Тепловые схемы котельных. Принципиальная тепловая схема котельной для частного дома

Тепловые схемы котельных

По своему назначению котельные малой и средней мощности делятся на следующие группы: отопительные, предназначенные для теплоснабжения систем отопления, вентиляции, горячего водоснабжения жилых, общественных и других зданий; производственные, обеспечивающие паром и горячей водой технологические процессы промышленных предприятий; производственно-отопительные, обеспечивающие паром и горячей водой различных потребителей. В зависимости от вида вырабатываемого теплоносителя котельные делятся на водогрейные, паровые и пароводогрейные.

В общем случае котельная установка представляет собой совокупность котла (котлов) и оборудования, включающего следующие устройства. Подачи и сжигания топлива; очистки, химической подготовки и деаэрации воды; теплообменные аппараты различного назначения; насосы исходной (сырой) воды, сетевые или циркуляционные – для циркуляции воды в системе теплоснабжения, подпиточные – для возмещения воды, расходуемой у потребителя и утечек в сетях, питательные для подачи воды в паровые котлы, рециркуляционные (подмешивающие) ; баки питательные, конденсационные, баки-аккумуляторы горячей воды; дутьевые вентиляторы и воздушный тракт; дымососы, газовый тракт и дымовую трубу; устройства вентиляции; системы автоматического регулирования и безопасности сжигания топлива; тепловой щит или пульт управления.

Тепловая схема котельной зависит от вида вырабатываемого теплоносителя и от схемы тепловых сетей, связывающих котельную с потребителями пара или горячей воды, от качества исходной воды. Водяные тепловые сети бывают двух типов: закрытые и открытые. При закрытой системе вода (или пар) отдает свою теплоту в местных системах и полностью возвращается в котельную. При открытой системе вода (или пар) частично, а в редких случаях полностью отбирается в местных установках. Схема тепловой сети определяет производительность оборудования водоподготовки, а также вместимость баков-аккумуляторов.

В качестве примера приведена принципиальная тепловая схема водогрейной котельной для открытой системы теплоснабжения с расчетным температурным режимом 150- 70°С. Установленный на обратной линии сетевой (циркуляционный) насос обеспечивает поступление питательной воды в котел и далее в систему теплоснабжения. Обратная и подающая линии соединены между собой перемычками – перепускной и рециркуляционной. Через первую из них при всех режимах работы, кроме максимального зимнего, перепускается часть воды из обратной в подающую линию для поддержания заданной температуры.

Принципиальная тепловая схема водогрейной котельной

По условиям предупреждения коррозии металла температура воды на входе в котел при работе на газовом топливе должна быть не ниже 60 °С во избежание конденсации водяных паров, содержащихся в уходящих газах. Так как температура обратной воды почти всегда ниже этого значения, то в котельных со стальными котлами часть горячей воды подается в обратную линию рециркуляционным насосом.

В коллектор сетевого насоса из бака поступает подпиточная вода (насос, компенсирующая расход воды у потребителей). Исходная вода, подаваемая насосом, проходит через подогреватель, фильтры химводоочистки и после умягчения через второй подогреватель, где нагревается до 75- 80 °С. Далее вода поступает в колонку вакуумного деаэратора. Вакуум в деаэраторе поддерживается за счет отсасывания из колонки деаэратора паровоздушной смеси с помощью водоструйного эжектора. Рабочей жидкостью эжектора служит вода, подаваемая насосом из бака эжекторной установки. Пароводяная смесь, удаляемая из деаэраторной головки, проходит через теплообменник – охладитель выпара. В этом теплообменнике происходит конденсация паров воды, и конденсат стекает обратно в колонку деаэратора. Деаэрированная вода самотеком поступает к подпиточному насосу, который подает ее во всасывающий коллектор сетевых насосов или в бак подпиточной воды.

Подогрев в теплообменниках химически очищенной и исходной воды осуществляется водой, поступающей из котлов. Во многих случаях насос, установленный на этом трубопроводе (показан штриховой линией), используется также и в качестве рециркуляционного.

Если отопительная котельная оборудована паровыми котлами, то горячую воду для системы теплоснабжения получают в поверхностных пароводяных подогревателях. Пароводяные водоподогреватели чаще всего бывают отдельно стоящие, но в некоторых случаях применяются подогреватели, включенные в циркуляционный контур котла, а также надстроенные над котлами или встроенные в котлы.

Показана принципиальная тепловая схема производственно-отопительной котельной с паровыми котлами, снабжающими паром и горячей водой закрытые двухтрубные водяные и паровые системы теплоснабжения. Для приготовления питательной воды котлов и подпиточной воды тепловой сети предусмотрен один деаэратор. Схема предусматривает нагрев исходной и химически очищенной воды в пароводяных подогревателях. Продувочная вода от всех котлов поступает в сепаратор пара непрерывной продувки, в котором поддерживается такое же давление, как и в деаэраторе. Пар из сепаратора отводится в паровое пространство деаэратора, а горячая вода поступает в водоводяной подогреватель для предварительного нагрева исходной воды. Далее продувочная вода сбрасывается в канализацию или поступает в бак подпиточной воды.

Конденсат паровой сети, возвращенный от потребителей, подается насосом из конденсатного бака в деаэратор. В деаэратор поступает химически очищенная вода и конденсат пароводяного подогревателя химически очищенной воды. Сетевая вода подогревается последовательно в охладителе конденсата пароводяного подогревателя и в пароводяном подогревателе.

Во многих случаях в паровых котельных для приготовления горячей воды устанавливают и водогрейные котлы, которые полностью обеспечивают потребность в горячей воде или являются пиковыми. Котлы устанавливают за пароводяным подогревателем по ходу воды в качестве второй ступени подогрева. Если пароводогрейная котельная обслуживает открытые водяные сети, тепловой схемой предусматривается установка двух деаэраторов – для питательной и подпиточной воды. Для выравнивания режима приготовления горячей воды, а также для ограничения и выравнивания давления в системах горячего и холодного водоснабжения в отопительных котельных предусматривают установку баков-аккумуляторов.

Принципиальная тепловая схема паровой котельной при закрытых сетях.

АРМАТУРА И ГАРНИТУРА КОТЛА

Котельная арматура

Устройства и приборы, служащие для управления работой частей ко­тельного агрегата, находящихся под давлением, для включения, отключения и регулирования трубопроводов для воды и пара, основные предохранительные устройства носят название арматуры.

По своему назначению арматуру разделяют на запорную, регулирую­щую, продувочную и предохранительную.

Арматуру выполняют с принудительным приводом и самодействующей.

По конструкции приводную арматуру разделяют на вентили, задвижки и краны, а самодействующую - на предохранительные и обратные клапаны и конденсатоотводчики.

К арматуре условно относят также водомерные стекла и другие водоуказательные приборы.

Вентили и задвижки

Вентили применяют в качестве регулирующих и запорных устройств (рис. 3). Как запорную арматуру их применяют при диаметрах прохода до 109-150 мм.

а - запорный фланцевый; б - регулирующий:

1 - корпус; 2 - затвор; 3 - фланец; 4 -сшгьниковое уплотнение;

5 - шпиндель; 6 - штл рвач (маховик); 7 - траверса; 8 - крышка;

9 - клапанное седло

В запорном вентиле уплотняющая поверхность клапана плотно примы­кает к поверхности седла. Вентиль состоит из корпуса, крышки, шпинделя, на котором висит клапан. В корпусе имеется седло клапана. В месте прохода шпинделя через крышку установлено сальниковое уплотнение.

В регулирующем вентиле клапан имеет переменное сечение. Это дает возможность изменять проходное сечение. Регулирующий клапан выполняют в виде профилированной иглы, пустотелого золотника и т. д. В полностью за­крытом состоянии они не обеспечивают полной плотности. Обычно регули­рующие клапаны рассчитывают на работу с перепадом давления 1,0 МПа.

Основным показателем работы регулирующего клапана является его ха­рактеристика (зависимость относительного расхода среды от степени откры­тия клапана) (рис. 3 б).

Для целей регулирования наиболее благоприятна линейная характери­стика, для чего требуется выполнение регулирующих органов со сложным профилем открывающихся окон для перетока среды. Регулирующий клапан золотникового типа имеет пустотелый золотник с профилированными окнами, который шпинделем приводится в поступательное движение. При перемеще­нии золотника относительно двух седел происходит изменение степени открытия окон.

В скальчатых регулирующих клапанах регулирующий орган выполнен в виде скалки, имеющей коническую форму вблизи седел. При перемещении скалки изменяется кольцевой зазор между ней и седлами клапана.

В игольчатых регулирующих клапанах регулировка достигается за счет перемещения профилированной иглы.

Задвижки в основном используют в качестве запорных органов (рис. 4), хотя имеются и специальные конструкции регулировочных задви­жек. В задвижках запирающий орган (клин, диски) перемещается в направле­нии, перпендикулярном потоку. По принципу прижатия запорного органа за­движки разделяют на клиновые, с параллельно-принудительным затвором и самоуплотняющиеся.

В клиновых задвижках запирающий орган выполняют из целого или разрезного клина.

Коэффициент гидравлического сопротивления задвижек b = 0,25-0,8, а у запорных вентилей b = 2,5-5.

Задвижки

а - клиновая бесфланцевая с приводом; б - параллельная фланцевая

1- уплотнительные диски; 2 - распорное устройство; 3 - корпус;

4 - крышка; 5 - рычаг дистанционного приво­да; 6 - маховик; 7 - зубчатое колесо; 8 - траверса; 9 - сштьниковое уплотнение;

10 -шпиндель; 11- ушготнительное кольцо.

Клапаны

Клапаном называется запорный или регулирующий орган автоматиче­ского действия.

У паровых котлов имеются обратные, питательные, редукционные и пре­дохранительные клапаны.

Обратный клапан препятствует движению рабочей среды в обратном направлении. Так, например, обратные клапаны на питательных линиях за­крываются при аварийном падении давления в питательных трубопроводах и препятствует выпуску воды из котла.

По конструкции обратные клапаны подразделяют на подъемные и пово­ротные.

В подъемных клапанах (рис. 5, а) запорным органом является тарелка (золотник) 2, хвостовик которой входит в направляющий канал прилива крыш­ки 1.

В поворотных клапанах (рис.5, б) тарелка 6 поворачивается вокруг оси 7 и перекрывает проход.

Обратные клапаны устанавливают в котельных обычно на напорных ли­ниях центробежных насосов, на питательных линиях перед котлом для про­пуска воды только в одном направлении и в других местах, где имеется опас­ность обратного движения среды.


а - подъемный; б - поворотный:

1 - крышка; 2 - золотник; 3 - корпус; 4 - ось клапана; 5 - рычаг;

6 - тарелка; 7 - ось рычага.

Питательный клапан служит для автоматического регулирования пита­ния котла в соответствии с расходом пара.

В клапанах, устанавливаемых на современных котлах, вода прижимает к седлу вертикальный шибер.

Предохранительный клапан представляет собой запорное устройство, которое автоматически открывается при повышении давления. Устанавливают его на барабанных котлах, паропроводах, резервуарах и др. При открытии кла­пана среда сбрасывается в атмосферу. Предохранительные клапаны могут быть рычажными (рис. 7 а), пружинными (рис. 7 б) и импульсными (рис. 8).

а - однорычажный; б - пружинный:

1 - корпус; 2 - затвор; 3 - шпиндель;

4 - крышка; 5 -рычаг; 6 - груз; 7 - пружина

В рычажном клапане запирающий орган (тарелка) удерживается в за­крытом состоянии грузом. В пружинном предохранительном клапане давле­нию среды на тарелку противодействует сила натяга пружины.

Предохранительные клапаны выполняют как одинарными, так и двой­ными. В зависимости от высоты подъема тарелки клапаны разделяют на низ­коподъемные и полно подъемные. В полно подъемных клапанах площадь, от­крываемая проходу среды при подъеме клапана, превышает проход седла. Они обладают большей пропускной способностью, чем низкоподъемные.

В соответствии с правилами каждый котел паропроизводительностью более 100 кг/ч должен быть снабжен не менее чем двумя предохранительными клапанами, один из которых должен быть контрольным. На котлах производи­тельностью 100 кг/ч и менее может допускаться установка одного предохрани­тельного клапана.

Суммарная пропускная способность клапанов должна быть не менее ча­совой производительности котла. При наличии у котла неотключаемого паро­перегревателя часть предохранительных клапанов с пропускной способностью не менее 50 % суммарной пропускной способности должна быть установлена на выходном коллекторе.

Общая часть

Котельные с водогрейными котлами могут сооружаться для отпуска теплоты только в виде горячей воды при сжигании твер­дого, газообразного и жидкого топлива. Жидкое топливо обычно поступает в автоцистернах, т. е. в разогретом состоянии. Эти котельные могут работать как на закрытую, так и на открытую систему теплоснабжения.

Основной целью расчета любой тепловой схемы котельной яв­ляется выбор основного и вспомогательною оборудования с оп­ределением исходных данных для последующих технико-экономи­ческих расчетов.

При разработке и расчете тепловых схем котельных с водо­грейными котлами необходимо учитывать особенности их конструкции и эксплуатации.

Рис.1Схемы включения деаэраторов: а- вакуумного; б-атмосферного; в - атмосферного с охладителем деаэрированной воды

/ _ водоструйный эжектор; 2 - охладитель выпара; 3 - водо-водяной теплообменник; 4 - химически очищенная вода; 5 - деаэратор; 6 - горячая вода из прямой линии; 7 - охладитель деаэрированной воды; 8 - бак деаэрированной воды; 9 - подпиточный насос

Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изгото- вителем. Во избежание низкотемпературной и сернокислотной коррозии конвективных поверхностей нагрева температура воды на входе в котел при сжигании топлив, не содержащих серу, дол­жна быть не менее 60 °С, малосернистых топлив не менее 70 °С и высокосернистых топлив не менее 110 °С. Для повышения тем­пературы воды на входе в водогрейный котел при температурах воды ниже указанных устанавливается рециркуляционный насос. \/ В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Однако вакуумные деаэраторы требуют при эксплуатации тщательного надзора, поэтому в ряде котельных предпочитают устанавливать деаэраторы атмосферного типа.

Применяемые схемы включения вакуумных деаэраторов и де­аэраторов атмосферного типа показаны на рис. 1.

На рис. 1, а показан деаэратор, работающий при абсолют­ном давлении 0,03 МПа. Вакуум в нем создается водоструйным эжектором. Подпиточная вода после химводоочистки подогрева­ется в водо-водяном подогревателе горячей водой из прямой ли­нии с температурой 130-150 °С. Выделившийся пар борботирует поток деаэрируемой воды и направляется в охладитель вы­пара. Температура воды после деаэратора 70 °С.


На рис. 1, б показана схема деаэрации при давлении 0,12 МПа, т. е. выше атмосферного. При этом давлении темпера тура воды в деаэраторе 104 °С. Перед подачей в деаэратор хими­чески очищенная вода предварительно подогревается в водоводяном теплообменнике.


На рис. 1, в показана аналогичная схема деаэрации подпиточной воды, отличающейся от описанной тем, что после деаэрационной колонки вода поступает в охладитель деаэрированной воды, подогревая химически очищенную воду. Затем химически очищенная вода направляется в теплообменник, установленный перед деаэратором. Температура воды после охладителя деаэри­рованной воды обычно принимается равной 70 °С.

Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему при­соединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В на­стоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 2.

На рис. 2, а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 2, б, в показаны двухступен­чатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения. В соответствии со СНиП 11-36-73 выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Q гв / Q о ≤0 ,06 присоединение местных тепло­обменников производится по двухступенчатой последовательной схеме; при 0,6 < Q гв / Q о ≤1,2 - по двухступенчатой смешан­ной схеме; при Q гв / Q о ≥1.2-по параллельной схеме. При двухступенчатой последовательной схеме присоединения местных теплообменников должно предусматриваться переключение тепло­обменников на двухступенчатую смешанную схему.

Расчет тепловой схемы котельной базируется на решении уравнений теплового и материального баланса, составляемых для каждого элемента схемы. Увязка этих уравнений производится в конце расчета в зависимости от принятой схемы котельной. При расхождении предварительно принятых в расчете величин с по­лученными в результате расчета более чем на 3 % расчет следует повторить, подставив в качестве исходных данных полученные зна­чения.

Расчет тепловой схемы котельной с водогрейными котлами, работающей на закрытую систему теплоснабжения для трех режимов работы котельной

Котельная предназначена для тепло­снабжения жилых и общественных зданий на нужды отопления, вентиляции и горячего водоснабжения. Котельная расположена в г. и работает на малосернистом мазуте. Расчет в соот­ветствии со СНиП 11-35-76 ведется для трех режимов: максималь­но-зимнего, наиболее холодного месяца и летнего. Для горячего водоснабжения принята двухступенчатая последовательная схема подогрева воды у абонентов. Деаэрация химически очищенной воды производится в деаэраторе при давлении 0,12 МПа. Тепловые сети работают по температурному графику 150/70. Основные исходные и принятые для расчета данные приведены в задании на курсовую работу.

При расчете тепловой схемы в нижеуказанной последователь­ности определяются:

1.Коэффициент снижения расхода теплоты на отопление и вентиляцию

К ов =

2.Температура воды в подающей линии на нужды отопления и вентиляции для режима наиболее холодного месяца

t 1 = 18 + 64,5 К ов 0,8 + 67,5 К ов = 115.077

3.Температура обратной сетевой воды после систем отопления и вентиляции для режима наиболее холодного месяца

t 2 = t 1 - 80К ов = 58.197

4.Отпуск теплоты на отопление и вентиляцию для максимально-зимнего режима Q О.В = Q о +Q В =42+6.7=48.7

для режима наиболее холодного месяца

Q О.В = (Q о +Q В) К ов = (42+67)*0.711=34.625

5.Суммарный отпуск теплоты на нужды отопления, вентиля­ции и горячего водоснабжения:

8.Тепловая нагрузка подогревателя второй ступени для режима наиболее холодного месяца:

Q 11 г.в = G потр г.в - Q 1 г.в =12-5.24=6.76МВт

9.Расход сетевой воды на местный теплообменник второй ступени, т. е. на горячее водоснабжение, для режима наиболее холодного месяца:

10.Расход сетевой воды на местный теплообменник для лет­него режима:

G л г.в =

11. Расход сетевой воды на отопление и вентиляцию:

для максимально-зимнего режима

для режима наиболее холодного месяца

G о.в = =523.13 т/ч

12. Расход сетевой воды на отопление, вентиляцию и горячее водоснабжение: для максимально- зимнего режима

G вн = G о.в + G г.в =523.52+0=523.52

для режима наиболее холодного месяца

G вн = G о.в + G г.в = 523.52+102.20=625.72

для летнего режима

G вн = G о.в + G г.в = 0+140.72=140.72

13. Температура обратной сетевой воды после внешних потребителей:

t под обр = t 2 - 70 – =28.47

для режима наиболее холодного месяца

t под обр = t 2 - 58.197 –

для летнего режима

t под обр = t 1 - t 1 –

14. Расход подпиточной воды для восполнения утечек в тепловой сети внешних потребителей:

для максимально - зимнего режима

G ут = 0,01К тс G вн =0.01*1.8*523.52=9.42 т/ч

для режима наиболее холодного месяца

G ут = 0,01К тс G вн = 0.01*1.8*625.72=11.26 т/ч

для летнего режима

G ут = 0,01К тс G вн =0.01*2*140.72=2.81 т/ч

15. Расход сырой воды, поступающей на химводоочистку:

для максимально - зимнего режима

G с.в = 1,25 G ут = 1.25*9.42=11.77 т/ч

для режима наиболее холодного месяца

G с.в = 1,25 G ут =1.25*11.26=14.07 т/ч

для летнего режима

G с.в = 1,25 G ут = 1.25*13.28=16.6 т/ч

16. Температура химически очищенной воды после охладителя деаэрированной воды:

для максимально - зимнего режима

t II х.о.в = t I х.о.в = 20=48.53

для режима наиболее холодного месяца

t II х.о.в = t I х.о.в, = 20=54.10

для летнего режима

t II х.о.в = t I х.о.в = 20=60.22

17. Температура химически очищенной воды, поступающей в деаэратор:

для максимально - зимнего режима

t д х.о.в = t II х.о.в = 48.53=67.23

для режима наиболее холодного месяца

t д х.о.в = t II х.о.в = 54.10=72.80

для летнего режима

t д х.о.в = t II х.о.в = 60.22=78.92

18. Проверяется температура сырой воды перед химводоочисткой:

для максимально - зимнего режима

t I х.о.в = t с.в = 5=20.81

для режима наиболее холодного месяца

t I х.о.в = t с.в, = 15=18.2

для летнего режима

t I х.о.в = t с.в 15=16.5

19. Расход греющей воды на деаэратор:

для максимально - зимнего режима

G гр д = =1.60 т/ч

для режима наиболее холодного месяца

G гр д = = =2.46 т/ч

для летнего режима

G гр д = = =0.13 т/ч

20. Проверяется расход химически очищенной воды на подпитку тепловой сети:

для максимально - зимнего режима

G х.о.в = G ут - G г.в д = 9.42-1.60=7.82 т/ч

для режима наиболее холодного месяца

G х.о.в = G ут - G г.в д =11.26-2.46=8.8 т/ч

для летнего режима

G х.о.в = G ут + G г.в д = 2.81-0.13=2.67 т/ч

21. Расход теплоты на подогрев сырой воды:

для максимально - зимнего режима

Q с.в = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q с.в = 0,00116 =0,00116

для летнего режима

Q с.в = 0,00116 = 0,00116

22. Расход теплоты на подогрев химически очищенной воды:

для максимально - зимнего режима

Q х.о.в = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q х.о.в = 0,00116 = 0,00116

для летнего режима

Q х.о.в = 0,00116 = 0,00116

23. Расход теплоты на деаэратор:

для максимально - зимнего режима

Q д = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q д = 0,00116 = 0,00116

для летнего режима

Q д = 0,00116 =0,00116

24. Расход теплоты на подогрев химически очищенной воды в охладителе деаэрированной воды:

для максимально - зимнего режима

Q охл = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q охл = 0,00116 = 0,00116

для летнего режима

Q охл = 0,00116 = 0,00116

25. Суммарный расход теплоты, который необходимо получить в водогрейных котлах:

для максимально - зимнего режима

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл =60.7+0.22+0.17+0.15-0.25=60.99 МВт

для режима наиболее холодного месяца

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл = 53.3+0.21+0.19+0.23-0.37=53.56

для летнего режима

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл =9+0.02+0.05+0.007-0.13=8.94 МВт

26.Расход воды через водогрейные котлы:

для максимально - зимнего режима

G к = =

для режима наиболее холодного месяца

G к = =

для летнего режима

G к = =

27.Расход воды на рециркуляцию:

для максимально - зимнего режима

G рец = =

для режима наиболее холодного месяца

для летнего режима

28. Расход воды по перепускной линии:

для максимально - зимнего режима

G пер = =

для режима наиболее холодного месяца

для летнего режима

29. Расход сетевой воды от внешних потребителей через обратную линию:

для максимально - зимнего режима

G обр = G вн - G ут = 523.52-9.42=514.1 т/ч

для режима наиболее холодного месяца

G обр = G вн - G ут = 625.72-11.26=614.46 т/ч

для летнего режима

G обр = G вн - G ут = 140.72-2.81=137.91 т/ч

30. Расчетный расход воды через котлы:

для максимально - зимнего режима

G к ׳ = G вн + G гр под + G рец – G пер =523.52+5+224.04-0=752.56 т/ч

для режима наиболее холодного месяца

G к ׳ = G вн + G гр под + G рец – G пер = 625.72+5+111.20-220.37=521.55

для летнего режима

G к ׳ = G вн + G гр под + G рец – G пер = 140.72+0.7+81.37-66.30=154.49

31. Расход воды, поступающей к внешним потребителям по прямой линии:

для максимально - зимнего режима

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 752.56-1.60-224.04+0+5=531.9

для режима наиболее холодного месяца

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 521.55-2.46-111.20+220.37+5=633.26

для летнего режима

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 156.49-0.133-81.37+66.30+0.7=141.98

32. Разница между найденными ранее и уточненным расходом воды

внешними потребителями:

для максимально - зимнего режима

100% = 100%=1.60

для режима наиболее холодного месяца

100% = 100%=1.20

для летнего режима

100% = 100%=0.89

При расхождении, меньшем 3%, расчет считается оконченным.

Сводные данные результатов расчета тепловой схемы при­ведены в таблице.


.

Физическая Обо­ Номер Значение величины при характерных режимах работы котельной
величина зна­ чение формулы макси­ мально- зимнем наиболее холодного месяца лет­ нем
Коэффициент снижения расхода теплоты на отопление и вентиля­цию Ко.в (1) 0.7
Температура воды в подающей линии на нужды отопления и вен­тиляции, °С t 1 (2) 115.07
Температура обратной сетевой воды после систем отопления и вен­тиляции, °С t 2 (3) 58.1
после систем отопления и вен­тиляции, °С Отпуск теплоты на отопление и вентиляцию, МВт Q о.в (4) 48.7 34.6
Суммарный отпуск теплоты на отопление, вентиляцию, горячее водоснабжение, МВт Q (5) 60.7 53.3
Расход воды в подающей линии на отопление, вентиляцию и горя­чее водоснабжение, т/ч G вн (12) 523.52 625.72 140.72
Температура обратной воды по­сле внешних потребителей, °С (13) 28.47 50.85 56.12
Расход подпиточной воды для восполнения утечек в теплосети внешних потребителей, т/ч G ут (14) 9.42 11.26 2.81
Количество сырой воды, посту­пающей на химводоочистку, т/ч G с.в (15) 11.77 14.07 16.6
Температура химически очи­щенной воды после охладителя деаэрированной воды, °С (16) 48.53 54.10 60.22
Температура химически очищен­ной воды, поступающей в деаэра­тор, °С (17) 67.23 72.80 78.92
Расход греющей воды на деаэ­ратор, т/ч Суммарный расход теплоты, необходимый в водогрейных котлах, МВт Расход воды через водогрейные котлы, т/ч G гр д (19) 1.60 2.46 0.134
∑Q (25) 60.9 53.5 8.9
G к (26) 655.6 575.7 153.8
Расход воды на рециркуляцию, т/ч Расход воды по перепускной линии, т/ч (10.31)
G рец G пер (27) (28) 224.04 111.20 220.3 81.37 66.3
Расход воды через обратную линию, т/ч G обр (29) 514.1 614.4 137.9
Расчетный расход воды через котлы G к ׳ (30) 752.2 521.5 156.4

Сводная таблица расчета тепловой схемы котельной с водогрейными котлами

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Руководствуясь заданием на проектирование и исходными данными, полученными от заказчика, приступают к составлению, а затем и расчету тепловой схемы котельной, оборудованной стальными водогрейными котлами (рис. 3.2).

Рис. 3.2. Принципиальная тепловая схема водогрейной котельной

1 – сетевой насос; 2 – водогрейный котел; 3 – сетевой насос; 4 – подогреватель химочищенной воды; 5 – подогреватель сырой воды; 6 вакуумный деаэратор; 7 – подпиточный насос; 8 – насос сырой воды; 9 – химводоподготовка; 10 – охладитель выпара; 11 – водоструйный эжектор; 12 – расходный бак эжектора; 13 – эжекторный насос

Для уменьшения интенсивности наружной коррозии труб «хвостовых» поверхностей нагрева стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы уходящих из котлов дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60°С; при работе на малосернистом мазуте – не ниже 70°С; при работе на высокосернистом мазуте – не ниже 110°С. В связи с тем, что температура воды в обратных магистралях тепловых сетей почти всегда ниже 60°С, в обвязке водогрейных котлов предусматривают рециркуляционные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных карт котлоагрегатов.

При выполнении рабочих (монтажных) схем котельных применяют общестанционную или агрегатную схему компоновки оборудования. Выбор общестанционного или агрегатного способа в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них при компоновке по агрегатной схеме являются облегчение учета и регулирования расхода и параметров теплоносителя от каждого агрегата, уменьшения протяженности в пределах котельной сетевых трубопроводов большого диаметра и упрощения ввода в эксплуатацию каждого агрегата.

Тепловая схема котельной для открытой системы теплоснабжения отличается от таковой для закрытой в основном производительностью водоподготовки для подпитки тепловых сетей. Так как расходы воды при открытой системе неравномерны по времени, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности котлоагрегатов и оборудования водоподготовки предусматривают установку баков-аккумуляторов деаэрированной горячей воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается во всасывающую магистраль сетевых насосов. Суммарная емкость баков-аккумуляторов принимается в 10 раз большей среднечасового за сутки расхода воды на бытовое горячее водоснабжение.



Количество, единичная производительность и развиваемые напоры насосов котельной должны соответствовать требованиям регулирования работы тепловых сетей при экономном расходовании электроэнергии на их привод. Такие условия иногда диктуют необходимость использования в тепловых схемах котельных увеличенного количества насосов – сетевых (зимних и летних), перекачивающих, рециркуляционных и подпиточных (также зимних и летних).

При выборе системы теплоснабжения (закрытой или открытой) нужно учитывать, по меньшей мере, три особенности исходной воды, используемой для подпитки: склонность к низкотемпературному накипеобразованию; коррозионную активность; склонность к сульфидному загрязнению.

Страница 17 из 18

Котельная с водогрейными котлами

Рис. 28. Тепловая схема котельной с водогрейными котлами

Т5 – трубопровод горячей воды, подающий воду для технологических процессов (собственных нужд),

Т6 - трубопровод горячей воды, обратный для технологических процессов.

1. блок водогрейных котлов,

2. сетевой насос,

3. насос сырой воды,

4. подогреватель сырой воды,

5. блок ХВО,

6. подпиточный насос,

7. блок деаэрированной воды,

8. охладитель деаэрированной воды,

9. подогреватель химически очищенной воды,

10. вакуумный деаэратор,

11. охладитель выпара,

12. рециркуляционный насос.

  1. Надежность и экономичность водогрейных котлов (ВК) зависит от постоянства расхода пропускаемой через них воды, который не должен снижаться относительно расхода, установленного заводом – изготовителем;
  2. Во избежании низкотемпературной и сернокислой коррозии металла со стороны дымовых газов температура воды на входе в котел должна быть не ниже 60-70˚С, а для пиковых водогрейных котлов на ТЭЦ не ниже 110˚С. Для повышения температуры воды на входе в котел устанавливается рециркуляционный насос;
  3. В водогрейных котельных установках (ВКУ) устанавливаются вакуумные деаэраторы, который работают при абсолютном давлении 0,03 МПа. Вакуум создается водоструйным эжектором. Выделяющийся пар выполняет работу по деаэрации и напрвляется в охладитель выпара. Температура воды после деаэратора составляет 70˚С. В ВКУ готовят перегретую воду по наиболее распространенным температурным графикам (130-70 или 150-70).

К атегория: Монтаж котлов

Схемы котельных установок

На тепловой схеме котельной условными графическими изображениями показывают основное и вспомогательное оборудование, связанное линиями трубопроводов для транспортирования пара или воды. Тепловые схемы могут быть принципиальные, развернутые и рабочие или монтажные.

Принципиальная тепловая схема содержит лишь главное оборудование и основные трубопроводы без арматуры.

На развернутую схему наносят все оборудование котельной и все трубопроводы, включая арматуру и различные вспомогательные устройства. Часто развернутую схему разделяют на самостоятельные технологические части по функциональному признаку, например, схема водоподготовки, схема деаэрационно-питательной установки, схема дренажей, схема продувки паровых котлов и т. п.

Рабочую, или монтажную, схему выполняют с указанием отметок расположения трубопроводов, размеров, марок стали, способов креплений, массы оборудования, деталей и других необходимых сведений.

Принципиальная тепловая схема котельной с водогрейными котлами изображена на рис. 2. Вода из обратной линии тепловых сетей поступает к сетевым насосам. К ним же подпиточ-ными насосами из бака подводится вода, компенсирующая потери в сетях. Для поддержания заданной температуры воды перед котлами в трубопровод за насосом подают необходимое количество горячей воды, вышедшей из котлов. С помощью перепуска между обратной и подающей линиями регулируется температура воды, идущей в сеть. Сырая вода, пройдя подогреватель, водоподготовительную установку ВПУ, подогреватель, охладители и деаэратор, подается на подпитку тепловой сети.

Рис. 1. Принципиальная тепловая схема котельной с водогрейными котлами: 1 - водогрейный котел, 2.5 - насосы, 3 - рециркуляционный насос, 4 - насос сырой воды, 6 - бак подпиточной воды, 7 - подогреватель сырой воды, 8 - охладитель подпиточной воды. 9-подогреватель химочищенной воды, 10 - вакуумный деаэратор, 11- охладитель выпара, 12 - регулирующий клапан; ВПУ - водоподготовительная установка

Рис. 4. Схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе: 1 - конвейер, 2 - барабан котла, 3 - запорная задвижка, 4-выходная камера пароперегревателя, 5 - фестон, 6 - пароперегреватель, 7 - экономайзер, 8 - топочные поверхности нагрева, 9 - воздухоподогреватель, 10- золоуловитель, 11—- дымовая труба, 12- дымосос, 13 - вентилятор, 14 - шлаковый бункер, 15-насос, 16-химводо-очистка, 17-решетка, 18-питатель, 19 - деаэратор, 20- бункер угля, 21, 22 - трубы

Технологическая схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе, изображена на рис. 3. Ленточный конвейер подает подготовленное твердое топливо в расходный бункер, откуда оно через питатель поступает в топку, куда по двум направлениям подается воздух, нагретый в воздухоподогревателе до температуры 250…400 °С. Часть воздуха подводится к месту поступления топлива в топку. Мелкие частицы топлива подхватываются потоком воздуха и сгорают в топочном пространстве на лету в виде факела. Воздух, поступивший в топку вместе с топливом, называется первичным. Крупные куски топлива выпадают из воздушного потока на цепную решетку, которая непрерывно движется. По мере продвижения цепной решетки топливо сгорает, а шлак и зола сбрасываются в шлаковый бункер.

Воздух, необходимый для горения топлива на полотне цепной решетки, засасывается дутьевым вентилятором через возду-хозаборную шахту и подается через воздухоподогреватель 9 под слой топлива через специальные колосники. Этот воздух называют также первичным.

В процессе сгорания топлива негорючие частички золы плавятся и образуют шлаки. При слоевом сжигании топлива основная масса золы и шлака остается на решетке. Однако часть золы в виде жидких и тестообразных шлаков вместе с несгорев-шими частицами топлива топочные газы захватывают и выносят из топочной камеры. Для дожигания несгоревших частиц топлива в верхнюю часть факела подают вторичный воздух. Чтобы исключить налипание частичек шлака на трубы фестона 5, температуру топочных газов на выходе из топочной камеры поддерживают ниже температуры плавления золы (1000…) 100 °С).

В топочной камере теплота от горящего топлива воспринимается поверхностями нагрева в виде лучистой энергии (излучения), которую называют радиацией. Поверхности нагрева, расположенные в топке, называют поэтому радиационными. Передача теплоты излучением в несколько раз эффективнее передачи теплоты конвекцией, поэтому в современных котлах стены топочной камеры стремятся более плотно закрыть трубами. Радиационные поверхности нагрева защищают (экранируют) внутреннюю поверхность обмуровки котла от высоких температур и химического воздействия расплавленных шлаков и поэтому называются экранными.

Задний топочный экран в верхней части топки разрежен и образует так называемый фестон. За фестоном в горизонтальном газоходе расположены конвективные поверхности нагрева из труб диаметром 30…40 мм, которые образуют пароперегреватель. Отдав часть теплоты пароперегревателю, топочные газы поступают в опускной газоход, в котором располагаются водяной экономайзер и воздухоподогреватель. Уходящие топочные газы, охлажденные до температуры 120… 180 °С, проходят через золоулавливатель, где очищаются от летучей золы, и дымососом выбрасываются через дымовую трубу в атмосферу. Частицы золы из золоуловителя и шлак из бункера системой шлакозолоудаления выносятся из котельной.

Экранные трубы топки находятся в зоне высоких температур, поэтому необходимо интенсивно отводить теплоту с помощью циркулирующей в этих трубах воды. Если на внутренних стенках экранных труб образуется накипь, то это затрудняет передачу теплоты от раскаленных продуктов сгорания к воде или пару и может привести к перегреву металла и разрыву труб под действием внутреннего давления. Для того чтобы накипь не образовывалась, воду, поступающую для питания котлов, предварительно обрабатывают.

Обработка воды заключается в том, что из нее удаляют большую часть плохо растворимых в воде солей кальция и магния (соли жесткости), а также кислород и углекислый газ, которые вызывают коррозию металла труб, барабана и камер. Предварительная обработка воды называется водоподготовкой, а обработанная вода, пригодная для питания котлов, - питательной. Вода, находящаяся внутри котла, называется котловой.

Поскольку в котле поддерживается давление выше атмосферного, питательную воду подают в котел принудительно питательным насосом, который забирает воду из деаэратора и подает ее через водяной экономайзер в барабан котла. Барабан служит для создания необходимого запаса котловой воды, обеспечения естественной циркуляции воды и сепарации пара.

Из барабана вода через необогреваемые водоопускные (во-доподводящие) трубы и камеры поступает в трубы поверхностей нагрева, в которых она нагревается, вскипает и в виде пароводяной смеси возвращается в барабан. Пар в барабане паросепарационными устройствами отделяется от капелек котловой воды, обладающих повышенным солесодержанием, и отводится в пароперегреватель. Отделившаяся вода смешивается в барабане котла с добавочной питательной водой и возвращается в трубы поверхностей нагрева.

Естественная циркуляция воды в котле осуществляется за счет разности плотностей воды в необогреваемых (или слабо обогреваемых) водоопускных трубах и пароводяной смеси в интенсивно обогреваемых трубах поверхностей нагрева. Поскольку плотность пароводяной смеси значительно меньше плотности воды, общий собственный вес столба пароводяной смеси в интенсивно обогреваемых трубах меньше собственного веса воды в необогреваемых или слабо обогреваемых водоопускных трубах.

В тех случаях, когда в паровых котлах по конструктивным соображениям затруднительно создать надежную циркуляцию котловой воды за счет естественного напора, применяют специальные насосы, которые обеспечивают высокие скорости движения воды по всему циркуляционному контуру. Такую принудительную систему циркуляции применяют также в водогрейных котлах.

Непрерывно поступающие в котел с питательной водой соли и образующийся в котловой воде шлам скапливаются в водяном объеме котла. Чтобы соли жесткости и щелочи не накапливались в котловой воде, часть воды из котла непрерывно отводят, при этом одновременно добавляют питательную воду с меньшим солесодержанием. Этот процесс называют непрерывной продувкой.

Непрерывную продувку осуществляют из верхнего барабана котла через дырчатые трубы. Расход воды при непрерывной продувке зависит от ее качества и составляет обычно 1…2% от производительности котла. Вода, удаляемая из котла с непрерывной продувкой, направляется в расширитель (сепаратор) и в дальнейшем используется в технологической схеме котельной установки для подогрева сырой или химически очищенной воды.

Для удаления скапливающегося в нижних точках котла (нижних камерах и барабанах) шлама применяют периодическую продувку. При периодических продувках воду, содержащую значительное количество шлама, направляют в расширитель периодических продувок (барботер), откуда образовавшийся пар отводится в атмосферу, а остаток воды со шламом сливается в канализацию.

Вместе с нагретой котловой водой, удаляемой с непрерывной продувкой из котла, отводится значительное количество теплоты, тем большее, чем больше процент продувки. Кроме того, приходится увеличивать расход питательной воды на подпитку котла. Поэтому количество продувочной воды должно быть минимальным. Чтобы сократить расход питательной воды при непрерывной продувке, применяют двухступенчатое испарение.

Паросепарационные устройства, используемые для очистки и осушения пара, могут быть внутри- или внебарабанные. Внеба-рабанные паросепарационные устройства выполняют обычно в виде выносных циклонов.

В пароперегревателе пар доводится до номинальной температуры и через выходную камеру и запорную задвижку подается по паропроводам к потребителю.

В том случае, если потребителю необходимо подать горячую воду, полученный в паровом котле пар пропускают через систему теплообменников. При этом в РОУ уменьшают давление пара, а в теплообменниках - водоподогревателях пар нагревает воду сетевой установки. Далее нагретая сетевая вода поступает по трубопроводам к потребителю.

Сложность технологической схемы котельной зависит от вида сжигаемого топлива и системы теплоснабжения, которая бывает открытой и закрытой.

В открытых системах теплоснабжения нагретая в котельной вода служит не только теплоносителем, но и поступает на нужды горячего водоснабжения путем непосредственного разбора из трубопроводов тепловой сети без промежуточных подогревателей абонентских узлов горячего водоснабжения. При этом количество подпиточной воды определяется потерями в сетях и расходом воды на горячее водоснабжение.

Для закрытых систем теплоснабжения характерно наличие замкнутого (закрытого) контура с циркулирующим теплоносителем, который отдает свою теплоту в водоводяных подогревателях районных тепловых пунктов. Количество подпиточной воды определяется только потерями в сетях, поэтому даже в мощных водогрейных котельных устанавливают один подпиточный деаэратор небольшой производительности.

Выбор системы теплоснабжения производят путем технико-экономических расчетов.



- Схемы котельных установок

Что еще почитать