не погружаясь. При охлаждении ниже 0°C эти поверхностные слои превращаются в лед.


ЛЕДЯНОЙ СКАЛЬПЕЛЬ

Ледяной скальпель – так называют инструмент, применяемый в хирургии для проведения криодеструкции. Это специальный зонд, по которому в заданную точку подается жидкий азот. Вокруг иглы зонда образуется айсбол - ледяной шар с заданными параметрами, воздействующий на подлежащую удалению ткань. Иначе говоря, криодеструкция - это отморожение патологически измененной ткани. При замораживании в её клетках и межклеточном пространстве образуются кристаллики льда, что приводит к некрозу, отмиранию.
Во время криодеструкции больной практически не испытывает боли, потому что "ледяной скальпель" замораживает и нервные окончания. Метод достаточно быстрый, бескровный и безболезненный.

ЛЕДЯНАЯ КИСЛОТА

Ледяная кислота – безводная уксусная кислота СН3СООН. Представляет собой бесцветную гигроскопическую жидкость или бесцветные кристаллы с резким запахом. Она смешивается с водой, этиловым спиртом и диэтиловым эфиром во всех соотношениях. Эта кислота перегоняется с водяным паром. Ледяную уксусную кислоту получают при брожении некоторых органических веществ и путем синтеза. Ледяная кислота содержится в продуктах сухой перегонки дерева. В небольших количествах ледяная кислота может содержаться в человеческом организме.
Применение.
Ледяная уксусная кислота применяется для синтеза красителей, получения ацетата целлюлозы, ацетона и многих других веществ. В виде уксуса и уксусной эссенции она применяется в пищевой промышленности и в быту для приготовления пищи.

ЛЕДОВАЯ ОБСТАНОВКА

Ледовая обстановка – это состояние ледового покрова на морях, реках, озерах и водохранилищах. Ледовая обстановка характеризуется целым набором факторов:
- тип водоема,
- климатические условия,
- толщина и сплоченность ледового покрова,
- количество льда,
- характер эволюции ледового покрытия.

ЛЕДЯНОЙ ГРИБ

Ледяной гриб – он же "Снежный гриб", "съедобный студенистый гриб", "коралловый гриб", тремелла фукусовидная (Tremella fuciformis), он же "Snow fungus".
Ледяной гриб так называется, потому что он похож на снежный шарик. Он съедобный, и считается деликатесом в Китае и Японии. Ледяной гриб не обладает ярко выраженным вкусом, зато для него характерна очень интересная текстура, одновременно и нежная, и хрусящая, и пружинящая.
Готовят ледяной гриб по-разному, можно консервировать как обычные грибы, можно добавить в омлет, можно сделать десерт. Особая ценность этих грибов заключается в одновременной обеспеченности грибов питательными веществами и их лекарственными свойствами.
Продается ледяной гриб в местах, где продаются блюда корейской кухни.

ЛЕДЯНАЯ ЗОНА

Ледяная зона – это природная зона, примыкающая к полюсам земного шара.
В северном полушарии к ледяной зоне относятся северная окраина п-ова Таймыр, а также многочисленные острова Арктики - области, лежащие вокруг Северного полюса, под созвездием Большой Медведицы («арктос» в переводе с греческого - медведь). Это северные острова Канадского арктического архипелага, Гренландня, Шпицберген, Земля Франца-Иосифа и др.

ТАЛАЯ ВОДА

Талая вода появляется при таянии льда и сохраняет температуру 0 °С, пока не растает весь лёд. Специфика межмолекулярных взаимодействий, характерная для структуры льда, сохраняется и в талой воде, так как при плавлении кристалла разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними («ближний порядок») в значительной степени не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решетки.

Ученые окончательно доказали наличие водяного льда на поверхности Луны. Впервые это удалось установить не косвенными, а прямыми наблюдениями с окололунной орбиты.

Лед на Луне нашли в приполярных районах в так называемых холодных ловушках - постоянно затемненных областях вокруг полюсов, где царят крайне низкие температуры. Корреспондент.net рассказывает подробности.

Вода на Луне

Астрономы впервые нашли прямые доказательства присутствия слоя водяного льда на поверхности в приполярных районах Луны, говорится в статье , опубликованной в журнале Proceedings of the National Academy of Sciences.

Небольшой наклон оси вращения Луны, Меркурия и Цереры по отношению к плоскости эклиптики давно наталкивал ученых на мысль о том, что в полярных областях этих тел Солнечной системы могут существовать особенности рельефа, образующие вечно затененные места, в которые никогда не попадает солнечный свет.

Как следствие, температура в таких местах должна быть очень низкой и определяться лишь потоками тепла из недр и отраженным от соседних стенок светом.

Считается, что такие места, как правило это кратеры, должны выступать ловушками для летучих веществ, и в первую очередь, для воды, которая может накапливаться там в течение долгого времени.

"Большая часть льда находится в тени кратеров рядом с полюсами, где температура не поднимается выше -156,5 градуса по Цельсию. Солнечный свет никогда не поступает в эти части поверхности из-за небольшого наклона оси вращения Луны", - говорится в заявлении NASA об открытии.

Ранее свидетельства присутствия водяного льда на Луне находил зонд Lunar Reconaissance Orbiter и станция Lunar CRater Observation and Sensing Satelli. Однако они могли указывать и на другие соединения, например, на гидроксильные группы.

Прямые доказательства были получены при помощи инструмента Moon Mineralogy Mapper на борту индийского зонда Чандраян-1. Исследователи анализировали спектры отраженного от поверхности Луны излучения.

Главное достоинство этого метода заключается в том, что он позволяет напрямую измерить колебания молекул и отличить водяной лед от других похожих соединений или воды в любой другой форме (жидкая, поглощенная поверхностью или в составе гидратированных минералов).

Исследователи изучали области между регионами, на которые падает прямое солнечное излучение, и постоянно затемненными зонами.

Водяной лед на Луне

Проанализировав этот спектр, астрономы обнаружили достоверные признаки присутствия водяного льда прямо на лунной поверхности - на глубине менее нескольких миллиметров.

"Мы нашли прямое и решающее доказательство наличия обнаженного водяного льда в лунных полярных областях. Избыток и распределение льда на Луне отличаются от ситуации на других безатмосферных тел Солнечной системы, таких, как Меркурий и Церера, что может быть связано с уникальным формированием и эволюции нашей Луны", - говорится в исследовании.

Исследователи сделали вывод, что лед на Луне не чистый - его массовая доля может составлять 30 процентов или выше, если он перемешан только с реголитом (поверхностный слой сыпучего лунного грунта), или около 20 процентов, если лед встречается в виде отдельных участков в реголите.

Эти данные говорят о том, что на Луне не так много льда, как предполагалось раньше. В 2009 году NASA заявило, что в полученных в ходе миссии Apollo в 1970-х годах образцов лунной поверхности было обнаружено присутствие воды. Тогда ученые подсчитали, что в одной тонне поверхности Луны может находиться до 946 миллилитров воды.

Кроме того, накопление реголита в кратерах, вероятно, происходит достаточно быстро. Считается, что Луна сохраняет современный наклон оси вращения вот уже 2-3 миллиарда лет, поэтому обнаруженный лед, как предполагают астрономы, может быть очень древним.

Его источником могут быть кометы - однако симуляции показывают, что занесенные ими запасы должны иссякнуть уже спустя 20 миллионов лет. Тем не менее, ученые не могут однозначно сказать, как именно влияют солнечный ветер, галактические космические лучи и межпланетная среда на его убегание с поверхности.

Ученые считают, что открытие залежей водяного льда на Луне может в будущем помочь в ее освоении пилотируемыми экспедициями.

Жизнь на Луне

В статье, опубликованной в журнале Astrobiology 1 августа, говорится, что на Луне как минимум дважды создавались условия, пригодные для зарождения жизни.

Астробиологи Дирк Шульц-Макух из Университета штата Вашингтон и Йен Кроуфорд из Лондонского университета пишут, что такие условия появились вскоре после образования Луны и затем во время пика вулканической активности на ней (4 и 3,5 миллиарда лет назад).

В эти периоды происходили выбросы сильно нагретых летучих газов и водяного пара, которые могли привести к образованию кратеров с жидкой водой и формированию плотной атмосферы. Такие условия могли сохраняться на протяжении миллионов лет.

Предположения ученых основаны на на результатах недавних космических миссий и анализе образцов лунных пород и почвы, которые показывают, что Луна не настолько сухая, как считалось ранее.

Наукой также предполагается, что у юного земного спутника могло быть магнитное поле, защищающее возможные формы жизни от смертоносного влияния открытого космоса.

Жизнь на Луне могла зародиться таким же образом, как и на Земле, но более вероятно, что ее мог занести метеорит, считают исследователи.

Первые доказательства жизни на Земле, окаменелости, содержащие следы цианобактерий, относятся к периоду 3,5-3,8 млрд лет назад. В это время Солнечная система переживала бомбардировку гигантскими метеоритами. Не исключено, что простейшие микроорганизмы вроде цианобактерий могли попасть с Земли на Луну с их помощью.

Новости от Корреспондент.net в Telegram. Подписывайтесь на наш канал

Что еще почитать