Германий — редкий и полезный полуметалл. Германий элемент

Назван в честь Германии. Ученый из этой страны открыл и имел право именовать его, как захочет. Так в попал германий .

Однако, посчастливилось не Менделееву, а Клеменсу Винклеру. Ему поручили изучить аргиродит. Новый минерал, состоящий, в основном, из , нашли на прииске Химмельфюрст.

Винклер определил 93% состава камня и зашел в тупик с оставшимися 7%. Напрашивался вывод, что в них входит неизвестный элемент.

Более тщательный анализ принес плоды, — был открыт германий . Это металл. Чем он пригодился человечеству? Об этом, и не только, расскажем далее.

Свойства германия

Германий – 32 элемент таблицы Менделеева . Получается, металл входит в 4-ю группу. Номер соответствует валентности элементов.

То есть, германий склонен образовывать 4 химических связи. Это делает элемент, открытый Винклером, похожим на .

Отсюда и желание Менделеева назвать еще неоткрытый элемент экосилицием, обозначаемым, как Si. Дмитрий Ивановичь заранее просчитал свойства 32-го металла.

На кремний германий похож химическими свойствами. С кислотами реагирует только при нагревании. Со щелочами «общается» в присутствии окислителей.

Устойчив к парам воды. Не вступает в реакции с водородом, углеродом, . Загорается германий при температуре в 700-от градусов Цельсия. Реакция сопровождается образованием диоксида германия.

32-ой элемент легко взаимодействует с галогенами. Это солеобразующие вещества из 17 группы таблицы.

Дабы не запутаться, укажем, что ориентируемся на новый стандарт. В старом, это 7-я группа таблицы Менделеева.

Какой бы ни была таблица, металлы в ней располагаются слева от ступенчатой диагональной линии. 32-ой элемент – исключение.

Еще одно исключение – . С ней тоже возможна реакция. Сурьма осаждается на подложке.

Активное взаимодействие обеспеченно и с . Как большинство металлов, германий способен гореть в ее парах.

Внешне элемент германий , серовато-белый, с выраженным металлическим блеском.

При рассмотрении внутреннего строения, металл имеет кубическую структуру. Она отражает расположение атомов в элементарных ячейках.

Они имеют форму кубов. Восемь атомов располагаются в вершинах. Строение близко к решетке .

У 32-го элемента 5 стабильных изотопов. Их наличие – свойство всех элементов подгруппы германия.

Они четные, что и обуславливает присутствие стабильных изотопов. У , к примеру, их 10.

Плотность германия составляет 5,3-5,5 граммов на кубический сантиметр. Первый показатель характерен для состояния, второй – для жидкого металла.

В размягченном виде он не только более плотный, но и пластичный. Хрупкое при комнатной температуре вещество становится при 550-ти градусах. Таковы особенности германия.

Твердость металла при комнатной температуре составляет около 6 баллов по .

В таком состоянии 32-ой элемент является типичным полупроводником. Но, свойство становится «ярче» при повышении температуры. Просто проводники, для сравнения, теряют свои свойства при нагреве.

Германий проводит ток не только в стандартном виде, но и в растворах.

По полупроводниковым свойствам 32-ой элемент, так же, близок кремнию и столь же распространен.

Однако, сферы применения веществ разнятся. Кремний – полупроводник, используемый в солнечных батареях, в том числе, и тонкопленочного типа.

Элемент нужен, так же, для фотоэлементов. Теперь, рассмотрим, где пригождается германий.

Применение германия

Германий применяют в гаммо-спектроскопии. Ее приборы позволяют, к примеру, изучить состав добавок в смешанных окислах катализаторов.

В прошлом, германий добавляли в диоды и транзисторы. В фотоэлементах свойства полупроводника тоже пригождаются.

Но, если кремний добавляют в стандартные модели, то германий – в высокоэффективные, нового поколения.

Главное, не использовать германий при температуре близкой к абсолютному нулю. В таких условиях металл теряет способность передавать напряжение.

Чтобы германий был проводником, примесей в нем должно быть не более 10%. Идеален ультрачистый химический элемент.

Германий делают таким методом зонной плавки. Она основана на различной растворимости сторонних элементов в жидкой и фазах.

Формула германия позволяет применять его и в деле. Здесь речь уже не о полупроводниковых свойствах элемента, а о его способности придать твердость .

По этой же причине, германий нашел применение в зубопротезировании. Хотя, коронки отживают свой век, небольшой спрос на них, все еще, есть.

Если добавить к германию и еще и кремний с алюминием, получаются припои.

Их температура плавления всегда ниже, чем у соединяемых металлов. Так что, можно делать сложные, дизайнерские конструкции.

Даже интернет без германия был бы невозможен. 32-ой элемент присутствует в оптоволокне. В его сердцевине находится кварц с примесью героя .

А его двуокись увеличивает отражательные способности оптоволокна. Учитывая спрос на него, , электронику, германий нужен промышленникам в больших объемах. Каких именно, и как их обеспечивают, изучим ниже.

Добыча германия

Германий довольно распространен. В земной коре 32-го элемента, к примеру, больше, чем , сурьмы, или .

Разведанные запасы – около 1 000 тонн. Почти половина из них сокрыта в недрах США. Еще 410 тонн – достояние .

Так что, остальным странам, в основном, приходиться закупать сырье. сотрудничает с Поднебесной. Это обосновано и с политической точки зрения, и с позиции экономии.

Свойства элемента германий , связанные с его геохимическим родством с широко распространенными веществами, не позволяют металлу образовывать собственные минералы.

Обычно, металл внедряется в решетку уже существующих . Много места гость, естественно, не займет.

Поэтому, приходиться извлекать германий по крупицам. В можно найти несколько кило на тонну породы.

В энаргитах на 1000 килограммов приходиться не больше 5 кило германия. В пираргирите в 2 раза больше.

В тонне сульванита 32-го элемента содержится не больше 1 килограмма. Чаще всего, германий извлекают в качестве побочного продукта из руд других металлов, к примеру, , или цветных, таких как хромит, магнитит, рутит.

Годовое производство германия колеблется в пределах 100-120 тонн, в зависимости от спроса.

В основном, закупается монокристаллическая форма вещества. Именно такая нужна для производства спектрометров, оптоволокна, драгоценных . Узнаем расценки.

Цена германия

Монокристаллический германий, в основном, закупают тоннами. Для больших производств это выгодно.

1 000 килограммов 32-го элемента стоит около 100 000 рублей. Можно найти предложения за 75 000 – 85 000.

Если брать поликристаллический, то есть, с агрегатами меньшего размера и повышенной прочностью, можно отдать в 2,5 раза больше всего за кило сырья.

Стандартны длинной не меньше 28-ми сантиметров. Блоки защищают пленкой, поскольку на воздухе они тускнеют. Поликристаллический германий – «почва» для выращивания монокристаллов.

Общие сведения и методы получения

Германий (Ge) - элемент серовато-белого цвета в компактном состоя­нии и серого в диспергированном. Существование и свойства этого эле­мента предсказаны в 1871 г. Д И. Менделеевым, который назвал его экасилицием. Новый элемент был открыт А. Винклсром в 1886 г. во Фрайберге (Германия) в минерале аргиродите 4 Ag 2 S - GeS 2 и назван гер­манием в честь роднны ученого. Практический интерес к этому элементу возник в период второй мировой войны в связи с развитием полупровод­никовой электроники. Начало промышленного производства германия относится к 1945-1950 гг.

Содержание германия в земной коре составляет 7*10 -4 % (по массе). Основное количество элемента находится в рассеянном состоянии в си­ликатах, сульфидах н минералах, представляющих собой сульфосоли. Известно несколько минералов типа сульфосолей с высоким содержани­ем германия, которые ие имеют промышленного значения: аргнродит- Ag 8 GeS 6 (5-7%), германит Cu 3 (Fe , Ge , Са, Zn) (As , S) 4 (6-10%), рениернт (Cu , Fe) 3 (Fc , Ge , Zn , Sn) (S , As) 4 (6,37-7,8%). Источниками получения германия являются сульфидные руды, а также малометамор-физированные угли и некоторые железные руды (до 0,01 % Ge).

В зависимости от состава исходного сырья применяют различные способы его первичной обработки:

Выщелачивание серной кислотой с последующим выделением гер­мания из растворов;

Сульфатизирующий обжиг материалов;

Возгонка сульфида GeS или монооксида GcO в восстановительной среде;

Сульфатизирующий обжиг материала;

Восстановительная плавка в присутствии меди или железа;

Экстракция;

Ионообменная сорбция.

Германиевые концентраты могут быть выделен л из растворов сле­дующими способами:

Осаждение в виде малорастворимых соединений;

Соосаждение с гидратами железа, цинка, с сульфидами цника, меди и т. д;

Осаждение из сернокислых растворов на цинковой пыли (цемен­тация).

С целью получения четыреххлористого германия германиевые кон­центраты обрабатывают концентрированной соляной кислотой в токе хлора. Образующийся тетрахлорид германия (GeCI 4) отгоняют от хло­ридов металлов, имеющих более высокие температуры кипения В ре­зультате гидролиза очищенного четыреххлористого германия получа­ют диоксид германия Qe 0 2 Элементарный германий получают восста­новлением очищенного и просушенного диоксида чистым водородом. Восстановленный германий подвергают дальнейшей очистке от примесей фракционной кристаллизацией Из высокочистого германия методом зонной плавки или по способу Чохральского выращивают монокристал­лы с заданными электрофизическими свойствами. Промышленность вы­пускает поли- и монокристаллический германий.

Германий марки ГПЗ-1 предназначен для получения монокристалли­ческого иелегированного и легированного германия, а также специаль­ных целей, марки ГПЗ-2 - для получения монокристаллического леги­рованного германия и других целей, марки ГПЗ-3 - для получения сплавов и заготовок для оптических деталей. Германий поставляется в виде слитков в форме сегмента, каждый из которых упаковывают в по­лиэтиленовый пакет. Слиток в полиэтиленовой упаковке помещают в картонную или пластмассовую тару и уплотняют мягкой прокладкой, обеспечивающей сохранность его при транспортировке и хранении. До­ставка осуществляется любым видом крытого транспорта.

Физические свойства

Атомные характеристики Атомный номер 32, атомная масса 72,59 а е м, атомный объем 13,64-10^ 6 м 3 /моль, атомный радиус 0,139 нм, ионный радиус Qe 2 + 0,065 нм, Ge 4 + 0,044 нм. Электронное строение свободного атома германия 4s 2 p 2 . Потенциалы ионизации / (эВ): 7,88; 15,93; 34,21. Электроотрицательность 2,0. Кристаллическая решетка германия - ку­бическая типа алмаза с периодом а = 0,5657 нм. Энергия кристалличе­ской решетки 328,5 мкДж/кмоль. Координационное число 4. Каждый атом германия окружен четырьмя соседними, расположенными на оди­наковых расстояниях в вершинах тетраэдра. Связи между атомами осу­ществляются спаренными валентными электронами.

Химические свойства

В соединениях германий проявляет степень окисления +2 и +4, ре­же +1 и +3. Нормальный электродный потенциал реакции Ge -2е«=* *± Ge 2 + ф 0 =- 0,45 В.

В атмосфере сухого воздуха германий покрывается тонким слоем оксидов толщиной около 2 нм, но не изменяет при этом своего цвета. Во влажном воздухе германий, особенно поликристаллический, посте­пенно тускнеет. Заметное окисление начинается при 500 °С.

В ряду напряжений германий располагается после водорода - между медью и серебром. Германий не взаимодействует с водой и не раство-стся в разбавленной и концентрированной соляной кислоте. Растворя­ется в горячей концентрированной серной кислоте с образованием Ge (S 04) u и выделением SO 2. При взаимодействии с азотной кислотой образует осадок диоксида германия xGe 02-(/ H 2 0. Хорошо растворяется в царской водке и смеси HF + HNC 4. Лучшим растворителем для гер­мания является щелочной раствор пероксида водорода. Быстро раство­ряют германий расплавленные едкие щелочи. При этом образуются гер-маиаты щелочных металлов, гидролизующиеся водой.

Диоксид Ge0 2 может быть получен прокаливанием германия на воз­духе, прокаливанием сульфидов, растворением элементарного германия в 3 %-ном пероксиде водорода в платиновом тигле с последующим вы­париванием раствора и прокаливанием остатка. Ge 0 2 существует в двух полиморфных модификациях: низкотемпературной а с тетрагональной решеткой (1123°С) и высокотемпературной й с гексагональной решеткой (выше 1123°С). Температура плавления Ge 0 2 1725°С. При плавлении образуется прозрачный расплав. Диоксид германия растворяется в воде с образованием германиевой кислоты НгйеОз, легко переводится в раст­вор щелочами с образованием солей германиевой кислоты - гсрманатов. При действии пероксида водорода на концентрированные растворы ""ер-манатов получаются соли надгерманиевых кислот, образующие кристал­логидраты, например Na 2 Ge 0 5 -4 H 2 0.

Имеется несколько соединений германия с водородом. Установлено существование GeH - темного, легко взрывающегося порошка. Известны также соединения типа германов GenH 2 „+ 2 (например, Ge 2 H 4 , Ge 2 He), которые прн малых значениях п являются летучими. Моногерман GeH 4 -бесцветный газ с температурой кипения 88,9 °С. Днгерман и трн-герман при комнатной температуре и обычном давлении существуют в жидкой фазе. Растворимость водорода в германии при 800 °С не пре­вышает 1,5-10 -7 % (эт.).

Углерод практически нерастворим в германии. В жидком германии вблизи температуры плавления растворимость углерода оценивается в 0,23 % (ат.). По данным различных авторов определена концентрация углерода в монокристаллическом германии от 7*10 -4 до 5,2*10 -3 %.

При нагреве германия до 700-750 °С в азоте или NH 3 образуются Ge 3 N 4 и Ge 3 N 2 . Нитрид германия Ge 3 N 2 представляет собой темно-корич­невые кристаллы, легко подвергающиеся гидролизу. Термический распад на элементы начинается при 500 °С. Более стабилен нитрид Ge 2 N 4 , кото­рый разлагается выше 1000 °С.

Непосредственное взаимодействие германия с галогенами начинается около 250 °С. Наибольшее практическое значение имеет тетрахлорид GeCl 4 - основной промежуточный продукт при получении полупроводни­кового германия. С иодом германий образует иодид Gel 4 - вещество желтого цвета с температурой плавления 146 °С и температурой кипения 375 °С. Gel 4 используется для получения высокочистого германия мето­дом транспортных реакций. Галогениды неустойчивы к воде.

Из соединений с серой известен дисульфид GeS 2 , который выделяет­ся из сильнокислых растворов солей четырехвалентного германия при пропускании интенсивного тока сероводорода. Кристаллический GcS 2 представляет собой белые чешуйки с перламутровым блеском, расплав застывает в янтарно-желтую прозрачную массу н обнаруживает полу­проводниковые свойства Температура плавления GeS 2 -825 °С. Моно­сульфид германия GeS существует в аморфном и монокристаллическом состояниях. Кристаллический GeS темно-серого цвета, плавится при 615 "С. Все халькогеннды германия (сульфиды, селениды и теллуриды) обнаруживают полупроводниковые свойства. С фосфором германий дает соединение GeP .

Технологические свойства

Германий характеризуется сравнительно высокой твердостью, большой хрупкостью и потому не может быть подвергнут холодной обработке давлением. Деформирование возможно при температурах, близких к температуре плавления, и в условиях всестороннего неравномерного сжатия.

С помощью алмазной пилы слиток германия может быть распилен на тонкие пластинки. Поверхность пластин шлифуется тонким корундо­вым порошком на стекле и полируется на сукне с суспензией из окиси алюминия.

Области применения

Германий играет исключительную роль в радиоэлектронике. Его приме­няют для изготовления кристаллических выпрямителей (диодов) и кри­сталлических усилителей (триодов), которые используются в вычисли­тельной технике, телемеханике, радарных установках и т. д.

На основе германия созданы также мощные выпрямители с высо­ким к. п. д. для выпрямления переменного тока обычной частоты, рас­считанные на силу тока до 10000 А н выше.

Германиевые триоды широко используются для усиления, генериро­вания или преобразования электрических колебаний.

В радиотехнике получили распространение пленочные сопротивления от 1000 Ом до нескольких мегаом.

Благодаря значительному изменению проводимости под действием излучения германий используется в различных фотодиодах н фотосо-противленнях.

Германий находит применение для изготовления термистеров (при этом используется сильная температурная зависимость электросопротив­ления германия).

В ядерной технике применяются германиевые детекторы у изл У че -ния.

Германиевые линзы, легированные золотом, являются неотъемлемой частью приборов инфракрасной техники. Из диоксида германия изго­товляют специальные оптические стекла с большим коэффициентом преломления. Германий вводят также в состав сплавов для высокочув­ствительных термопар.

Значительно увеличивается потребление германия в качестве катали­затора в производстве искусственного волокна.

Ряд соединений германия с переходными металлами имеет высокую температуру перехода в сверхпроводящее состояние, в частности мате­риалы на основе соединения Nb 3 Ge (T „>22 К).

Предполагают, что некоторые органические соединения германия биологически активны: задерживают развитие злокачественных образо­ваний, понижают кровяное давление, оказывают обезболивающее дей­ствие.

В 1870 году Д.И. Менделеев на основании периодического закона предсказал еще неоткрытый элемент IV группы, назвав его экасилицием, и описал его основные свойства. В 1886 году немецкий химик Клеменс Винклер, при химическом анализе минерала аргиродита обнаружил этот химический элемент. Первоначально Винклер хотел назвать новый элемент «нептунием», но это название уже было дано одному из предполагаемых элементов, поэтому элемент получил название в честь родины учёного - Германии.

Нахождение в природе, получение:

Германий встречается в сульфидных рудах, железной руде, обнаруживается почти во всех силикатах. Основные минералы содержащие германий: аргиродит Ag 8 GeS 6 , конфильдит Ag 8 (Sn,Ce)S 6 , стоттит FeGe(OH) 6 , германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO 2 , который восстанавливают водородом при 600°C до простого вещества.
GeO 2 + 2H 2 =Ge + 2H 2 O
Очистку германия проводят методом зонной плавки, что делает его одним из самых химически чистых материалов.

Физические свойства:

Твёрдое вещество серо-белого цвета, с металлическим блеском(tпл 938°C, tкип 2830°С)

Химические свойства:

При нормальных условиях германий устойчив к действию воздуха и воды, щелочей и кислот, растворяется в царской водке и в щелочном растворе перекиси водорода. Степени окисления германия в его соединениях: 2, 4.

Важнейшие соединения:

Оксид германия(II) , GeO, серо-чёрн., слабо раств. в-во, при нагревании диспропорционирует: 2GeO = Ge + GeO 2
Гидроксид германия(II) Ge(OH) 2 , крас.-оранж. крист.,
Йодид германия(II) , GeI 2 , желт. кр., раств. в воде, гидрол. по кат.
Гидрид германия(II) , GeH 2 , тв. бел. пор., легко окисл. и разлаг.

Оксид германия(IV) , GeO 2 , бел. крист., амфотерн., получают гидролизом хлорида, сульфида, гидрида германия, или реакцией германия с азотной кислотой.
Гидроксид германия(IV), (германиевая кислота) , H 2 GeO 3 , слаб. неуст. двухосн. к-та, соли германаты, напр. германат натрия , Na 2 GeO 3 , бел. крист., раств. в воде; гигроскопичен. Существуют также гексагидроксогерманаты Na 2 (орто-германаты), и полигерманаты
Сульфат германия(IV) , Ge(SO 4) 2 , бесцв. кр., гидролизуются водой до GeO 2 , получают нагреванием при 160°C хлорида германия(IV) с серным ангидридом: GeCl 4 + 4SO 3 = Ge(SO 4) 2 + 2SO 2 + 2Cl 2
Галогениды германия(IV), фторид GeF 4 - бесц. газ, необр. гидрол., реагирует с HF, образуя H 2 – германофтористоводородную кислоту: GeF 4 + 2HF = H 2 ,
хлорид GeCl 4 , бесцв. жидк., гидр., бромид GeBr 4 , сер. кр. или бесцв. жидк., раств. в орг. соед.,
йодид GeI 4 , желт.-оранж. кр., медл. гидр., раств. в орг. соед.
Сульфид германия(IV) , GeS 2 , бел. кр., плохо раств. в воде, гидрол., реагирует со щелочами:
3GeS 2 + 6NaOH = Na 2 GeO 3 + 2Na 2 GeS 3 + 3H 2 O, образуя германаты и тиогерманаты.
Гидрид германия(IV), "герман" , GeH 4 , бесцв. газ, органические производные тетраметилгерман Ge(CH 3) 4 , тетраэтилгерман Ge(C 2 H 5) 4 - бесцв. жидкости.

Применение:

Важнейший полупроводниковый материал, основные направления применения: оптика, радиоэлектроника, ядерная физика.

Соединения германия мало токсичны. Германий – микроэлемент, который в организме человека повышает эффективность иммунной системы организма, борется с онкозаболеваниями, уменьшает болевые ощущения. Отмечается также, что германий способствует переносу кислорода к тканям организма и является мощным антиоксидантом – блокатором свободных радикалов в организме.
Суточная потребность организма человека – 0,4–1,5 мг.
Чемпионом по содержанию германия среди пищевых продуктов является чеснок (750 мкг германия на 1 г сухой массы зубков чеснока).

Материал подготовлен студентами ИФиХ ТюмГУ
Демченко Ю.В., Борноволоковой А.А.
Источники:
Германий//Википедия./ URL: http://ru.wikipedia.org/?oldid=63504262 (дата обращения: 13.06.2014).
Германий//Allmetals.ru/URL: http://www.allmetals.ru/metals/germanium/ (дата обращения: 13.06.2014).

На момент создания периодической таблицы германий еще открыт не был, но Менделеев предсказал его существование. А спустя 15 лет после доклада в одной из шахт Фрайберга обнаружили неизвестный минерал, в 1886 году из него выделили новый элемент. Заслуга принадлежит немецкому химику Винклеру, давшему элементу имя своей родины. Даже при множестве полезных свойств германия, среди которых нашлось место и лечебным, использовать его начали только в начале Второй мировой войны, и то не очень активно. Поэтому даже сейчас нельзя сказать, что элемент хорошо изучен, но некоторые его способности уже доказаны и успешно применяются.

Лечебные свойства германия

В чистом виде элемент не встречается, выделение его трудоемко, поэтому при первой возможности его заменяли более дешевыми компонентами. Сначала его использовали в диодах и транзисторах, но кремний оказался более удобным и доступным, поэтому изучение химических свойств германия продолжилось. Сейчас он входит в состав термоэлектрических сплавов, применяется в СВЧ-устройствах, инфракрасной технике.

Медицина тоже заинтересовалась новым элементом, но значимый результат удалось получить только в конце 70-х годов прошлого века. Японским специалистам удалось открыть лечебные свойства германия и наметить пути их применения. После испытаний на животных и клинических наблюдений влияния на человека выяснилось, что элемент способен:

  • стимулировать ;
  • доставлять кислород к тканям;
  • бороться с опухолями;
  • увеличивать проводимость нервных импульсов.

Сложность использования состоит в токсичности германия в больших дозах, поэтому требовался препарат, способный оказывать позитивное влияние на определенные процессы в организме с минимальным вредом. Первым стал «Германий-132», который помогает улучшать иммунный статус человека, помогает избежать недостатка кислорода в случае падения уровня гемоглобина. Также опыты показали влияние элемента на производство интерферонов, которые противостоят быстро делящимся (опухолевым) клеткам. Польза наблюдается только при введении внутрь, ношение ювелирных изделий с германием никакого эффекта не даст.

Недостаток германия снижает природные способности организма противостоять внешним воздействиям, что приводит к различным нарушениям. Рекомендуемая суточная доза составляет 0,8-1,5 мг. Получить необходимый элемент можно при регулярном употреблении молока, лососины, грибов, чеснока и бобов.

Мини – реферат

«Элемент Германий»

Цель:

    Дать характеристику элемента Ge

    Дать описание свойств элемента Ge

    Рассказать о применение и использовании данного элемента

    История элемента ……….………………………………….……. 1

    Свойства элемента …..……………………………………..…… 2

    Применение ……………….….…………………………………….. 3

    Опасность для здоровья ………..………………………....… 4

    Источники ………………………….…………………….…………… 5

Из истории элемента..

Г ерманий (лат. Germanium) - химический элемент IV группы, главной подгруппы периодической системы Д.И. Менделеева, обозначается символом Ge, относится к семейству металлов, порядковый номер 32, атомная масса 72,59. Представляет собой твердое вещество серо - белого цвета с металлическим блеском.

Существование и свойства Германия предсказал в 1871 году Менделеев и назвал этот неизвестный еще элемент – «Экасилицием» из-за близости свойств его с кремнием.

В 1886 году немецкий химик К. Винклер, исследуя минерал, нашел, что в нём присутствует какой-то неизвестный элемент, не обнаруживаемый анализом. После упорной работы он открыл соли нового элемента и выделил некоторое количество самого элемента в чистом виде. В первом сообщении об открытии Винклер высказал предположение, что новый элемент является аналогом сурьмы и мышьяка. Винклер предполагал назвать элемент нептунием (Neptunium), но это имя уже было дано одному ложно открытому элементу. Винклер переименовал открытый им элемент на германий (Germanium) в честь своего отечества. И даже Менделеев в письме к Винклеру решительно поддержал название элемента.

Но до второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство этого элемента возникло в связи с развитием полупроводниковой электроники.

Свойства элемента Ge

Для медицинских нужд наиболее широко германий первыми начали применять в Японии. Испытания различных германийорганических соединений в опытах на животных и в клинических испытаниях на людях показали, что они в разной степени положительно влияют на организм человека. Прорыв наступил в 1967 г., когда доктор К. Асаи обнаружил, что органический германий обладает широким спектром биологического действия.

Свойства:

    Переносит кислород в тканях организма - германий в крови ведет себя аналогично гемоглобину. Он участвует в процессе переноса кислорода к тканям организма, что гарантирует нормальное функционирование всех систем организма.

    стимулирует иммунитет - германий в виде органических соединений способствует продукции гамма-интерферонов, которые подавляют процессы размножения быстро делящихся микробных клеток, и активирует специфические клетки иммунитета (Т-клетки)

    противоопухолевое - германий задерживает развитие злокачественных новообразований и препятствует появлению метастазов, а также обладает защитными свойствами против радиоактивного облучения.

    биоцидное (противогрибковое, противовирусное, антибактериальное) - органические соединения германия стимулируют продукцию интерферона - защитного белка, вырабатываемого организмом в ответ на внедрение чужеродных тел.

Применение и использование элемента Германий в жизни

В промышленной практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов. Различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой.

Это один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения элемента является инфракрасная техника, в частности производство детекторов инфракрасного излучения. Перспективны для практического использования многие сплавы, в состав которых входят Германий. Например, стекла на основе GeO 2 и другие соединения Ge. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. А азотной кислотой окисляется медленно.

Сплавы германия, обладающие высокой твердостью и прочностью, используют в ювелирной и зубопротезной технике для прецизионных отливок. Германий присутствует в природе только в связанном состоянии и никогда в свободном. Самые обычные германийсодержащие минералы - это аргиродит и германит Крупные запасы германиевых минералов редки, но сам элемент широко встречается в составе других минералов, особенно в сульфидах (чаще всего в сульфидах цинка и силикатах). Небольшие количества также обнаружены в разных типах каменного угля.

Мировое производство Германия составляет 65 кг в год.

Опасность для здоровья

Профессиональные проблемы со здоровьем могут вызываться рассеиванием пыли в процессе загрузки германиевого концентрата, измельчения и загрузки диоксида для выделения металлического германия и загрузки порошкообразного германия для переплавки в бруски. Другие источники вреда для здоровья - тепловое излучение от трубчатых печей и в процессе переплавки порошкообразного германия в бруски, а также образование угарного газа.

Абсорбированный германий быстро выводится из организма, в основном с мочой. Информации о токсичности неорганических соединений германия для человека мало. Тетрахлорид германия раздражает кожу. В клинических испытаниях и других долговременных случаях перорального приема кумулятивных доз, достигающих 16 г спирогермания - германий-органического антиопухолевого препарата, - или других германиевых соединений, была отмечена нейротоксическая и нефротоксическая активность. Таким дозам обычно не подвергаются в условиях производства. Эксперименты на животных с целью определения воздействия германия и его соединений на организм показали, что пыль металлического германия и диоксида германия при вдыхании в высоких концентрациях приводит к общему ухудшению здоровья (ограничение прироста веса). В легких животных были обнаружены морфологические изменения, аналогичные пролиферативным реакциям, таким как утолщение альвеолярных разделов и гиперплазия лимфатических сосудов вокруг бронхов и кровеносных сосудов. Диоксид германия не раздражает кожу, но при контакте с влажной слизистой оболочкой глаза он образует германиевую кислоту, которая действует как глазной раздражитель. Продолжительные внутрибрюшинные инъекции в дозах 10 мг/кг приводят к изменениям в периферической крови.

Наиболее вредные соединения германия - это гидрид германия и хлорид германия. Гидрид может вызывать острое отравление. Морфологические обследования органов животных, погибших при острой фазе, выявили нарушения в системе кровообращения и дегенеративные клеточные изменения в паренхиматозных органах. Таким образом, гидрид является многоцелевым ядом, поражающим нервную систему и систему периферийного кровообращения.

Тетрахлорид германия - сильный раздражитель дыхательной системы, кожи и глаз. Пороговая концентрация – 13мг/м 3 . В этой концентрации он подавляет у экспериментальных животных легочный ответ на клеточном уровне. В больших концентрациях он приводит к раздражению верхних дыхательных путей и конъюнктивиту, а также к изменениям в частоте и ритме дыхания. У животных, переживших острое отравление, развились катарально-десквамативный бронхит и интерстициальная пневмония несколькими днями позже. Хлорид германия также обладает общим токсическим эффектом. Морфологические изменения наблюдались в печени, почках и других органах животных.

Источники всей представленной информации

Что еще почитать