Wgs 84 система координат как выглядит. Вопросы пересчёта между различными системами координат

Однако предполагается, что во время национальных чрезвычайных ситуаций Министерство обороны США может воспользоваться своим контролем над GPS, т.е. не дать гражданским пользователям доступа к сигналу или уменьшить сигнал так, что навигационная система не сможет обеспечивать гражданскую авиацию.

      Преимущества и недостатки СНС

Спутниковые навигационные системы обладают рядом преимуществ по сравнению с действующими радиотехническими системами (РТС) навигации. К основным преимуществам спутниковой навигации следует отнести обеспечение точной и надежной 4-х мерной навигации во всех районах и на всех высотах полета ВС и, как следствие:

    снижение риска катастроф, связанного с неточностью информации о местоположении ВС, особенно в тех районах (высотах) полета ВС, где использование действующих средств невозможно или экономически нецелесообразно;

    использование единого средства навигации для обеспечения всех этапов полета ВС, включая точные заходы на посадку на необорудованные аэродромы;

    возможность реализации автоматического зависимого наблюдения, обеспечит повышение пропускной способности при сокращении продольных и боковых интервалов разделения ВС в тех районах, где организация наблюдения при использовании радиолокационных станций невозможна или экономически нецелесообразна;

    повышение гибкости и экономичности полетов ВС при высокой точности самолетовождения и использовании зональной навигации за счет сокращения полетного времени и экономии топлива;

    снижение затрат на обслуживание воздушного движения при списании парка действующих средств навигации и посадки и на эксплуатацию ВС путем замены разнотипного бортового оборудования едиными средствами.

Однако длительная эксплуатация GPS и ГЛОНАСС показала, что спутниковым навигационным системам свойственны следующие недостатки :

    чувствительность к непреднамеренным помехам, вызванными атмосферными эффектами;

    блокировка сигнала при затенении антенны элементами конструкции воздушного судна во время выполнения эволюций;

    чувствительность к преднамеренным помехам, которые могут ограничивать область обслуживания;

    недостаточная точность при использовании для целей точного захода на посадку.

Приведенные выше недостатки могут быть устранены при использовании различного рода функциональных дополнений. Существуют три категории функциональных дополнений: бортовые, наземные и спутниковые.

      Стратегия ИКАО в области развития аэронавигации при использовании СНС

В течение последних лет происходит активное внедрение спутниковых навигационных систем для решения задач зональной навигации на различных этапах полёта. В перспективе СНС постепенно заменит все наземные навигационные системы и станет единственным средством, обеспечивающим навигацию на всём протяжении маршрута.

В настоящее время в ИКАО разработаны требуемые навигационные характеристики (RNP), которые определяют требования, предъявляемые к точности выдерживания навигационных параметров в пределах конкретного воздушного пространства. Этот показатель не связан с конкретным видом навигационного оборудования, что придаёт ему общий характер и делает применимым и для спутниковых навигационных систем. Значение RNP определяется величиной удержания, которая характеризует размер области с центром в точке заданного местоположения ВС, в пределах которой оно будет находиться в течение 95% полётного времени (рис. 2.1) .

Рис. 2.1. Область RNP

Величина удержания выражается в морских милях. Для упрощения использования RNP при планировании воздушного пространства, эллиптическая форма этой области заменяется круговой. Поэтому, например, тип RNP 1 означает, что в произвольный момент времени с вероятностью 0.95 воздушное судно должно находиться в радиусе одной морской мили от точки, указанной органом воздушного движения.

Типы RNP определяют минимальную точность выдерживания навигационных характеристик в данной области воздушного пространства. Они устанавливаются с учетом точности бортового навигационного оборудования, а также погрешностей пилотирования.

В целях обеспечения требуемого уровня точности на различных этапах полета разработаны следующие типы RNP: маршрутные и аэродромные.

К примеру, в условиях полёта по маршруту, где плотность движения не столь велика, значение RNP будет находиться в пределах от 20 до 1,а при маневрировании в районе аэродрома в условиях захода на посадку от 0.5 до 0.3.

Маршрутные типы RNP представлены в табл. 2.2. .

Таблица 2.2

Маршрутные типы RNP

Тип RNP 1 предусматривается для обеспечения наиболее эффективных полетов по маршрутам ОВД в результате использования наиболее точной информации о МВС, а также для применения метода зональной навигации, позволяющего получить наибольшую гибкость при организации маршрутов, изменении маршрутов и осуществлении в реальном времени необходимых корректировок в соответствии с потребностями структуры воздушного пространства. Этот тип RNP предусматривает наиболее эффективное обеспечение полетов, использование правил полетов и организации воздушного пространства при переходе из района аэродрома к полету по маршруту ОВД и в обратном порядке, т.е. при выполнении SID и STAR.

Тип RNP 4 предназначается для маршрутов ОВД основанных на ограниченном расстоянии между навигационными средствами. Этот тип RNP обычно используется в воздушном пространстве, расположенном над континентом. Данный тип RNP предусматривается для сокращения минимума бокового и продольного эшелонирования и повышения эксплуатационной эффективности в океаническом воздушном пространстве и районах, где возможности использования наземных навигационных средств ограничены.

Тип RNP 10 обеспечивает сокращенные минимумы бокового и продольного эшелонирования и повышает эксплуатационную эффективность в океаническом воздушном пространстве и отдельных районах, где возможности аэронавигационных средств ограничены.

Тип RNP 12.6 обеспечивает ограниченную оптимизацию маршрутов в районах с пониженным уровнем обеспечения навигационными средствами.

Тип RNP 20 характеризует минимальные возможности по точности определения МВС, которые считаются приемлемыми для обеспечения полетов по маршрутам ОВД любым ВС в любом контролируемом воздушном пространстве в любое время.

Анализ предложенных ИКАО типов RNP показывает, что для обеспечения возможности продолжения использования имеющегося навигационного оборудования без изменения, существующей структуры маршрутов ОВД в некоторых районах или регионах, может быть установлено значение RNP 5 (9.3 км). Доказательством этого является внедрение метода зональной навигации с типом RNP5 (B-RNAV) в Европейском регионе в 1998 г.

Аэродромные типы RNP представлены в табл. 2.3 .

Таблица 2.3

Типы RNP при маневрировании в районе аэродрома

Типовая операция (и)

Точность в горизонтальной плоскости 95%

Точность

по вертикали 95%

Начальный заход,

Промежуточный заход,

Неточный заход, вылет

220 м (720 фут)

Не назначена

От 0.5 до 0.3

220 м (720 фут)

20 м (66 фут)

Заход на посадку с управлением по вертикали

16.0 м (52 фут)

8.0 м (26 фут)

Точный заход на

От 6.0 м до 4.0 м

(20 -13 фут)

*) По данным .

Примечания:

1) Для осуществления планируемой операции на самой низкой высоте над поро­гом ВПП требуется 95% значения ошибки определения местоположения с помощью GNSS .

2) Требования к точности и задержке срабатывания сигнализации включают номинальные эксплуатационные характеристики безотказного приемника.

Применение СНС на этапе захода на посадку позволит в комплексе с системой функционального дополнения широкой зоны действия (WAAS) повысить свою точность до субметровой и, как следствие, обеспечить выполнение неточного захода на посадку (без наведения по глиссаде).

Использование СНС на этапе захода на посадку в комплексе с системой функционального дополнения с ограниченной зоной действия (LAAS) позволит повысить её точность до сантиметровой и обеспечить выполнение точного захода на посадку (с наведением по глиссаде).

Существующая система организации воздушного движения основана на концепции заранее определенного разведения маршрутов. Такая система гарантирует безопасность полетов за счет снижения пропускной способности. Применение СНС позволит изменить существующую структуру маршрутов путем сокращения норм (минимумов) эшелонирования. Это приведет к увеличению пропускной способности мировой транспортной системы, повышению ее эффективности и рентабельности вследствие оптимизации маршрутов. Первые шаги в этом направлении уже сделаны. Например, во-первых, ширина маршрутов (треков) в районе Тихого Океана для ВС, оснащенных оборудованием СНС, изменена с 60 м. миль (111 км) до 30 м. миль (55.5 км). Во вторых, с 1997 г. введено сокращенное вертикальное эшелонирование в районе Северной Атлантики с 600 м (2000 фут) до 300 м (1000 фут) между эшелонами полета 290 (8840м) и 410 (12500м). В Европейском регионе поэтапное введение норм сокращенного вертикального эшелонирования, между указанными выше эшелонами, началось с 2001г.

СНС и новые возможности технологий в области систем связи, навигации и наблюдения позволят в будущем осуществить идею свободного полета. Идея свободного полета означает оптимизацию маршрута в динамике полета в любой данный момент времени на основе знания точного местоположения ВС и вектора скорости в данном регионе. В этом случае план полета становится простым предварительным заявлением о намерениях.

Эта идея является конечной целью будущей системы воздушной навигации.

В свободном полете бортовые системы ВС рассчитывают и передают диспетчерским службам организации воздушного движения информацию о местоположении и краткосрочных намерениях. Диспетчерские службы выполняют мониторинг удовлетворительного разделения воздушных судов и вмешиваются кратковременно в процесс полета при наличии угрозы опасного сближения или столкновения.

Таким образом, спутниковые навигационные системы рассматриваются как необходимый инструмент для полетов по маршруту, выполнения неточных заходов на посадку, разведения воздушных судов в воздушном пространстве, оптимизации маршрутов и осуществлении идеи свободного полета.

Контрольные вопросы

    Какие СНС входят в состав GNSS?

    Какая конфигурация расположения спутников в системах GPS и ГЛОНАСС?

    Из каких основных сегментов состоит спутниковая навигационная система?

    Каким величинам соответствуют точностные характеристики GPS и ГЛОНАСС?

    В каком случае Министерство обороны США может воспользоваться своим контролем над GPS?

    Как расшифровывается аббревиатура RNP?

    Каким величинам соответствуют маршрутные и аэродромные типы RNP?

    Какая система функционального дополнения, совместно с СНС, позволит обеспечить выполнение точного захода на посадку?

    Каким образом применение СНС позволит изменить существующую структуру маршрутов?

    Что означает идея свободного полета?

    СИСТЕМЫ КООРДИНАТ

      Системы координат, используемые в геодезии

В геодезии используется три системы координат:

  • геоцентрическая (привязанная к Земле);

    эллипсоидальная.

В отдельных странах применяются при обработке геодезических измерений эллипсоиды, выведенные по результатам геодезических работ охватывающих территорию данной страны или нескольких стран. Такие “рабочие” эллипсоиды называются референц-эллипсоидами . Система координат, определяемая на таком эллипсоиде, называется местной.

Референц-эллипсоид отличается от общего земного эллипсоида размерами, и центр его не совпадает с центром Земли. Вследствие несовпадения центров референц-эллипсоидов и реальной Земли малая ось референц-эллипсоида не совпадает с осью вращения Земли (рис. 3.1).

эллипсоид

Глобальный

эллипсоид

Рис.3.1. Различия между общеземным эллипсоидом

и референц-эллипсоидом

В качестве основной земной системы координат принята геоцентрическая, привязанная к Земле, пространственная прямоугольная система (X, Y, Z), началом которой является центр массы Земли S (геоцентр, т.е. центр массы, включая массу атмосферы) (рис. 3.2). Ось Z совпадет с осью вращения Земли.

Рис. 3.2. Геоцентрическая прямоугольная система координат (X, Y, Z)

Геоцентрическая система координат используется при определении места воздушного судна при решении соответствующей системы уравнений. Поверхность Земли можно достаточно точно аппроксимировать эллипсоидом вращения со сплюснутыми полюсами. При этом величина отклонений поверхности эллипсоида по высоте от геоида не превышает 100 м.

Эллипсоид вращения получается при вращении меридианного эллипса вокруг его малой оси. Поэтому форма эллипсоида описывается двумя геометрическими параметрами: большой полуосью a и малой полуосью b . Обычно b заменяют параметром сжатия (сплюснутости) эллипсоида:

Для пространственного определения положения точки на физической поверхности Земли (или в пространстве) по отношению к эллипсоиду вращения используют геодезические координаты: φ - широта и λ – долгота, h - высота от поверхности эллипсоида. Высота h над эллипсоидом измеряется вдоль нормали (перпендикуляра) к его поверхности (рис. 3.3).

Рис. 3.3. Система геодезических координат и высота

Можно отметить тот факт,что в навигации обычно вместо геодезических координат используется понятие географические координаты. Причиной этого является то, что до появления СНС точность определения МВС была такой, что между названными системами координат не было необходимости делать различия.

      Системы координат WGS -84 и ПЗ-90

Осуществление навигации невозможно без применения систем координат. При использовании СНС для целей аэронавигации используется геоцентрическая система координат.

В 1994 г. ИКАО в качестве стандарта рекомендовало для всех государств членов ИКАО с 1 января 1998 г. использовать глобальную геодезическую систему координат WGS-84 , т.к. в этой системе координат производится определение местоположения воздушного судна при использовании системы GPS. Причиной этого является то, что применение местных геодезических координат на территории различных государств, а таких систем координат более 200, приводило бы к дополнительной погрешности в определении МВС за счет того, что введенные в приемо-индикатор СНС пункты маршрута принадлежат системе координат, которая отличается от WGS-84.

Центр глобальной системы координат WGS-84 совпадает с центром массы Земли. Ось Z соответствует направлению обычного земного полюса, который перемещается из-за колебательного вращения Земли. Ось X лежит в плоскости экватора на пересечении с плоскостью нулевого (Гринвичского) меридиана. Ось Y лежит в плоскости экватора и отстоит от оси X на 90° (рис. 3.4).

Рис. 3.4. Определение системы координат WGS-84

В Российской Федерации, в целях геодезического обеспечения орбитальных полетов и решения навигационных задач при использовании ГЛОНАСС, применяется геоцентрическая система координат «Параметры Земли 1990 г.» (ПЗ-90) . Для осуществления геодезических и картографических работ, начиная с 1 мая 2002 г., используется система геодезических координат 1995 г. (СК-95). Переход от геодезической системы координат 1942 г. (СК-42) к СК-95 займет определенный промежуток времени, прежде чем все навигационные пункты на территории России будут переведены в новую систему координат.

Основные параметры рассмотренных выше систем координат, представлены в табл. 3.1 .

Таблица 3.1

Системы координат, применяемые в навигации

Параметр

Большая полуось, м

Малая полуось, м

Смещение от

центра массы

Земли по оси, м

Ориентирование

относительно

оси, углов. сек.

ω х

ω у

Примечание. Значения ∆х, ∆у, ∆ z и ω х , ω у , ω z для ПЗ-90 даны относительно WGS-84, а для СК-95 и СК-42 относительно ПЗ-90.

Из табл. 3.1 видно, что системы координат WGS-84 и ПЗ-90 практически одинаковы. Из этого вытекает, что при полете по маршруту и в районе аэродрома при существующей точности определения МВС не принципиально, в какой системе координат будут определяться навигационные пункты.

В системе координат ПЗ-90 центр (S’) относительно центра WGS-84 (S) имеет смещение по осям X, Y, Z :

ΔX = 2 м, ΔY = 6 м, ΔZ = - 4,5 м,

а, кроме того, смещены и оси Y’ и Z’ относительно осей WGS-84 (Y, Z) на угловые величины:

ω Y = - 0,35’’, ω Z = - 0,11’’.

Ось X в WGS-84 и ось X’ в ПЗ-90 совпадают.

Угловое смещение оси Y’ ПЗ-90 относительно оси Y WGS-84 в 0,35’’ приводит к линейному смещению на поверхности эллипсоида на экваторе в 10,8 м , а смещение оси Z’ по отношению к оси Z в 0,11’’ - 3,4 м . Указанные смещения могут привести к общему (радиальному) смещению точки, расположенной на поверхности ПЗ-90 относительно WGS-84 на 11,3 м.

Контрольные вопросы

    Дайте определение референц-эллипсоида?

    Для каких целей используется геоцентрическая система координат при использовании СНС?

    Какими геометрическими параметрами описывается эллипсоид вращения?

    Какая система координат принята в ИКАО в качестве стандарта?

    Какая система координат применяется в ГЛОНАСС?

    Какие основные параметры характеризуют WGS-84 и ПЗ-90?

    Принципиально ли в какой системе координат WGS-84 или ПЗ-90, будут измеряться навигационные пункты при полете по маршруту?

    Чему равно радиальное смещение точки на поверхности эллипсоида в системе координат ПЗ-90 относительно WGS-84?

    ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ВОЗДУШНОГО СУДНА В СНС

      Общие принципы функционирования СНС

Принципы функционирования GNSS сравнительно просты, однако для их реализации используются передовые достижения науки и техники.

Все спутники GPS или ГЛОНАСС являются равноправными в своей системе. Каждый спутник через передающую антенну излучает кодированный сигнал на двух несущих частотах (L1; L2), который может быть принят соответствующим приемником пользователя, находящегося в зоне действия спутника. Передаваемый сигнал содержит следующую информацию:

    эфемериды спутников;

    коэффициенты моделирования ионосферы;

    информация о состоянии спутника;

    системное время и уход часов спутника;

    информация о дрейфе спутника.

В приемнике бортового оборудования ВС генерируется код, идентичный принимаемому со спутника. При сравнении двух кодов определяется временной сдвиг, который пропорционален дальности до спутника. Принимая одновременно сигналы от нескольких спутников, можно определить местоположение приемника с высокой точностью. Очевидно, что для функционирования системы необходима точная синхронизация кодов, генерируемых на спутниках и в приемниках.

Ключевым фактором, определяющим точность системы, является то, что все составляющие спутникового сигнала точно контролируются атомными часами. Каждый спутник имеет по четыре квантовых генератора, являющихся высокоточными стандартами частоты со стабильностью 10 -13 . Часы приемника менее точны, но их код постоянно сравнивается со спутниковыми часами и вырабатывается поправка, компенсирующая уход.

Наземный сегмент осуществляет контроль за спутниками, выполняет управляющие функции и определяет навигационные параметры спутников. Данные о результатах измерений, выполненных каждой контрольной станцией, обрабатываются на главной станции управления и используются для прогнозирования эфемерид спутников. Там же, на главной станции управления, формируются сигналы для коррекции спутниковых часов.

Местоположение воздушного судна с использованием GPS и ГЛОНАСС определяется в геодезических системах координат, которые могут отличаться от геодезических координат, используемых в бортовых навигационных комплексах.

      Физико-технические принципы функционирования СНС.

Общеземной эллипсоид WGS84 - это геодезический эллипсоид с фиксированной геоцентрической общеземной системой координат. Эллипсоид WGS84 задан набором констант и параметрами модели эллипсоида, которые описывают размеры и форму Земли, гравитационное и магнитное поля. WGS84 является стандартным общеземным эллипсоидом, принятым за глобальную координатную систему Департаментом Обороны США, а также системой координат для глобальной системы позиционирования (GPS). Она совместима с Международной Земной Системой Координат (ITRS). В настоящее время WGS84 (G1674) придерживается критериев, описанных в Техническом Пояснении 21 (TN 21) Международной Службы Вращения Земли (IERS). Ответственной организацией является Национальное Управление Геопространственной Разведки США (NGA). Управление (NGA) планирует произвести регулировку координатной системы WGS84 в 2013, чтобы совместить ее с правилами Конвенции 2010 IERS Техническое Пояснение 36 (TN 36).

  • Origin (Начало координат): За начало системы координат принят центр масс Земли, включая океаны и атмосферу.
  • Z-Axis (Ось Z) : Направлена на опорный полюс, определенный Международной Службой Вращения Земли (IERS Reference Pole). Это направление соответствует направлению на условный полюс Земли (BIH Conventional Terrestrial Pole) (на период 1984.0) с погрешностью 0.005".
  • X-Axis (Ось X) : Ось X лежит в плоскости опорного меридиана (IERS Reference Meridian) и проходит через начало координат по нормали к оси Z. Опорный меридиан (IRM) совпадает с нулевым меридианом (BIH Zero Meridian) (на период 1984.0) с погрешностью 0.005".
  • Y-Axis (Ось Y) : Дополняет геоцентрическую фиксированнуюя систему ортогональных координат (Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system) до правой.
  • Scale (Масштаб): Ее м асштаб - масштаб структуры Земли согласуется с альтернативной теорией гравитации (relativistic theory of gravitation). Совмещён с ITRS.
  • Orientation (Ориентация): Представлена Международным Бюро Времени (Bureau International de l’Heure) на период 1984.0.
  • Time Evolution (Временное развитие): Изменение во времени не будет создавать никаких невязок глобального вращения относительно земной коры.

Параметры

WGS84 можно идентифицировать с помощью четырех параметров: большая полуось эллипсоида (semi-major axis) WGS84, коэффициент сжатия (flattening factor) Земли, номинальная средняя угловая скорость (nominal mean angular velocity) Земли, и геоцентрическая гравитационная постоянная (geocentric gravitational constant). Значения параметров представлены в таблице ниже.

Параметр Обозначение Значение

Большая полуось (Semi-major Axis)

a

Коэффициент сжатия (Flattening Factor) Земли

1/f

Номинальная средняя угловая скорость (Nominal Mean Angular Velocity)

ω

7292115 10 -11 радиан/сек

Геоцентрическая гравитационная постоянная (Geocentric Gravitational Constant)

GM 3986004.418 10 8 м 3 /сек 2

Значение GM включает массу атмосферы Земли. Пользователи глобальной системы позиционирования (GPS) должны помнить первоначальное значение WGS84 GM равное 3986005.0 10 8 м3 /сек 2 , которое определено в контрольном документе GPS (ICD-GPS-200) и в Техническом отчете 8350.2 NIMA (Technical Report).

Реализации WGS84

База данных международной ассоциации производителей нефти и газа (EPSG database) и вебсайт NGS используют в названии "WGS 84" пробел между "WGS" и "84". База данных EPSG не содержит никаких особых реализаций эллипсоида WGS84.

Geog 2D Code Код эллипсоида Краткое название Эпоха эллипсоида Код района Название района Примечание Смещение
4326 6326 WGS84 1984 1262 Всемирный (World)

Первая реализация установленная Министерством обороны США в 1987 используя доплеровские наблюдения.
Также известен как WGS84 (1987), WGS84 (original), WGS84 (TRANSIT).
Для научных целей, первоначальный WGS84 является идентичным NAD83 (1986).
WGS84 связан с ITRF90 с помощью 7 параметров перехода по Хельмерту (Helmert).

нет


WGS84 (G730) 1994.0

Реализация представлена Министерством обороны США от 29 июня 1994 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 730 - это номер недели GPS. Основан на ITRF91.
0.70 м


WGS84 (G873) 1997.0

Реализация представлена Министерством обороны США от 29 января 1997 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 873 - это номер недели GPS. Основан на ITRF94.

0.20 м


WGS84 (G1150) 2001.0

Реализация представлена Министерством обороны США от 20 января 2002 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 1150 - это номер недели GPS. Основан на ITRF2000.
0.06 м


WGS84 (G1674) 2005.0

Реализация представлена Министерством обороны США от 08 февраля 2012 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 1674 - это номер недели GPS. Основан на ITRF2008.
0.01 м

Параметры трансформации

Ниже представлены параметры перехода между WGS84 (G1674) и предыдущими реализациями WGS84, а также некоторыми реализациями ITRF.

Параметры перехода между различными реализациями ITRF можно найти в файле .

Переход от Переход к Эпоха T1
м
T2
м
T3
м
D
ppb
R1
mas
R2
mas
R3
mas
Точность
м
2001.0 -0.0047 +0.0119 +0.0156 +4.72 +0.52 +0.01 +0.19 0.0059
ITRF2008 WGS84 (G1674) 2005.0 0 0 0 0 0 0 0 0.10
ITRF2000 WGS84 (G1150) 2001.0 0 0 0 0 0 0 0 0.10
ITRF94 WGS84 (G873) 1997.0 0 0 0 0 0 0 0 0.10
ITRF91 WGS84 (G730) 1994.0 0 0 0 0 0 0 0 0.10
ITRF90 WGS84 (original) 1984.0 +0.060 -0.517 -0.223 -11.0 +18.3 -0.3 +7.0 0.01

Направление вращения системы координат по часовой стрелке. Единицы измерения: м (метры), mas (угловых миллисекунд) и ppb (частей на миллиард).
1 mas = 0.001 " = 2.77778 e -7 градуса = 4.84814 e -9 радиан. 0.001 " приблизительно равна 0.030 м на поверхности Земли.

WGS84 и ITRF

Вообще ITRS (и её реализации ITRFyy) идентичны WGS84 в пределах одного метра. При этом есть два типа реализации WGS84.

  • Старая реализация, основанная на навигационной спутниковой системе ВМС США, также известная как доплеровская система "Транзит" (DOPPLER Transit), и обеспечивающая координаты станций с точностью приблизительно в один метр.
    Что касается этой реализации, то Международной Службой Вращения Земли (International Earth Rotation Service) опубликованы параметры трансформации между ITRF90 и этой доплеровской системой в файле: WGS84.TXT .
  • Обновленные реализации WGS84, основанные на данных GPS, такие как G730, G873 и G1150. Эти обновленные реализации WGS84 совпадают с ITRF с 10-сантиметровом уровнем точности.
    Для этих реализаций нет официально опубликованных параметров трансформации. Это означает, что координаты ITRF также могут быть выражены в WGS84 с уровнем точности 10 см.

Комитет производителей нефти и газа (OGP Surveying & Positioning Committee) рекомендует в своей пояснительной записке №4 (Guidance note 4) : "В качестве опорной геодезической системы для целей съёмки и позиционирования в реальном режиме времени использовать международную земную систему отсчета (ITRF)", в случае когда опубликованные значения параметров перехода позволяют трансформировать координаты с точностью хуже чем один метр - придерживаться старой формулировки "от местной системы координат к WGS84", и использовать новую формулировку "от местной системы координат к ITRFyy на эпоху yyyy.y" когда опубликованные значения параметров перехода обеспечивают субметровую точность.

WGS84, ITRF и NAD83

Исходная реализация WGS84 в значительной степени согласуется с NAD83 (1986). Последующие реализации WGS84, однако, приблизительно совпадают с реализациями ITRS.

Североамериканская система координат (North American Datum) от 1983 года (NAD83) используется на всей территории Северной Америки, за исключением Мексики. Эта система координат реализована на территории США и Аляски (Североамериканская плита) посредством Национальных референцных станций (National CORS), которые предоставляют основу для получения строгих параметров перехода между реализациями ITRF и NAD83, а также для бесчисленного количества научных работ.

Начиная с ноября 2011 года, сеть референцных станций (CORS) насчитывает свыше 1800 станций, на них работает более 200 различных организаций, и сеть продолжает расширяться. Самая свежая реализация системы NAD83 имеет техническое название NAD83 (2011/PA11/MA11) эпоха 2010.00, и образует структуру для определения Национальной пространственной системы координат (NSRS). В Канаде система NAD83 также контролируется посредством Канадской системы активного управления (Canadian Active Control System). Таким образом, за контроль и обслуживание системы NAD83 отвечают две организации Национальная геодезическая служба США (NGS), http://www.ngs.noaa.gov , и Министерство природных ресурсов Канады (NRCan), http://www.nrcan.gc.ca .

Мексиканская система координат от 1993 (Mexican Datum of 1993)

Национальный институт статистики и географии Мексики (INEGI), http://www.inegi.org.mx , Федеральное агенство, ответственное за геодезию и картографию в стране, приняли за свою геодезическую основу геоцентрическую систему координат ITRF92, на эпоху 1988.0. Реализация данной системы достигается посредством сети из 14 станций стационарных GPS приёмников Национальной геодезической сети (RGNA). Недавно за новую основу мексиканской системы координат была принята система ITRF2008, на эпоху 2010.0.

WGS84, ITRF и SIRGAS

Геоцентрическая референцная система Америки от 1995 года (SIRGAS 1995) была утверждена для использования на всём континенте Южной Америки в области геодезии и картографии. Большинство стран Южной Америки и стран Карибского бассейна принимали участие в этом предприятии, при этом использовалось 58 референцных станций, которые позже были распространены на территорию Центральной и Северной Америки. За начальную систему координат была принята ITRF94, на эпоху 1995.42. Геоцентрическая референцная система Америки от 2000 года (SIRGAS 2000) была реализована посредством наблюдений на сети из 184 станций в 2000 году и была установлена система ITRF2000, на эпоху 2000.40. Система координат SIRGAS 2000 включает привязку к уровенным постам и заменяет предыдущую систему SIRGAS 1995, использующуюся только в Южной Америке на систему координат SIRGAS, покрывающую также и Центральную Америку. Название было изменено в 2001 году для использования на всей территории Латинской Америки. В Интернете существует несколько страниц с информацией о системе координат SIRGAS, например: http://www.ibge.gov.br/home/geociencias/geodesia/sirgas .

WGS84, ITRF и ETRS89

Европейская земная система координат ETRS89 базируется на Международной системе отсчёта ITRF89, на эпоху 1989.0 и отслеживается посредством сети из приблизительно 250 постоянно действующих станций Глобальной навигационной спутниковой системы (GNSS), известной как Европейская постоянно действующая референцная сеть (EPN). За обслуживание Европейской земной системы координат (ETRS89) отвечает подкомитет Международной геодезической ассоциации европейской референцной системы (IAG Sub-commission EUREF). Подробнее об этой системе можно узнать в Интернете на сайте: http://www.euref.eu . Центральное Бюро референцной сети (EPN) расположена в Королевской обсерватории в Бельгии (Royal Observatory of Belgium), http://www.epncb.oma.be .

WGS84, ITRF и GDA94

Геоцентрическая система координат Австралии от 1994 года (GDA94) изначально была отнесена к международной геодезической системе координат ITRF92, на эпоху 1994.0. Система GDA94 контролируется посредством австралийской региональной ГНСС сети (ARGN), включающей 15 постоянно действующих GPS станций на территории Австралии, а также с помощью 8 станций в Австралии, известных как австралийская основная сеть (AFN). Ответственной организацией за мониторинг системы GDA94 является австралийское агенство геофизических исследований (Geoscience Australia), http://www.auslig.gov.au .

Ссылки

  • WGS84 (G730), (G873) и (G1150) - http://www.ngs.noaa.gov/CORS/Articles
  • ITRF94, ITRF96, ITRF97, ITRF2000, ITRF2005 и ITRF2008 -

Аббревиатура, означающая World Geodetic System, что в переводе соответствует понятию глобальная опорная система, принятая на момент 1984 года с целью геодезического обеспечения ориентирования в мировом пространстве: космической, воздушной, морской и наземной навигации.

Такая единая мировая система отсчета появилась не в один год. С конца пятидесятых годов прошлого столетия, когда практически происходило становление космической эры и в СССР, и в США возникла потребность в точном проведении, сопровождении космических запусков и полетов. Для обеспечения этой деятельности необходимо было создать единую планетарную геодезическую сеть, с помощью которой возможно было вести геодезические, гравиметрические и астрономические наблюдения.

С периодическим постоянством через каждые шесть лет, начиная с 1960 года, в США были созданы всеземные геодезические системы wgs60, wgs66, wgs72. Последняя из перечисленных систем wgs, считалась геодезической основой первой навигационной спутниковой системой Transit.

В 1980 году Международным союзом по геодезии была принята новая геодезическая референцная система GRS80. В ней было представлено сочетание моделей: геоида, земного эллипсоида и гравитационной модели Земли. В США в 1983 году приняли свою геодезическую систему NAD83.

И все же в 1984 году в рамках Министерства обороны Соединенные Штаты Америки принимают решение о построении для своих целей, как военного ведомства и навигационных спутниковых задач новой WGS с годовой нумерацией 84. Для этого к тому времени стала использоваться навигационная спутниковая система GPS Navstar, которая получила в последствие глобальное распространение и применяется во всем мире до настоящего времени. Введена WGS84 была в 1987 году и по своим параметрам близка к NAD83.

Основные параметры WGS 84

Мировая система WGS-84 представляет собой астрономо-геодезическую-гравиметрическую систему отсчета, вписанную в фигуру Земли. Для любой такой системы характерными являются установление определенных параметров. К таким параметрам в системе отсчета wgs 84 относятся:

  • геоцентрическая прямоугольная система координат с началом в точке геометрического центра масс Земли (показана на рис.1);
  • математическая основа, за которую принята форма эллипсоида вращения с конкретными геометрическими и физическими величинами;
  • гравитационная модель Земли, с определенными на конкретную дату величинами и их значениями.

Ориентирование оси 0Z прямоугольной системы координат представлено в сторону условного направления на полюс, установленного в соответствии с данными международного бюро времени (BIH) на дату 1984 года. В пересечении плоскости нулевого меридиана (Гринвичского) с отклонением в 5,31 секунды к востоку и экваториальной плоскости ориентирована ось 0X. Правосторонне направленная и перпендикулярная к оси 0X в плоскости экватора, если можно так выразиться вторая плановая ось 0Y, завершает формирование геометрии отсчетной системы. Для исключения плавающего эффекта из-за движения земной коры, тектонических плит ориентация осей X, Y, Z остается неизменной.

Рис.1. Геоцентрическая World Geodetic System 84.

Физическая ориентация осей X, Y, Z в WGS84 определялась координатами на пяти контрольных станциях навигационной спутниковой системы GPS Transit в дату 1984 года (смотрите рис.2).


Рис.2. Физическая ориентация на пунктах WGS84.

В дальнейшем количество опорных точек увеличилось до семнадцати и переопределялось два раза уже с применением действующей навигационной спутниковой системой GPS Navstar. В 2002 году была принята последняя версия WGS84, в которой была достигнута высокая точность определения прямоугольных координат (X, Y, Z), геодезических координат (B, L) и геодезических высот над уровнем сфероида (H). Таким образом, эллипсоид был привязан физически к земной поверхности.

Международная геодезическая система координат

Одновременно с началом действия WGS84 в 1987 году были заложены основы новой мировой геодезической системы в рамках международной службы вращения Земли (IERS). Кроме других функциональных задач по оценке параметров Земли этой службой были применены международные земная система отсчета (ITRS) и отсчетная основа (ITRF). Если коротко, то отличия между ними заключаются в следующем. В системе отсчета (ITRS) определяются и устанавливаются параметры геодезической, математической, физической (гравиметрической) Земных моделей. В отсчетной основе (ITRF) происходит физическое построение и закрепление своего рода каркаса в виде опорных станций с фактическими их координатами, через которые реализуется практически глобальная геодезическая система.

Более просто можно объяснить путем следующего примера. Стоит задача построить на плоскости бумажного листа, например, формата А-1 прямоугольную систему координат с началом в центре этого листа, а - оси 0X и 0Y должны быть параллельны краям формата.

Такую задачу можно решить двумя способами. В первом из них центр получить при соединении между собой диагоналей. Вторым способом возможно нахождение всех четырех центров сторон прямоугольника, каковым является формат бумаги. Соединив между собой центры сторон, получают центр листа. В идеале две точки должны совпасть. Но вероятнее всего это не произойдет из-за погрешностей определения середины сторон. Далее графическая точность проведения диагоналей именно из углов также внесет свои неточности. Не идеален, возможно, и прямоугольный лист бумаги, его края могут быть не параллельны. При графическом построении непосредственно из точки центра осей координат возникают инструментальные погрешности линейки, карандаша, транспортира.

Очевидно, могут получиться две немного отличающиеся друг от друга системы координат с разными центрами и небольшими разворотами осей. Так вот сам лист, систему координат, ее центр условно можно отнести к системе отсчета ITRS. А вот опорные метки, например, точки середины сторон формата закрепляют систему координат на бумаге и относятся по аналогии условно к отсчетной основе ITRF.

В отношении фигуры Земли и определения, например, ее центра масс в качестве начала геоцентрической системы координат значительно сложнее. Физически его не начертишь карандашом. В качестве опорных меток для WGS84 на рис.2 выступают контрольные станции, заложенные вдоль линии экватора. Система координат в WGS84 и система отсчета в ITRS теоретически одинаковы. Однако, точность привязки к началу отсчета в центре масс нашей планеты выше ввиду того, что в отсчетной основе ITRF находятся сотни таких опорных меток

К настоящему времени в ITRF, как физического воплощения мировой геодезической сети, наблюдается порядка 800 станций с GPS-примемниками Navstar. Периодически происходят обновления, уточнения, корректировка исходных координат как на станциях в WGS84, которые можно считать составной частью ITRF, так и во всей земной геодезической основе.

Для формирования полной и довольно сложной физико-математической картины под именем Земля в качестве параметров перехода от геоида к трехосному эллипсоиду вращения в WGS84 принимаются основные и вспомогательные параметры, указанные в таблице ниже.

Все размеры и параметры эллипсоида, вычисленного и принятого для использования в геодезической среде отдельной страны или глобальной сети, такой как WGS84, имеют свои значения, время (дату) вычисления и наименование «датум». Наиболее точными считаются параметры (датум) ITRF, которые ежесуточно контролируются спутниковыми методами измерений координат на опорных станциях и ежегодно публикуются с указанием даты.

В глобальных системах отличных от WGS84, которые в последние годы стали применяться в ведущих странах мира, в том числе и в России (ПЗ90 , ПЗ90.02, ПЗ90.11) при необходимости решения определенных задач имеются возможности увязывать разные датумы, определять коэффициенты преобразования и производить собственно пересчеты координат в разные системы. В Российской Федерации такие пересчеты регламентируются государственным стандартом 51794-2001.

Система координат 1995 г. (СК-95) установлена Постановлением Правительства РФ от 28.07.2002 г № 586 «Об установлении единых государственных систем координат». Используется при осуществлении геодезических и картографических работ, начиная с 1 июля 2002 года.

До завершения перехода к использованию СК правительство РФ постановило использовать единую систему геодезических координат 1942 года, введённую Постановлением Совета министров СССР от 07.04.1996 г № 760.

Целесообразность введения СК-95 состоит в повышении точности, оперативности и экономической эффективности решения задач геодезического обеспечения, отвечающего современным требованиям экономики, науки и обороны страны. Полученные в результате совместного уравнивания координат пунктов космической государственной сети (КГС), доплеровской геодезической сети (ДГС) и астрономо-геодезической сети (АГС) на эпоху 1995 г, Система координат 1995 г закреплена пунктами государственной геодезической сети.

СК-95 строго согласована с единой государственной геоцентрической системой координат, которая называется «Параметры Земли 1990г.» (ПЗ-90). СК-95 установлена под условием параллельности её осей пространственным осям СК ПЗ-90.

За отсчётную поверхность в СК-95 принят референц эллипсоид.

Точность СК-95 характеризуется следующими средними квадратическими ошибками взаимного положения пунктов по каждой из плановых координат: 2-4 см. для смежных пунктов АГС, 30-80 см. при расстояниях от 1 до 9 тыс. км между пунктами.

Точность определения нормальных высот в зависимости от метода их определения характеризуется следующими средними квадратическими ошибками:

· 6-10 см. в среднем по стране из уровня нивелирных сетей 1 и 2 классов;

· 20-30 см из астрономо-геодезических определений при создании АГС.

Точность определения превышений высот квазигеоида астрономогравиметрическим методом характеризуется следующими средними квадратическими ошибками:

· от 6 до 9 см. при расстоянии 10-20 км;

· 30-50 см при расстоянии 1000км.

СК-95 отличается от СК-42

1) повышением точности передачи координат на расстояние свыше 1000 км в 10-15 раз и точностью взаимного положения смежных пунктов в государственной геодезической сети в среднем в 2-3 раза;

2) одинаковой точностью расстояния системы координат для всей территории РФ;

3) отсутствием региональных деформаций государственной геодезической сети, достигающих в СК-42 нескольких метров;

4) возможностью создания высокоэффективной системы геодезического обеспечения на основе использования глобальных навигационных спутниковых систем: Глонасс, GPS, Навстар.

Развитие астрономо-геодезической сети для всей территории СССР было завершено к началу 80х годов. К этому времени стала очевидность выполнения общего уравнивания АГС без разделения на ряды триангуляции 1 класса и сплошные сети 2 класса, т. к. отдельное уравнивание приводило к значительной деформациям АГС.

В мае 1991 года общее уравнивание АГС было завершено. По результатам уравнивания были установлены следующие характеристики точности АГС:

1) средняя квадратическая ошибка направлений 0,7 секунды;

2) средняя квадратическая ошибка измеренного азимута 1,3 сек.;

3) относительная средняя квадратическая ошибка измерения базисных сторон 1/200000;

4) средняя квадратическая ошибка смежных пунктов 2-4 см.;

5) средняя квадратическая ошибка передачи координат исходного пункта на пункты на краях сети по каждой координате 1 м.

Уравненная сеть включала в себя:

· 164306 пунктов 1 и 2 класса;

· 3,6 тысяч геодезических азимутов, определенных из астромомических наблюдений;

· 2,8 тысяч базисных сторон через 170-200км.

Совместному уравниванию подвергались астрономо-геодезическая сеть доплеровская и КГС.

Объём астрономо-геодезической информации обработанной при совместном уравнивании для установления СК-95 превышает на порядок объём измерительной информации.

В 1999 году Федеративная служба геодезии и картографии (ФСГиК) ГГС качественно нового уровня на основе спутниковых навигационных систем: Глонасс, GPS, Навстар. Новая ГГС включает в себя геодезические построения различных классов точности:

1) ФАГС (фундаментальные)

2) Высокоточные ВГС

3) Спутниковая геодезическая сеть 1 класса (СГС 1)

4) Астрономогеодезическая сеть и геодезические сети сгущения.

WGS-84 сейчас стала международной системой навигации. Все аэропорты мира, согласно требованиям ICAO, определяют свои аэронавигационные ориентиры в WGS-84. Россия не является исключением. С 1999 г. издаются распоряжения о ее использовании в системе нашей гражданской авиации (Последние распоряжения Минтранса № НА-165-р от 20.05.02 г. «О выполнении работ по геодезической съемке аэронавигационных ориентиров гражданских аэродромов и воздушных трасс России» и № НА-21-р от 04.02.03 г. «О введении в действие рекомендаций по подготовке … к полетам в системе точной зональной навигации …», см. www.szrcai.ru), но до сих пор нет ясности в главном -- станет ли эта информация открытой (иначе она теряет смысл), а это зависит от совсем других ведомств, к открытости не склонных. Для сравнения: координаты концов взлетно-посадочной полосы аэродрома с разрешением 0,01” (0,3 м) сегодня выдают Казахстан, Молдова и страны бывшей Прибалтики; 0,1” (3 м) -- Украина и страны Закавказья; и только Россия, Белоруссия и вся Средняя Азия открывают эти важнейшие для навигации данные с точностью 0,1" (180 м).

У нас есть и своя общеземная система координат, альтернатива WGS-84, которая используется в ГЛОНАСС. Она называется ПЗ-90, разработана нашими военными, и кроме них, по большому счету, никому не интересна, хотя и возведена в ранг государственной.

Наша государственная система координат - «Система координат 1942 г.», или СК-42, (как и пришедшая ей недавно на смену СК-95) отличается тем, что, во-первых, основана на эллипсоиде Красовского, несколько большем по размерам, чем эллипсоид WGS-84, и во-вторых, «наш» эллипсоид сдвинут (примерно на 150 м) и слегка развернут относительно общеземного. Всё потому, что наша геодезическая сеть покрыла шестую часть суши еще до появления всяких спутников. Эти отличия приводят к погрешности GPS на наших картах порядка 0,2 км. После учета параметров перехода (они имеются в любом Garmin"e) эти погрешности устраняются для навигационной точности. Но, увы, не для геодезической: точных единых параметров связи координат не существует, и виной тому локальные рассогласования внутри государственной сети. Геодезистам приходится для каждого отдельного района самим искать параметры трансформирования в местную систему.

Геодезические координаты, методы их преобразования. Системы ITRF, WGS-84, ПЗ-90, СК-42, СК-95. Преобразование координат по методу Гельмерта и Молоденского

3.1. Системы отсчета координат и времени

Единая государственная система геодезических координат 1995 года получена в результате совместного уравнивания трех самостоятельных, но связанных между собой, геодезических построений различных классов точности: КГС, ДГС, по их состоянию на период 1991 - 93 годов.

Объем измерительной астрономо-геодезической информации, обработанной для введения системы координат 1995 года, превышает на порядок соответствующий объем информации, использованной для установления системы координат 1942 года (СК-42).

Космическая геодезическая сеть предназначена для задания геоцентрической системы координат, доплеровская геодезическая сеть - для распространения геоцен­трической системы координат, астрономо-геодезическая сеть - для задания системы геодезических координат и до­ ведения системы координат до потребителей.

В совместном уравнивании АГС представлена в виде пространственного построения. Высоты пунктов АГС от­ носительно референц- эллипсоида Красовского определены как сумма их нормальных высот и высот квазигеоида, полученных из астрономо- гравиметрического нивелирования.

В процессе нескольких приближений совместного уравнивания высоты квазигеоида для территории отдаленных восточных регионов дополнительно уточнялись с учетом результатов уравнивания. С целью контроля геоцеитричности системы координат в совместное уравнивание включены неза­висимо определенные геоцентрические радиус-векторы 35 пунктов КГС и ДГС, удаленных один от другого на расстояния около 1000км, для которых высоты квазигеоида над общим земным эллипсоидом получены гравиметрическим методом; а нормальные высоты - из нивелирования.

В результате совместного уравнивания КГС, ДГС, АГС и значений радиус-векторов пунктов построена сеть из 134 опорных пунктов ГГС, покрывающая всю территорию при сред­нем расстоянии между смежными пунктами 400...500 км.


Точность определения взаимного положения этих пунктов по каждой из трех , пространственных координат характеризуется средними квадратическими ошибками 0,25...0,80 м при расстояниях от 500 до 9000 км.

Абсолютные ошибки отнесения положений пунктов к центру масс Земли не превышают 1 м по каждой из трех осей пространственных координат.

Эти пункты использовались в качестве исходных при заключительном общем уравнивании АГС.

Точность определения взаимного планового положения пунктов, полученная в результате заключительного уравнивания АГС по состоянию на 1995 год, характе­ризуется средними квадратическими ошибками: 0,02...0,04 м для смежных пунктов, 0,25...0,80 м при расстояниях от 1 до 9 тыс. км.

Между единой государственной системой геодезических координат 1995 года (СК-95) и единой государ­ственной геоцентрической системой координат “Параметры Земли 1990 года” (ПЗ-90) установлена связь, определяемая па­раметрами взаимного перехода (элементами ориентирования). Направления координатных осей Х,У,2 используемой гео­центрической системы координат определены координатами пунктов КГС; начало координат этой системы установлено под условием совмещения с центром масс Земли.

За отсчетную поверхность в государственной геоцентрической системе координат (ПЗ-90) принят общий земной эллипсоид со следующими геометрическими параметрами:


  • большая полуось 6378 136 м;

  • сжатие 1:298,257839.
Центр этого эллипсоида совмещен с началом геоцен­трической системы координат; плоскость начального (нулевого) меридиана совпадает с плоскостью Х Z этой системы.

Геометрические параметры общего земного эллип­соида приняты равными соответствующим параметрам уровенного эллипсоида вращения. При этом за уровенный эл­липсоид вращения принята внешняя поверхность нормаль­ной Земли, масса и угловая скорость вращения которой за­даются равными массе и угловой скорости вращения Земли.

Масса Земли М , включая массу ее атмосферы, умножен­ная на постоянную тяготения f , составляет геоцентрическую гравитационную постоянную f М = 39860044 х 10 7 м 3 /с 2 , угловая скорость вращения Земли w принята равной 7292115 х10 11 рад/с, гармонический коэффициент геопотенциала второй степени J 2 , определяющий сжатие общего земного эллипсоида, принят равным 108263х10 8 .

Система координат 1995 года установлена так, что ее оси параллельны осям геоцентрической системы координат. Положение начала СК-95 задано таким образом, что значения координат пункта ГГС Пулково в системах СК-95 и СК-42 совпадают.

Переход от геоцентрической системы координат к СК-95 выполняется по формулам:

X СК-95 = X ПЗ-90 - ДX 0

Y СК-95 = Y ПЗ-90 - ДY 0

Z СК-95 = Z ПЗ-90 - ДZ 0
где ДХ 0 , ДУ 0 , ДZ 0 - линейные элементы ориентирова­ния., задающие координаты начала системы координат 1995 года относительно геоцентрической системы координат ПЗ-90, составляют ДХо = +25,90 м; ДУ 0 = -130,94 м, ДЖо = -81,76 м.

За отсчетную поверхность в СК-95 принят эллипсоид Красовского с параметрами:


  • большая полуось 6378 245 м;

  • сжатие 1: 298,3.
Малая полуось эллипсоида совпадает с осью 7 , ос­тальные оси системы координат СК-95 лежат в его эквато­риальной плоскости , при этом плоскость начального (нуле­вого) меридиана совпадает с плоскостью ХЖ этой системы.

Положение пунктов ГГС в принятых системах задается следующими координатами:


  • пространственными прямоугольными координата­ ми X, У, Z ;

  • геодезическими (эллипсоидальными) координата­ ми В, L, Н;

  • плоскими прямоугольными координатами х и у, вычисляемыми в проекции Гаусса-Крюгера.
При решении специальных задач могут применяться и другие проекции эллипсоида на плоскость.

Геодезические высоты пунктов ГГС определяют как сумму нормальной высоты и высоты квазигеоида над отсчетным эллипсоидом или непосредственно методами космической геодезии , или путем привязки к пунктам с известными геоцентрическими координатами.

Нормальные высоты пунктов ГГС определяются в Балтийской системе высот 1977 года, исходным началом которой является нуль Кронштадтского футштока.

Карты высот квазигеоида над общим земным эллипсоидом и референц - эллипсоидом Красовского на территории Рос­сийской Федерации издаются Федеральной службой геодезии и картографии России и Топографической службой ВС РФ.

Масштаб ГТС задается Единым государственным эталоном времени-частоты-длины. Длина метра принимается в соответствии с резолюцией MAS Генеральной конференции по мерам к весам (октябрь 1983 г.) как расстояние, проходимое све­том в вакууме за 1:299 792 458-ую долю секунды.

В работах по развитию ГГС используются шка­лы атомного ТА (813) и координированного UTC (SU) времени, задаваемые существующей эталонной базой Российской Федерации, а 1-акже параметры вращения Земли и поправки для пе­рехода к международным шкалам времени, периодически публикуемые Госстандартом России в специальных бюллетенях Государственной службы времени и частоты (ГСВЧ).

Астрономические широты и долготы, астрономические и геодезические азимуты, определяемые по наблюдениям звезд, приводятся к системе фундаментального звездного каталога, к системе среднего полюса и к системе ас­трономических долгот, принятых на эпоху уравнивания ГГС.

Метрологическое обеспечение геодезических работ осуществляется в соответствии с требованиями государственной системы обеспечения единства измерений.

Постледниковая отдача, наблюдаемая преимущественно в северных широтах как последствие ледникового периода. Влияние может доходить до нескольких миллиметров в год по высоте;

Полюсный прилив, являющийся реакцией эластичной коры Земли на смещения полюса вращения. При компонентах полярного движения порядка 10 м максимальное смещение будет 10-20 мм.

Модели перечисленных поправок даются в . Другие поправки добавляются, если они больше 1 мм и их можно вычислить в соответствии с некоторой моделью.

Скорости тектонических движений могут достигать 10 см/год. Если для некоторой станции скорость в ITRF еще не определена из наблюдений, то вектор скорости должен определяться как сумма скоростей:

, (3.47)
где - горизонтальная скорость плиты, вычисляемая по модели движения тектонических плит NNR NUVEL1A, а epncb . oma . be ]. Основная сеть из 93 фундаментальных пунктов была измерена через GPS в течение мая 1989 г. Позднее она была расширена до 150 постоянно действующих станций GPS наблюдений. Окончательно EUREF представляет собой единую систему на всю Европу, которая согласована с системами WGS-84 и ITRF. Полученная система координат известна как ETRF-89 (или ETRS89), для многих целей она может рассматриваться как реализация WGS-84 в Европе. Многие страны адаптируют пункты EUREF как сеть «нулевого» класса, от которой они расширяют национальные сети .

В Южной Америке реализована подобная отсчетная основа SIRGAS (Sistema de Referência Geocêntrico para as Américas), в Австралии – GDA94 (Geocentric Datum of Australia), в США и Канаде – NAD83(CORS96) .


3.3. Референцные системы координат
Эти земные системы связаны с локальными референц-эллипсоидами. Центры референц-эллипсоидов как правило не совпадают с центром масс Земли из-за ошибок ориентирования. Поэтому эти системы иногда называют еще квазигеоцентрическими.

Основной плоскостью в референцной системе является плоскость экватора референц-эллипсоида. Ось Z направлена по нормали к экватору , вдоль малой оси эллипсоида. Ось X направлена в плоскости начального меридиана геодезической системы, то есть проходит через точку B =0, L =0. Ось Y дополняет две предыдущие оси до правой (или левой) координатной системы. Возможно использование размеров и формы одного и того же эллипсоида в различных координатных системах, отличающихся своей ориентировкой (исходными геодезическими датами).

В референцных системах обычно применяются геодезические (сфероидические) координаты (рис. 3.6): геодезическая широта B , геодезическая долгота L и высота над эллипсоидом H .

Из-за наблюдательных ограничений, наложенных ранее условностями геодезии, исторически оказались выполненными два разных типа геодезических систем:

Двухмерные континентальные плановые геодезические системы, закрепленные пунктами геодезических сетей с координатами , , например системы координат 1942 г. (СК-42), североамериканская система NAD-27,

Полностью независимые континентальные высотные системы, являющиеся по существу физическими геодезическими основами, независимыми от эллипсоида, и строящиеся на основании уравнивания нивелирных наблюдений. К таким системам относится принятая в России Балтийская система высот 1942 г. и принятая в США Национальная геодезическая система высот 1929 г. (National Geodetic Vertical Datum, NGVD29). В этих системах высоты точек задаются относительно геоида (квазигеоида). Глобальные систем высот пока не определены и не приняты NAD-27

Что еще почитать