Теплонасосные установки в россии. Комплексное применение теплонасосных установок

Принципиальная схема теппонасосной установки (а и изображение в диаграмме Т - s ее обратимого цикла (б.  

Теплонасосные установки могут успешно и эффективно применяться в установках совместного зимнего отопления и летнего кондиционирования воздуха; в установках совместного получения холода и тепла; в выпарных опреснительных и ректификационных установках; на гидростанциях для использования тепла воздуха и водорода, охлаждающих электрические генераторы; на нефтеперерабатывающих и нефтехимических заводах при использовании тепла горячих нефтепродуктов и горячей воды (t 60 Ч - 120 С) для получения водяного пара давлением 10 кГ / еж2 и горячей воды температурой 130 - 150 С.  

Теплонасосная установка, которая служит в зимнее время для отопления курортного зала, использует в качестве источника теплоты морскую воду. Как изменится тепловая мощность установки, если она будет работать по внутреннему обратимому циклу Карно при тех же температурных напорах в испарителе и конденсаторе. Как изменится отопительный коэффициент, если устранить внешнюю необратимость в теплообменниках установки, работающей по обратному циклу Карно.  


Теплонасосные установки наиболее целесообразно использовать для удовлетворения постоянной тепловой нагрузки при наличии постоянного источника низкопотенциальной теплоты и при относительно небольшом необходимом теплоподъеме, т.е. при небольшом значении & TTS-Та или при отношении TS / TB, близком к единице. Такие условия обычно имеют место при удовлетворении с помощью теплона-сосных установок сравнительно постоянной промышленной тепловой нагрузки невысокого потенциала или нагрузки горячего водоснабжения, при наличии отходов низкопотенциальной промышленной теплоты с температурой 20 - 40 С и выше. В этих условиях Теплонасосные установки как по энергетическим показателям (расходу топлива), так и по приведенным затратам вполне конкурентоспособны с высокоэкономичными котельными установками.  

Теплонасосная установка (Heat pump plant) состоит из теплового насоса, установки для отбора теплоты от ее источника и другого оборудования.  

Теплонасосная установка, как правило, имеет более высокую начальную стоимость, чем отопление, действующее от котла.  


Теплонасосные установки наиболее целесообразно использовать для удовлетворения постоянной тепловой нагрузки при наличии постоянного источника низкопотенциальной теплоты и при относительно небольшом необходимом теплоподъеме, т.е. при небольшом значении & ТТВ-Ts или при отношении ТБ / ТВ, близком к единице. Такие условия обычно имеют место при удовлетворении с помощью теплона-сосных установок сравнительно постоянной промышленной тепловой нагрузки невысокого потенциала или нагрузки горячего водоснабжения, при наличии отходов низкопотенциальной промышленной теплоты с температурой 20 - 40 С и выше. В этих условиях Теплонасосные установки как по энергетическим показателям (расходу топлива), так и по приведенным затратам вполне конкурентоспособны с высокоэкономичными котельными установками.  

Двухступенчатые теплонасосные установки иногда применяются в системах теплоснабжения, покрывающих отопительную нагрузку.  


Впервые парокомпрессионная аммиачная теплонасосная установка была использована для отопления помещения в 1930 г. С тех пор было сооружено большое число тепловых насосов. Есть основания полагать, что в дальнейшем использование тепловых насосов будет более широким.  

Физические свойства водного раствора хлористого натрия.| Физические свойства водного раствора хлористого кальция.| Физические свойства водных растворов пропиленгликоля.  

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по–прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух–трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй – объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода–вода, вода–воздух, воздух–вода, воздух–воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ–кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ–кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно–технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно–промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода–воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно–вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода–вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух–вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода–вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода–вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух–воздух в системе вентиляции, или типа вода–вода для утилизации тепла, например, холодильных агрегатов, или какие–то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в­третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в­четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть–Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во–первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во–вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода–вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Как противостоять опасности возгорания воздуховодов

За последнее время резко увеличилось количество пожаров и даже взрывов внутри воздуховодов систем вентиляции и кондиционирования. Несмотря на то, что подобные пожары происходили всегда, изменения, произошедшие в последние время, стали причиной возникновения куда более крупных возгораний с участием большего числа людей.

Анализ перспективных систем теплоснабжения

В этом докладе рассмотрены вопросы, связанные с переходом систем централизованного теплоснабжения на децентрализованное. Рассмотрены положительные и отрицательные стороны обеих систем. Представлены результаты проведенного сопоставления этих систем.

Теплонасосные агрегаты и установки следует рассматривать как устройства, осуществляющие полный цикл циркуляции хладагента и приборы регулирования, включающих в себя привод. Причем в теплонасосных агрегатов относятся компактные, готовые к работе блоки, а в теплонасосных установок - комплексы, состоящие из нескольких отдельных устройств или блоков. В зависимости от вида нагрузки со стороны источника и приемника тепловые насосы можно классифицировать в соответствии с табл. 1.2.

Установлено, что благодаря одинаковому термодинамическому круговом цикла холодильных установок и тепловых насосов и незначительном расхождении температурных интервалов оборудования тепловые насосы следует подбирать непосредственно из ассортимента, который применяется для холодильного оборудования с некоторыми модификациями, и только в некоторых случаях требуется разработка специальных узлов.

Таблица 1.2.

Термоэлектрические тепловые насосы не получили до сих пор распространение через низкий коэффициент преобразования.

Компрессионные теплонасосные установки

К ТН малой мощности относятся небольшие водоподогреватели и и оконные кондиционеры, включающих в себя тепловые насосы. В целом тепловые насосы, предназначенные преимущественно для производства тепла при мощности 2 ... 3 кВт, не могут конкурировать с простыми электронагревательными устройствами (с нагревателем электроопору) через высокие удельные расходы. Только агрегаты, предназначенные в основном для производства холода и выработки теплоты, благодаря возможности простого переключения имеют практическое значение. Это, в частности, оконные кондиционеры с переключением (рис. 1.29).

Такие агрегаты, как правило, состоят из холодильной машины с герметичным корпусом, испарителя и конденсатора с принудительной циркуляцией воздуха. С помощью четырехходовой вентиля они могут переключаться на режим теплового насоса, то есть осуществлять отопление помещений. Каждый вентилятор имеет устройство для переключения работы испарителя на конденсатор, и на перемещение внутреннего и наружного воздуха.

Рис. 1.29. А - схема коммуникаций; б - схема включения кондиционера; в - схема включения теплового насоса; / -конденсатор; // - Дроссель; Ш компрессор; IV- испаритель

Тепловая мощность составляет 1,5 ... 4,5 кВт. Коэффициент преобразования при температуре помещения 21 ° С и внешней 7,5 ° С редко превышает 2.

Часть кондиционеров большой мощности, предназначенных для общих промышленных зданий, также выполняется с переключением на работу по схеме теплового насоса.

Компрессионные тепловые насосы также могут работать с приводом от тепловых двигателей. В этом случае весь агрегат состоит из компрессионного теплового насоса и теплового двигателя. Преобразования химической энергии топлива в теплоту происходит непосредственно внутри теплового двигателя (например, двигателя Стирлинга). В двигателе согласно термодинамического кругового цикла часть теплоты переходит в механическую энергию, которая приводит в действие собственный компрессионный тепловой насос, благодаря чему увеличивается полезный температурный уровень низкотемпературного окружающей среды или отработанной теплоты. Отработанная теплота двигателя также может быть использована. Теплообменник отработанной теплоты в зависимости от температурных условий подключается параллельно или последовательно конденсатора компрессионного теплового насоса или тепло подводится к специальным потребителей.

Как приводы в принципе могут быть использованы тепловые двигатели всех типов, однако наиболее удобные газовые и дизельные двигатели, потому что они работают на природном газе и нефти - высококачественных носителях первичной энергии, применяемых для отопления. Полученная теплота с помощью такой системы отопления с двигателем может сократить расход первичной энергии примерно вдвое по сравнению с обычным способом получения тепла при сжигании топлива.

Можно достичь коэффициента преобразования, равного 1,8 ... 1,9.

Абсорбционные теплонасосные установки

По степени агрегатирования АПТ разделяются на агрегатирован (с конструктивным объединением всех элементов в один или несколько блоков) и неагрегатировани (с отдельно выполненным элементами АПТ). К агрегатирован относятся бромистолитиеви АПТ.

В зависимости от схемы включения АПТ в технологические процессы различных производств их можно разделить на автономные, не зависящие от схемы технологического процесса, и встроенные - с объединением части цикла АПТ с технологическим процессом.

Число абсорбционных тепловых насосов, выпускаемых до сих пор, небогатое, но уже достигнуты высокие коэффициенты трансформации. При этом абсорбционные тепловые насосы могут более полно отвечать специальным условиям источников тепла и приводной энергии, чем компрессионные.

В Германии, например, выпускаются абсорбционные тепловые насосы с тепловой мощностью 1 ... 3 МВт. Коэффициент трансформации зависит от рабочей температуры и температуры испарения. Для малых установок нельзя достичь высоких показателей (С, < 1,5). В разных странах проводятся работы по совершенствованию малых абсорбционных тепловых насосов.

Становятся все менее выгодными и утрачивают свою актуальность. Сжигание газового или жидкого топлива в котлах, как никогда прежде, отягощает бюджет. Существенной экономии можно достичь, если использовать тепловые насосы для отопления дома. В них заложен принцип потребления бесплатной природной энергии, которая повсюду. Ее нужно только взять.

Эффективность вложений

Сжиженный газ и дизельное топливо не могут соперничать с тепловыми насосами ни по текущим затратам, ни по комфорту эксплуатации. Использование для отопления твердого топлива трудно поддается автоматизации и требует больших трудозатрат. Электроэнергия комфортный, но дорогой вид энергии. Для подключения электрического котла нужна отдельная мощная линия. До сих пор в отечественных условиях природный газ оставался наиболее востребованным и удобным видом топлива. Но он имеет ряд недостатков:

  1. Оформление разрешений.
  2. Согласование проекта в контролирующих органах и с соседями.
  3. Часть операций по врезке и подключению могут выполнять только уполномоченные организации.
  4. Периодическая поверка счетчика.
  5. Ограниченное распространение сети и удаленность точек подключения.
  6. Высокие затраты на прокладку питающей линии.
  7. Газоиспользующее оборудование является источником потенциальной угрозы и требует регламентированного контроля.

Существенным недостатком теплового насоса можно считать только высокие капитальные вложения на этапе закупки оборудования и монтажа. Цена стандартной отопительной системы на тепловом насосе с геотермальным теплообменником складывается из стоимости работы бурильщиков и специфического оборудования с монтажом. В комплект входят:

Работы выполняются квалифицированным персоналом с профессиональным инструментом. Несколько более высокие первоначальные затраты уравновешивается серьезными достоинствами:

  1. Теплонасосная установка очень экономична, что позволяет окупить дополнительные затраты всего за несколько сезонов.
  2. Есть широкие возможности для реализации гибкого автоматизированного управления с минимумом обслуживания.
  3. Комфорт использования.
  4. Хорошая приспособленность для установки в жилых помещениях, благодаря эстетичному и современному дизайну.
  5. Охлаждение помещений на базе того же комплекта оборудования.
  6. При работе на охлаждение помимо активного режима работы есть возможность использования пониженной температуры природной воды и грунта для реализации пассивного режима без лишних затрат энергии.
  7. Невысокая мощность оборудования не требует прокладки питающего кабеля большого сечения.
  8. Отсутствие необходимости в разрешительной документации.
  9. Возможность использования существующей разводки отопительных приборов.

На производство 1 кВт тепловой мощности достаточно затратить не более 250 Вт. Для отопления частного домовладения на 1 м.кв. площади потребляется всего около 25 Вт/час. И это с учетом горячего водоснабжения. Еще больше повысить энергоэффективность можно путем улучшения теплоизоляции дома.

Как это работает

Тепловой насос, принцип работы которого основан на цикле Карно, расходует энергию не на нагрев теплоносителя, а на перекачивание внешнего тепла. Технология не нова. Тепловые насосы трудятся в наших домах в составе холодильников уже десятки лет. В холодильнике тепло из камеры перемещается наружу. В новейших отопительных установках реализуется обратный процесс. Несмотря на низкую температуру за бортом, энергии там предостаточно.

Забирать тепло у более холодного тела и отдавать его более горячему становиться возможным, благодаря свойству вещества потреблять энергию при испарении и выделять ее при конденсации, а также повышать свою температуру в результате сжатия. Необходимые условия для кипения и испарения создаются путем изменения давления. В качестве рабочего тела используют жидкость с низкой температурой кипения – фреон.

В тепловом насосе преобразования происходят в 4 этапа:

  1. Охлажденное ниже температуры внешней среды жидкое рабочее тело циркулирует по контактирующему с ней змеевику. Жидкость нагревается и испаряется.
  2. Газ сжимается компрессором, в результате чего его температура превышается.
  3. В более холодном внутреннем змеевике происходит конденсация с выделением тепла.
  4. Жидкость перепускается через дросселирующее устройство для поддержания разности давлений между конденсатором и испарителем.

Практическая реализация

Непосредственный контакт испарителя и конденсатора с внешней и внутренней средой не характерен для систем отопления на базе тепловых насосов. Передача энергии происходит в теплообменниках. Прокачиваемый по внешнему контуру теплоноситель отдает тепло холодному испарителю. Горячий конденсатор передает его в систему отопления дома.

Эффективность такой схемы сильно зависит от разности температур внешней и внутренней сред. Чем она меньше, тем лучше. Поэтому тепло редко отбирают у наружного воздуха, температура которого может быть очень низкой.

По месту забора энергии различают установки следующих типов:

  • «грунт-вода»;
  • «вода-вода»;
  • «воздух-вода».

В качестве теплоносителя в грунтовых и водяных системах используют безопасные незамерзающие жидкости. Это может быть пропиленгликоль. Использование этиленгликоля для таких целей не допускается, так как при разгерметизации системы он вызовет отравление почв или водоносных горизонтов.

Установки «грунт-вода»

Уже на небольшой глубине температура грунта мало зависит от погодных условий, поэтому грунт является эффективной внешней средой. Ниже 5 метров, условия не меняются в любое время года. Различают 2 типа установок:

  • поверхностный;
  • геотермальный.

В первых на участке роются протяженные траншеи на глубину ниже уровня промерзания. В них кольцами раскладываются пластиковые трубы сплошного сечения и засыпаются землей.

В геотермальных системах теплообмен происходит на глубине, в скважинах. Высокие и постоянные температуры в глубинах земли дают хороший экономический эффект. На участке бурятся скважины глубиной от 50 до 100 м в необходимом по расчету количестве. Для одних строений может быть достаточно 1 скважины, для других и 5 будет мало. В скважину опускаются теплообменные зонды.

Установки «вода-вода»

В таких системах используется энергия незамерзающей зимой воды на дне рек и озер или грунтовых вод. Различают 2 типа водяных установок в зависимости от места реализации теплообмена:

  • в водоеме;
  • на испарителе.

Первый вариант является наименее затратным в плане капитальных вложений. Трубопровод просто погружается на дно близлежащего водоема и фиксируется от всплытия. Второй применяют при отсутствии в непосредственной близости водоемов. Бурят 2 скважины: расходную и приемную. Из первой вода перекачивается во вторую через теплообменник.

Установки «воздух-вода»

Воздушный теплообменник устанавливается просто рядом с домом или на крыше. Через него прокачивается наружный воздух. Такие системы менее эффективны, но дешевы. Улучшить характеристики помогает установка в подветренных местах.

Самостоятельная сборка системы

При большом желании можно попробовать установить тепловой насос своими руками. Приобретается мощный фреоновый компрессор, бухта медных труб, теплообменники и другие расходные материалы. Но тонкостей в этой работе много. Состоят они не столько в выполнении монтажных работ, сколько в правильном расчете, настройке и балансировке системы.

Достаточно неудачно подобрать фреоновую магистраль, чтобы попавшая в компрессор жидкость мгновенно вывела его из строя. Сложности также могут возникнуть с реализацией автоматического регулирования производительности системы.

Использование: в установках для отопления и охлаждения помещений с постоянно действующей вентиляцией. Сущность изобретения теплонасосная установка содержит теплообменник 1, испаритель 4, инжектор-абсорбер 6, напорно-разделительный бачок 9 и жидкостной насос 7. Испаритель 4 и инжектор-абсорбер 6 соединены по меньшей мере одним капилляром 5. Испаритель 4 выполнен из трех полостей и заполнен пористым телом 16. 5 з.п. ф-лы, 2 ил.

Изобретение относится к теплонасосным установкам, базирующимся на абсорбционных агрегатах, в частности к установкам для отопления и охлаждения помещений с постоянно действующей вентиляцией. В основу работы всех тепловых насосов заложены термодинамическое состояние и параметры, определяющие это состояние: температура, давление, удельный объем, энтальпия и энтропия. Работа всех тепловых насосов заключается в том, что тепло изотермически подводится при низкой температуре и изометрически отводится при высокой температуре. Сжатие и расширение производится при постоянной энтропии, а работа производится от внешнего двигателя. Тепловой насос можно охарактеризовать как умножитель тепла, использующий низкопотенциальное тепло различных тепловыделяющих сред, таких как окружающий воздух, грунт, грунтовые и сточные воды и т.п. В настоящее время известно множество различных тепловых насосов с различными рабочими телами. Такое разнообразие вызвано существующими ограничениями использования того или иного вида теплового насоса, которые накладываются не только техническими проблемами, но также законами природы. Наиболее распространенными являются насосы с механической компрессией пара, затем насосы с абсорбционным циклом и двойным циклом Ренкина. Насосы с механической компрессией не находят широкого использования в виду необходимости наличия сухого пара, что вызвано особенностями механики большинства компрессоров. Попадание жидкости вместе с паром на вход компрессора может повредить его клапаны, а поступление большого количества жидкости в компрессор может вообще вывести его из строя. Наиболее широко используются насосы абсорбционного типа. Процесс работы абсорбционных установок основан на последовательном осуществлении термохимических реакций поглощения рабочего агента абсорбентом, а затем освобождения (десорбции) абсорбента от рабочего агента. Как правило, рабочим агентом в абсорбционных установках служит вода либо иные растворы, способные поглощаться абсорбентом, в качестве абсорбентов могут быть использованы соединения и растворы, легко поглощающие рабочее тело: аммиак (NH 3), серный ангидрит (SO 2), двуокись углерода (CO 2), едкий натр (NaOH), едкий калий (KOH), хлористый кальций (CACl 2) и т.д. Известна, например, теплонасосная установка (авт. св. СССР N 1270499, кл. F 25 B 15/02, 29/00, 1986), содержащая абсорбционный холодильный агрегат с контуром хладагента, конденсатор, переохлодитель, испаритель, дефлегматор и регенеративный теплообменник, а также контур отопительной воды, проходящей через конденсатор, линию вентиляционного воздуха, проходящую последовательно через абсорбер и переохладитель, контур отопительной воды выполнен замкнутым и в него дополнительно включен дефлегматор. Установка дополнительно содержит двухполостной теплообменник -переохладитель, который одной полостью включен в контур хладагента между переохладителем и испарителем, а другой- в линию вентиляционного воздуха перед абсорбером. Описанная установка громоздка и металлоемка, так как имеет узлы и системы, работающие при повышенном давлении. Кроме того, достижения высоких энергетических показателей в известной установке используют в качестве теплоносителя аммиак и его водные растворы, которые являются ядовитыми и коррозионно агрессивными. Наиболее эффективны теплонасосные установки абсорбционно-инжекторного типа. Известна тепловая установка (авт. св. СССР N 87623, кл. F 25 B 15/04, 1949), включающая генератор аммиачного пара (испаритель), заполненного высококонцентрированным водоаммиачным раствором, с расположенным внутри него змеевиком из стальных труб, в который подается пар низкого давления, служащий для испарения аммиака, абсорберы высокого давления (инжекторы), насосы, трубчатую систему тепла, генератор высокого пара, подогреватель конденсата пара низкого давления, охладитель, служащий одновременно подогревателем. Описанная установка позволяет повысить давление пара при высоком значении термического коэффициента полезного действия за счет того, что абсорбер установки имеет инжекторы, служащие для повышения давления, полученного в генераторе аммиачного пара, с помощью подаваемого насосом из генератора обедненного раствора. Однако в описанной установке используют агрессивные среды, что требует использования специальных материалов высокой коррозионной стойкости. Это значительно удорожает установку. Целью изобретения является создание упрощенной, экологически безвредной, экономичной установки, имеющей высокие энергетические характеристики. Эта задача решается тем, что теплонасосная установка, содержащая теплообменник, испаритель, инжектор-абсорбер, жидкостной насос, напорно-разделительный бачок, испаритель и инжектор-абсорбер, которые согласно изобретению, соединены между собой по меньшей мере одним капилляром, а испаритель выполнен трехполостным, одна полость которого соединена с теплообменником линией вентиляционного воздуха, другая заполнена теплоносителем, разделенные полостью вакуума, подключенной к инжектору-абсорберу, причем испаритель содержит пористое тело, размещенное одновременно во всех указанных полостях. Исполнение в установке связи между испарителем и инжектором-абсорбером в виде термодинамически прерывной системы, соединенной по меньшей мере одним капилляром, позволяет вести процесс получения тепла в области, далекой от термодинамического равновесия, что значительно интенсифицирует тепломассообмен в рассматриваемой системе. Можно соединить испаритель и инжектор-абсорбер несколькими капиллярами. Это усилит эффект тепломассообмена в рассматриваемой системе. Исполнение испарителя с тремя независимыми, разделенными полостями и с пористым телом, размещенным одновременно во всех трех полостях, позволяет образовывать развитую поверхность массообмена между теплоносителем и воздухом (примерно 100-10000 см 2 в 1 см 3), за счет чего внутри пористого тела происходит интенсивное испарение теплоносителя и насыщение им воздуха, сопровождающееся большим поглощением тепла, поступающего из тепловыделяющей среды. Целесообразно, чтобы капилляр имел диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, создаваемым инжектором-абсорбером, и температуре, равной температуре жидкого теплоносителя, и длину, равную 10-10 5 диаметров капилляра. Это обеспечивает интенсивный массоперенос теплоносителя в направлении только от испарителя к инжектору-абсорберу. Пористое тело целесообразно выполнить из пор двух видов, поверхность одних из которых смачивается, а других не смачивается теплоносителем. В этом случае пористое тело проницаемо одновременно для жидкости и воздуха и позволит образовывать более развитую поверхность массообмена между теплоносителем и воздухом внутри пористого тела. Это значительно интенсифицирует процесс испарения. Скорость испарения в испарителе описанной выше конструкции с пористым телом достигает величины, приближенной к скорости испарения в абсолютном вакууме. Целесообразно к испарителю подвести по меньшей мере одну тепловую трубу, один конец которой разместить в пористом теле, а другой в тепловыделяющей среде, например в грунте. Это позволит интенсифицировать теплообмен между испарителем и тепловыделяющей средой. Патрубок отвода газо-паровой смеси напорно-разделительного бачка можно соединить с теплообменником, который является одновременно в описанной установке и конденсатором. Это обеспечит подогрев, а следовательно, и понижение влажности вентиляционного воздуха, засасываемого в испаритель из окружающей среды, тем самым интенсифицируя процесс испарения теплоносителя в испарителе. Напорно-разделительный бачок целесообразно соединить с теплообменником, который является одновременно в описанной установке и конденсатором. Это обеспечит подогрев, а следовательно, и понижение влажности вентиляционного воздуха, засасываемого в испаритель из окружающей среды, тем самым интенсифицируя процесс испарителя теплоносителя в испарителе. Полость испарителя, заполненную теплоносителем, можно соединить с теплообменником линией конденсата теплоносителя. Это позволит избежать потерь теплоносителя с парогазовой смесью, отделенной в напорно-разделительном бачке, и обеспечит постоянное восполнение теплоносителя в испарителе. На фиг.1 изображена схема предлагаемой теплонососной установки; на фиг.2 испаритель с размещенным в нем пористым телом и тепловой трубой. Заявляемая теплонасосная установка содержит теплообменник 1 (фиг.1) с патрубками 2, 3 соответственно подачи вентиляционного воздуха и воздушно-паровой смеси, испаритель 4, соединенный с теплообменником 1 газожидкостной линией 5, представляющей собой две раздельные трубы, и с инжектором-абсорбером с капилляром 7, подключенным к всасывающей линии инжектора-абсорбера. Капилляр должен иметь диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, созданном в инжекторе-абсорбере 6, и температуре, равной температуре жидкого теплоносителя. Длина капиллярной линии должна иметь 10-10 5 диаметра капилляра. Инжектор-абсорбер 6 установлен на напорной линии жидкостного насоса 8 и соединен с напорно-разделительным бачком 9, заполненным на 2/3 его объема жидким теплоносителем. Напорно-разделительный бачок соединен линией 10 с теплообменником 1 через патрубок 3 и линией 2, предназначенной для отвода жидкого теплоносителя, с нагревательными приборами 12, которые подключены к всасывающей линии жидкостного насоса 7. Испаритель 4 выполнен из трех независимых полостей 13, 14 и 15 (фиг.2). Полость 13 соединена с трубой подачи воздуха из теплообменника. Полость 15 заполнена жидким теплоносителем и соединена с трубой подачи конденсата теплоносителя из теплообменника 1, являющегося и конденсатором пара теплоносителя. Это позволяет избежать потерь теплоносителя с газо-паровой смесью, которая отделяется от жидкого теплоносителя в напорно-разделительном бачке 9. Полость 14 соединена посредством капиллярной линии 7 с всасывающей линией инжектора-абсорбера 6, внутри испарителя 4 размещено пористое тело 16, выполненное в виде толстостенного цилиндра, содержащего два вида пор - поверхность одного вида пор хорошо смачивается теплоносителем, поверхность другого вида пор не смачивается теплоносителем, но является проницаемой для воздуха. Материал для пористого тела подбирают в зависимости от теплоносителя, которым может быть любая неагрессивная жидкость с температурой кипения при давлении 1 атм не выше 150 o C, например вода, спирты, эфиры, углеводороды и их смеси, состоящие из двух, трех и более компонентов, взаимно растворимых. Теплоноситель выбирают в зависимости от того, какое помещение требуется обогревать установкой, от климатических условий и других факторов. Пористое тело 16 размещено внутри испарителя таким образом, что его поверхности соприкасаются со всеми тремя указанными полостями. К испарителю 4 подведена тепловая труба 17, один конец которой размещен в пористом теле 16, а другой в тепловыделяющей среде, например грунте. Тепловых труб может быть несколько, что усилит подвод тепла из теплосодержащей среды к испарителю и усилит тем самым процесс испарения теплоносителя. Теплонасосная установка работает следующим образом. Воздух из атмосферы через патрубок 3 подачи воздуха за счет разрежения, созданного инжектором-абсорбером в испарителе 4, засасывает в теплообменник 1 и посредством газожидкостной линии 5 по трубе воздуха поступает в камеру 13 испарителя 4. Внутри пористого тела 16 происходит интенсивное испарение теплоносителя и насыщение его парами воздуха. При этом поглощается тепло тепловыделяющей среды, например грунта, которое подводится в испаритель посредством тепловых труб 17. Скорость испарения теплоносителя внутри пористого тела достигает величины, сравнимой со скоростью испарения в абсолютном вакууме 0,3 г/см 3 c, что соответствует тепловому потоку 0,75 Вт/см 2 пористого тела. Воздух, насыщенный парами теплоносителя, по капилляру 7 засасывается в инжектор-абсорбер 6, сюда же жидкостным насосом 8 из нагревательных приборов 12 под напором подается теплоноситель и смешивается с паро-воздушной смесью, образуя эмульсию, представляющую собой пузырьки воздуха и теплоносителя. При этом происходит поглощение парообразной влаги жидкостью с выделением тепла, эквивалентного поглощенному в испарителе теплу. Выделенное тепло расходуется на нагрев теплоносителя. Образованная в инжекторе-абсорбере 6 эмульсия поступает в напорно-разделительный бачок 9, где происходит разделение ее на воздухо-паровую смесь и жидкий теплоноситель. Из напорно-разделительного бачка 9 нагретый теплоноситель поступает самотеком в нагревательные приборы 12 и вновь на всасывающую линию жидкостного насоса 8, завершая таким образом цикл жидкого теплоносителя. Воздухо-паровая смесь из напорно-разделительного бачка 9 по линии 10 за счет небольшого избыточного давления, созданного в напорно-разделительном бачке 9, поступает в теплообменник 1 через патрубок 3. В теплообменнике 1 происходит нагрев засасываемого атмосферного воздуха и конденсация паров теплоносителя, которые раздельно поступают в испаритель 4. Таким образом, заявляемая теплонасосная установка отличается высокими энергетическими характеристиками, без использования агрессивных, экологически вредных теплоносителей, что делает ее безопасной в эксплуатации. В качестве теплоносителя может использоваться вода. Для обогрева помещений, зданий в суровых климатических условиях испаритель можно заполнять легкокипящим теплоносителем для более интенсивного испарения, а по отопительной системе можно пропускать воду. Для обогрева, например, гаражей, когда не требуется даже в зимнее время постоянного его обогрева, целесообразно использовать в качестве теплоносителя спирты или растворы, имеющие низкую температуру замерзания, что предотвратит размерзание системы во время отключения установки. Использование неагрессивных нагревательных теплоносителей исключает необходимость применения специальных материалов и сплавов при изготовлении установки. Часть узлов установки, такие как напорно-разделительный бачок, соединительные трубопроводы можно выполнять из пластмасс, резины и других неметаллических материалов, что позволит значительно снизить металлоемкость. Установка технически проста в исполнении и эксплуатации, не требует больших энергозатрат. Тепловыделяющий узел компактен и может быть размещен на небольшой площади и может быть использована как для отопления больших помещений, зданий, так и небольших построек, а также гаражей, а при работе в холодильном цикле для охлаждения подвалов в летнее время. Возможность широкого выбора вида теплоносителя позволяет использование установки в любых климатических условиях. Все это определяет дешевизну установки, безопасность ее эксплуатации и доступность для большого числа потребителей.

Формула изобретения

1. Теплонасосная установка, содержащая теплообменник, испаритель, инжектор-абсорбер, жидкостной насос, напорно-разделительный бачок, отличающаяся тем, что установка снабжена линией вентиляционного воздуха, по меньшей мере одним капилляром и пористым телом, а испаритель выполнен трехполостным, одна полость которого соединена с теплообменником линией вентиляционного воздуха, другая заполнена теплоносителем и третья вакуумированная полость подключена к инжектору -абсорберу, при этом пористое тело размещено во всех трех полостях, а испаритель и инжектор-абсорбер соединены между собой по меньшей мере одним капилляром. 2. Установка по п.1, отличающаяся тем, что капилляр имеет диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, созданном в инжекторе-абсорбере, и температуре, равной температуре окружающей среды, а длина капилляра равна 10 10 5 его диаметра. 3. Установка по п.1, отличающаяся тем, что пористое тело образовано порами двух видов, поверхность одних из которых смачивается, а других не смачивается теплоносителем. 4. Установка по п.1, отличающаяся тем, что к испарителю подведена по меньшей мере одна тепловая труба, один конец которой размещен в пористом теле, а другой в тепловыделяющей среде. 5. Установка по п.1, отличающаяся тем, что напорно-разделительный бачок соединен с теплообменником. 6. Установка по п.1, отличающаяся тем, что снабжена линией конденсата теплоносителя, с помощью которой полость испарителя, заполненная теплоносителем, связана с теплообменником.

Что еще почитать