Обмен белков. Обмен жиров

Без участия печени в метаболизме белка организм может обходиться не более нескольких дней, затем наступает летальный исход. К наиболее важным функциям печени в обмене белка относят следующие.

1. Дезаминирование аминокислот.
2. Образование мочевины и извлечение аммиака из жидких сред организма.
3. Образование белков плазмы крови.
4. Взаимное превращение различных аминокислот и синтез из аминокислот других соединений.

Предварительное дезаминирование аминокислот необходимо для их использования при получении энергии и преобразования в углеводы и жиры. В небольших количествах дезаминирование осуществляется и в других тканях организма, особенно в почках, но по значимости эти процессы несопоставимы с дезаминированием аминокислот в печени.

Образование мочевины в печени помогает извлечению аммиака из жидких сред организма. Большое количество аммиака образуется в процессе дезаминирования аминокислот, дополнительное его количество постоянно образуется бактериями в кишечнике и абсорбируется в кровь. В связи с этим если в печени мочевина не образуется, то концентрация аммиака в плазме крови начинает быстро нарастать, что приводит к печеночной коме и смерти. Даже в случае резкого снижения кровотока через печень, что иногда происходит вследствие формирования шунта между воротной и полой венами, содержание аммиака в крови резко повышается с созданием условий для токсикоза.

Все основные белки плазмы крови , за исключением некоторых гамма-глобулинов, образуются клетками печени. Их количество составляет приблизительно 90% всех белков плазмы. Остальные гамма-глобулины представляют собой антитела, образуемые главным образом плазматическими клетками лимфоидной ткани. Максимальная скорость образования белков печенью составляет 15-50 г/сут, поэтому если организм теряет около половины белков плазмы, их количество может быть восстановлено в течение 1-2 нед.

Следует учитывать, что истощение белков плазмы крови является причиной быстрого наступления митотических делений гепатоцитов и увеличения размеров печени. Этот эффект сочетается с выбросом белков плазмы крови печенью, который продолжается до тех пор, пока концентрация белков в крови не вернется к нормальным значениям. При хронических заболеваниях печени (в том числе и циррозе) уровень белков в крови, особенно альбуминов, может падать до очень низких значений, что является причиной появления генерализованных отеков и асцита.

К числу наиболее важных функций печени относится ее способность синтезировать некоторые аминокислоты наряду с химическими соединениями, в состав которых включены аминокислоты. Например, в печени синтезируются так называемые заменимые аминокислоты. В процессе такого синтеза принимают участие кетокислоты, имеющие сходную химическую структуру с аминокислотами (исключая кислород в кето-положении). Аминорадикалы проходят несколько стадий трансаминирования, перемещаясь от имеющихся в надичии аминокислот в кетокислоты на место кислорода в кето-положении.

Регуляция обмена белков в печени осуществляется благодаря интенсивному биосинтезу в ней белков и окислению аминокислот. За сутки в организме человека образуется около 80--100 г белка, из них половина в печени. При голодании печень быстрее всех расходует свои резервные белки для снабжения аминокислотами других тканей. Потери белка в печени составляют примерно 20%; в то время как в других органах не более 4%. Белки самой печени в норме обновляются полностью каждые 20 суток. Большинство синтезированных белков печень отправляет в плазму крови. При потребности (например, при полном или белковом голодании) эти протеины так же служат источниками необходимых аминокислот.

Поступив через воротную вену в печень, аминокислоты подвергаются ряду превращений, так же значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей. Печень обеспечивает баланс свободных аминокислот организма путем синтеза заменимых аминокислот и перераспределения азота. Всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии.

Все альбумины, 75-90% б-глобулинов (б 1 -антитрипсин, б 2 -макроглобулин - ингибиторы протеаз, белки острой фазы воспаления), 50% в-глобулинов плазмы синтезируются гепатоцитами. В печени происходит синтез белковых факторов свертывания крови (протромбина, фибриногена, проконвертина, акцелератора глобулина, фактора Кристмаса, фактора Стюарта-Прауэра) и часть естественных основных антикоагулянтов (антитромбин, протеин С и др.). Гепатоциты участвуют в образовании некоторых ингибиторов фибринолиза, регуляторы эритропоэза - эритропоэтины - образуются в печени. Гликопротеин гаптоглобин, вступающий в комплекс с гемоглобином для предупреждения его выделения почками, тоже имеет печёночное происхождение. Данное соединение принадлежит к белкам острой фазы воспаления, обладает пероксидазной активностью. Церулоплазмин, также являющийся гликопротеином, синтезируемым печенью, можно считать внеклеточной супероксиддисмутазой, что позволяет защищать мембраны клеток; мало того, он стимулирует продукцию антител. Подобным действием, только на клеточный иммунитет, обладает трансферрин, полимеризация которого так же осуществляется гепатоцитами.

Ещё один углеводсодержащий белок, но с иммуносупрессивными свойствами, способен синтезироваться печенью - б-фетопротеин, рост концентрации которого в плазме крови служит ценным маркёром некоторых опухолей печени, яичек и яичников. Печень - источник большей части протеинов системы комплемента.

В печени наиболее активно протекает обмен мономеров белков - аминокислот: синтез заменимых аминокислот, синтез небелковых азотистых соединений из аминокислот (креатина, глутатиона, никотиновой кислоты, пуринов и пиримидинов, порфиринов, дипептидов, коферментов пантотената и др.), окисление аминокислот с образованием аммиака, который обезвреживается в печени при синтезе мочевины .

Итак, рассмотрим общие пути обмена аминокислот . Общие пути превращения аминокислот в печени включают реакции дезаминирования, трансаминирования, декарбоксилирования и биосинтез аминокислот.

Дезаминирование аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы) (приложение 17). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH 2 -группа аминокислоты освобождается в виде аммиака. Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты.

Трансаминирование аминокислот. Под трансаминированием подразумевают реакции межмолекулярного переноса аминогруппы (NH2--) от аминокислоты на б-кетокислоту без промежуточного образования аммиака. Реакции трансаминирования являются обратимыми и протекают при участии специфических ферментов аминотрансфераз, или трансаминаз.

Пример реакции трансаминирования:

Декарбоксилирование аминокислот. Процесс отщепления карбоксильной группы аминокислот в виде СО 2 . Образующиеся продукты реакции - биогенные амины. Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами - декарбоксилазами аминокислот.

Обезвреживание аммиака в организме . В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Уровень аммиака в крови в норме не превышает 60 мкмоль/л. Аммиак должен подвергаться связыванию в печени с образованием нетоксичных соединений, легко выделяющихся с мочой.

Один из путей связывания и обезвреживания аммиака в организме это биосинтез глутамина (и, возможно, аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Скорее они выполняют транспортную функцию переноса аммиака в нетоксичной форме. Синтеза глутамина, катализируется глутаминсинтетазой.

Второй и основной путь обезвреживания аммиака в печени - образование мочевины, который будет рассмотрен ниже в мочевинообразовательной функции печени.

В гепатоцитах отдельные аминокислоты подвергаются специфическим преобразованиям. Из серосодержащих аминокислот образуется таурин, который позднее включается в парные жёлчные кислоты (таурохолевая, тауродезоксихолевая), а также может служить антиоксидантом, связывая гипохлорит анион, стабилизировать мембраны клеток; происходит активация метионина, который в виде S- аденозилметионина служит источником метильных групп реакциях окончания генеза креатина, синтеза холина для холинфосфатидов (липотропных веществ).

Биосинтез заменимых аминокислот. Любая из заменимых аминокислот может синтезироваться в организме в необходимых количествах. При этом углеродная часть аминокислоты образуется из глюкозы, а аминогруппа вводится из других аминокислот путем трансаминирования. Алании, аспартат, глутамат образуются из пирувата, оксалоацетата и б-кетоглутарата соответственно. Глутамин образуется из глутаминовой кислоты при действии глутаминсинтетазы:

Аспарагин синтезируется из аспарагиновой кислоты и глутамина, который служит донором амидной группы; реакцию катализирует аспарагинсинтетаза пролин образуется из глутаминовой кислоты. Гистидин (частично заменимая аминокислота) синтезируется из АТФ и рибозы: пуриновая часть АТФ поставляет фрагмент --N=CH--NH-- для имидазольного цикла гистидина; остальная часть молекулы образуется за счет рибозы.

Если в пище нет заменимой аминокислоты, клетки синтезируют ее из других веществ, и тем самым поддерживается полный набор аминокислот, необходимый для синтеза белков. Если же отсутствует хотя бы одна из незаменимых аминокислот, то прекращается синтез белков. Это объясняется тем, что в состав подавляющего большинства белков входят все 20 аминокислот; следовательно, если нет хотя бы одной из них, синтез белков невозможен.

Частично заменимые аминокислоты синтезируются в организме, однако скорость их синтеза недостаточна для обеспечения всей потребности организма в этих аминокислотах, особенно у детей. Условно заменимые аминокислоты могут синтезироваться из незаменимых: цистеин -- из метионина, тирозин -- из фенилаланина. Иначе говоря, цистеин и тирозин -- это заменимые аминокислоты при условии достаточного поступления с пищей метионина и фенилаланина .

Биологическая химия Лелевич Владимир Валерьянович

Роль печени в углеводном обмене

Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии.

Это достигается за счет нескольких механизмов.

1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе, фосфорилирует глюкозу до глюкозо-6-фосфата. Следует отметить, что глюкокиназа в отличие от гексокиназы, содержится, только в печени и?-клетках островков Лангерганса. Активность глюкокиназы в печени в 10 раз превышает активность гексокиназы. Кроме того, глюкокиназа в противоположность гексокиназе имеет более высокое значение Кm для глюкозы (т. е. меньшее сродство к глюкозе).

После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и увеличивает поглощение глюкозы печенью. Благодаря синхронной работе гексокиназы и глюкокиназы печень быстро и эффективно фосфорилирует глюкозу до глюкозо-6-фосфата, обеспечивая нормогликемию в системе общего кровотока. Далее глюкозо-6-фосфат может метаболизироваться по нескольким направлениям (рис. 28.1).

2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100–150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания.

3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.

Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.

4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.

5. В печени происходит синтез глюкуроновой кислоты.

Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Болезни печени, выявленные при общем и наружном осмотре (сопровождаемые появлением желтухи) Симптом иктерус (желтуха) является характерным для таких заболеваний как вирусный гепатит, пироплазмоз, бабезиоз, описторхоз, меторхоз, рассмотренные выше отравление

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

Болезни печени Исследование печени. Роль печени в животном организме велика и разнообразна. Она связана со всеми видами обмена. В печени образуется из приносимых кровью моносахаридов гликоген, который расходуется в виде глюкозы по мере надобности; печень участвует в

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Нарушения функции печени Все животные с нарушением функции печени должны, безусловно, находиться под постоянным наблюдением ветеринара несмотря на то, что традиционная медицина в общем немногое может предложить для лечения этой патологии. Я бы порекомендовал лечить их

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Из книги Проблемы лечебного голодания. Клинико-экспериментальные исследования [все четыре части!] автора Анохин Петр Кузьмич

Из книги Разведение рыбы, раков и домашней водоплавающей птицы автора Задорожная Людмила Александровна

Роль гормонов Копулятивное поведение тесно связано с эндокринной функцией. Человек принципиально отличается от животного тем, что у него оно не запускается гуморальными факторами, как у животных. Поведение спаривания у человека не запускается гуморальными факторами,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Роль тестостерона Одним из распространенных заблуждений является предоставление прямой зависимости копулятивного поведения от продукции андрогенов в организме мужчины. На самом же деле они оказывают на его способность к совокуплению следующее влияние: 1)

Из книги автора

Изменение активности некоторых Ферментов крови и печени крыс при экспериментальном голодании А. А. ПОКРОВСКИЙ, Г. К. ПЯТНИЦКАЯ (Москва) Проблема влияния голодания на разные показатели обменных процессов в организме животных и человека продолжает привлекать внимание

Из книги автора

Влияние голодания на активность ферментов пентозофосфатного пути в печени и мозге крыс Ю. Л. ЗАХАРЬИН (Москва) В последние годы в клинике часто применяется с лечебными целями, в частности, для лечения психических заболеваний, полное голодание. Не вызывает сомнения, что

Из книги автора

Из книги автора

Из книги автора

Глава 28. Биохимия печени Печень занимает центральное место в обмене веществ и выполняет многообразные функции:1. Гомеостатическая - регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.2.

Из книги автора

Роль печени в липидном обмене Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:1. синтез желчных кислот и образование желчи;2. ?-окисление жирных

Из книги автора

Роль печени в обмене аминокислот и белков Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 %

Из книги автора

Обезвреживающая функция печени Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из цикла трикарбоновых кислот , способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно:

  • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  • глицеральдегидфосфат , также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  • глицерол-3-фосфат , образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  • "глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз , в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы . Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП ). Холестерол используется, в первую очередь, для синтеза желчных кислот , также он включается в состав липопротеинов низкой плотности (ЛПНП ) и ЛПОНП .

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел , используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт", составляющие понятие "белки крови" – альбумины , многие глобулины , ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием , декарбоксилированию с образованием биогенных аминов . Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины .

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Пигментный обмен

Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму (прямой билирубин ) и секреция его в желчь.

К пигментному обмену можно отнести и обмен железа , поскольку железо входит в состав многочисленных гемопротеинов по всему организму. В гепатоцитах находится белок ферритин , играющий роль депо железа, и синтезируется гепсидин , регулирующий всасывание железа в ЖКТ.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе,
  • по "сахарной" кривой после

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УО Пинский государственный медицинский колледж

Реферат на тему: «Роль печени в обмене белков»

Выполнила: Петько Александра

Проверила: Веренич Л.М.

Введение

1. Обмен белков

1.1 Промежуточный обмен белков

1.2 Роль печени и почек в обмене белков

1.3 Обмен сложных белков

1.4 Баланс азотистого обмена

2. Регуляция белкового обмена

3. Роль белков в организме

Список использованной литературы

Введение

Белки -- наиболее важные биологические вещества живых организмов. Они служат основным пластическим материалом, из которого строятся клетки, ткани и органы тела человека. Белки составляют основу гормонов, ферментов, антител и других образований, выполняющих сложные функции в жизни человека (пищеварение, рост, размножение, иммунитет), способствуют нормаль­ному обмену в организме витаминов и минеральных солей. Белки участвуют в образовании энергии, особенно в период больших энергетических затрат или при недоста­точном количестве в питании углеводов и жиров.

При недостатке белков в организме возникают серьезные нарушения: замедление роста и развития детей, изменения в печени взрослых, деятельности желез внутренней секреции, состава крови, ослабление умственной деятельности, снижение работоспособности и сопротив­ляемости к инфекционным заболеваниям.

Белок в организме человека образуется беспрерывно из аминокислот, поступающих в клетки в результате переваривания белка пищи. Для синтеза белка человека необходим белок пищи в определенном количестве и определенного аминокислотного состава.

В настоящее время известно более 80 аминокислот, из которых 22 наиболее распространены в пищевых продуктах.

1. Обмен белков

Белки являются основным веществом, из которого построена протоплазма клеток и межклеточные вещества. Без белков нет и не может быть жизни. Все ферменты, без которых не могут протекать обменные процессы, являются белковыми телами.

Строение белков отличается большой сложностью. При гидролизе кислотами, щелочами и протеолитическими ферментами белок расщеп­ляется до аминокислот, общее число которых более двадцати пяти. Помимо аминокислот, в состав различных белков входят и многие другие компоненты (фосфорная кислота, углеводные группы, липоидные группы, специальные группировки).

Белки отличаются высокой специфичностью. В каждом организме и в каждой ткани имеются белки, отличные от белков, входящих в состав других организмов и других тканей. Высокая специфичность белков может быть выявлена при помощи биологической пробы.

Основное значение белков заключается в том, что за их счет строятся клетки и межклеточное вещество и синтезируются вещества, принимающие участие в регуляции физиологических функций. В известной мере белки, однако, наряду с углеводами и жирами, используются и для покрытия энергетических затрат.

1.1 Промежуточный обмен белков

Белки в пищеварительном канале подвергаются расщеплению протеолитическими ферментами (пепсином, трипсином, химотрипсином, полипептидазами и дипептидазами) вплоть до образования аминокислот. Поступившие из кишечника в кровь аминокислоты разносятся по всему организму и из них в тканях синтезируются белки.

Белки тела находятся в состоянии постоянного обмена с теми аминокислотами, которые находятся в составе небелковой фракции. В теле происходят также превращения одних аминокислот в другие. К числу таких превращений относится переаминирование, заключающееся в переносе аминогруппы с аминокислот на кетокислоты. При окислительном распаде аминокислот прежде всего происходит дезаминирование. Аммиак, отщепляющийся в качестве одного из конечных продуктов белкового обмена, подвергается дальнейшему превращению в мочевину. У человека азот мочевины составляет в среднем 85% всего азота мочи.

К числу важных конечных продуктов азотистого обмена относятся также креатинин и гиппуровая кислота. Креатинин представляет собой ангидрид креатина. Креатин находится в мышцах и в мозговой ткани в свободном состоянии и в соединении с фосфорной кислотой (фосфокреатин).

Креатинин образуется из фосфокреатинина путем отщепления фос­форной кислоты. Количество выводимого с мочой из организма креатинина сравнительно постоянно (1,5 г в суточной моче) и мало зависит от количества белков, принимаемых с пищей. Только при мясной пище, бога­той креатином, количество креатинина в моче возрастает.

Гиппуровая кислота синтезируется из бензойной кислоты и гликокола (у человека преимущественно в печени и в меньших размерах в почках).

Продуктами распада белков, подчас имеющими большое физиологическое значение, являются амины (например, гистамин).

1.2 Роль печени и почек в обмене белков

При протекании крови через печень аминокислоты частично задерживаются в ней и из них синтезируется «запасный» белок, легко потребляемый организмом при ограниченном введении белка. Незначительный запас белка может откладываться и в мышцах.

Схема экк-павловской фистулы: І -- схема хода сосудов до операции; II -- экк-павловская фистула; ІІІ -- «перевернутая» экк-павловская фистула.

Наложено соустье между воротной веной и нижней полой веной; воротная вена между соустьем и печенью перевязана. После наложения соустья между воротной веной и нижней полой веной последняя перевязана выше соустья -- в этом случае развиваются коллатерали между v. porta n v. azygos.

В печени происходит также образование белков. Так, после кровопотерь нормальное содержание альбуминов и глобулинов плазмы крови быстро восстанавливается. Если же функция печени нарушена отравлением фосфором, то восстановление нормального белкового состава крови чрезвычайно замедлено. Образование альбуминов в печени показано в опытах с ее измельченной тканью. Печень играет центральную роль и в промежуточном белковом обмене. В ней в большом объеме совершаются процессы дезаминирования, а также синтез мочевины. В печени же происходит обезвреживание ряда ядовитых продуктов кишечного гниения белка (фенолы, индол).

Экк-павловская фистула представляет соустье между воротной веной и нижней полой веной, причем участок воротной вены вблизи печени перевязывается. В результате такой операции кровь, оттекающая от кишечника и поступающая в воротную вену, не может из нее поступать в печень, а изливается в нижнюю полую вену, минуя печень. Такая операция сохраняет печень жизнеспособной, так как последняя снабжается кровью через печеночную артерию. Но при этом исключается возможность задержки печенью токсических веществ, всасываемых кишечником. Впервые эта трудная операция была осуществлена Н. В. Экком в лаборатории И. Р. Тараханова. Однако сохранять в живых собак с таким свищом Экку не удалось. И. П. Павлов в 1892 г. прооперировал около 60 собак, причем около трети их остались живыми и были подвергнуты изучению.

Органом, принимающим значительное участие в белковом обмене, являются почки. В почках происходит отщепление аммиака от аминокислот, причем отщепляющийся аммиак идет на нейтрализацию кислот. Последние в форме аммонийных солей выделяются с мочой.

Через почки происходит освобождение организма от образовавшихся азотистых конечных продуктов белкового обмена (мочевина, креатинин, мочевая кислота, гиппуровая кислота, аммиак). При нарушении функ­ции почек в результате их заболевания происходит задержка всех этих продуктов в тканях и в крови, что приводит к накоплению небелкового (так называемого остаточного) азота в крови (азотемия и уремия). Если накопление азотсодержащих продуктов обмена в крови прогрессирует, то человек погибает.

1.3 Обмен сложных белков

Нуклеопротеиды принимают участие в явлениях роста и размножения. В тканях, не увеличивающих уже своей массы, роль нуклеопротеидов, по-видимому, сводится к участию в воспроизведении белковых веществ ткани. Обмен цитоплазматических нуклеопротеидов (рибонуклеопротеидов) происходит интенсивнее, чем обмен ядерных нуклеопротеидов, дезоксирибонуклеопротеидов. Так, скорость обновления фосфора в рибонуклеиновой кислоте печени в 3О раз, а в рибонуклеиновой кислоте мозга в 10 раз больше, чем в дезоксирибонуклеиновой кислоте этих тканей. Об обмене нуклеопротеидов в организме чело­века судят по выведению пуриновых тел, в частности, мочевой кислоты. В обычных условиях питания ее выделяется 0,7 г в сутки. При мясной пище образование ее в организме повышено. При нарушении обмена, выражающемся в заболевании подагрой, трудно растворимая мочевая кислота откладывается в тканях, в частности, в окружности суставов.

В организме непрерывно происходит распад и синтез гемоглобина. При синтезе геминовой группы используется гликокол и уксусная кислота. Необходимо также достаточное поступление в тело железа.

Об интенсивности распада гемоглобина в теле можно получить представление по образованию желчных пигментов, возникновение которых связано с расщеплением порфиринового кольца геминовой группировки и отщеплением железа. Желчные пигменты поступают с желчью в кишечник и в толстых кишках подвергаются восстановлению до стеркобилиногена или уробилиногена. Часть уробилиногена теряется с каловыми массами, а часть всасывается в толстых кишках и затем попадает в печень, из которой вновь поступает в желчь. При некоторых страданиях печени уробилиноген не задерживается полностью в печени и попадает в мочу. Содержащийся в моче уробилиноген в присутствии кислорода окисляется в уробилин, отчего моча темнеет.

1. 4 Баланс азотистого обмена

Изучение белкового обмена облегчается тем, что в состав белка входит азот. Содержание азота в различных бел­ках колеблется от 14 до 19%, в среднем же составляет 16%. Каждые 16 г азота соответствуют 100 г белка, air азота, следовательно, -- 6,25 г белка. Изучая азотистый баланс, то есть количество азота, введенного с пищей, и количество азота, выведенного из организма, можно охарактеризовать суммарно и белковый обмен. Усвоение азота организмом равно азоту пищи минус азот кала, выведение -- количеству азота, выделенного с мочой. Умножая эти количества азота на 6,25, определяют количество потребленного и распавшегося белка. На точности этого метода сказываются потери организмом белков с кожной поверхности (слущивающиеся клетки рогового слоя эпидермиса, отрастающие волосы, ногти). Процессы расщепления белков в организме и выведение продуктов обмена, так же как усвоение воспринятых белков, требуют многих часов. Поэтому для определения величины белкового распада в организме необходимо собирать мочу в течение суток, а при ответственных исследованиях -- даже в течение многих суток подряд.

Во время роста организма или прироста в весе за счет усвоения увеличенного количества белков (например, после голодания, после инфек­ционных болезней) количество вводимого с пищей азота больше, чем количество выводимого. Азот задерживается в теле в форме белкового азота. Это обозначается как положительный азотистый баланс. При голодании, при заболеваниях, сопровождающихся большим распадом белков, наблюдается превышение выделяемого азота над вводимым, что обозначается как отрицательный азотистый баланс. Когда количество вводимого и выводимого азота одинаково, говорят об азотистом равновесии.

Обмен белка существенно отличается от обмена жиров и углеводов тем, что во взрослом здоровом организме почти не происходит откладывания легко используемого запасного белка. Количество резервного белка, откладываемого в печени, незначительно, и удержания этого белка на длительный срок не происходит. Увеличение общей массы белков в организме наблюдается только в период роста, в период восстановления после инфекционных болезней или голодания и в известной мере в период усиленной мышечной тренировки, когда происходит некоторое увеличение общей массы мускулатуры. Во всех остальных случаях избыточное введение белка вызывает увеличение распада белка в организме.

Если человек, находящийся в состоянии азотистого равновесия, начинает принимать с пищей большое количество белков, то количество выводимого с мочой азота также увеличивается. Однако состояние азотистого равновесия на более высоком уровне устанавливается не сразу, а в течение нескольких дней. То же самое происходит, но в обратном порядке, если переходить на более низкий уровень азотистого равновесия. По мере уменьшения количества азота, вводимого с пищей, уменьшается и коли­чество азота, выводимого с мочой, причем через несколько дней устанавливается равно весне на более низком уровне.

В обычных условиях питания азотистое равновесие устанавливается при выделении 14--18 г азота с мочой. При понижении количества белков в пище оно может быть установлено и на 8--10 г. Дальнейшее понижение количества белков в пище приводит уже к отрицательному азоти­стому балансу. То минимальное количество вводимого с пищей белкового азота (6--7 г), при котором еще возможно сохранение азотистого равновесия, называется белковым минимумом. Количество выводимого с мочой азота при белковом голодании зависит от того, вводятся ли другие питательные вещества или нет. Если все энергетические затраты организма могут быть обеспечены за счет других питательных веществ, то количество азота, выводимого с мочой, может быть снижено до 1 г в сутки и даже ниже.

При поступлении в тело белков в количестве меньшем, чем это соответствует белковому минимуму, организм испытывает белковое голодание: потери белков организмом восполняются в недостаточной степени. В течение более или менее продолжительного срока в зависимости от степени голодания отрицательный белковый баланс не грозит опасными последствиями. Описаны наблюдения над «искусниками голодания», которые не принимали пищи, ограничиваясь лишь небольшим количеством воды, в течение 20--50 дней. Однако, если голодание не прекратится, наступает смерть. протеолитический фермент белок аденозинтрифосфорный

При продолжительном общем голодании количество азота, выводимого из организма, в первые дни резко снижается, затем устанавливается на постоянном низком уровне. Это обусловлено исчерпанием последних остатков других энергетических ресурсов, в частности, жиров.

Влияние полного голодания на суточное выведение с мочой валового азота (по Бенедикту).

2. Регуляция белкового обмена

Интенсивность белкового обмена в большой мере зависит от гуморальных влияний со стороны щитовидной железы. Гормон щитовидной железы, тироксин, повышает интенсивность белкового обмена. При базедовой болезни, характеризующейся усиленным выделением гормонов щитовидной железы (гипертиреоз), белковый обмен повышен. Напротив, при гипофункции щитовидной, железы (гипотиреоз) интенсивность белкового обмена резко снижается. Так как деятельность щитовидной железы находится под контролем нервной системы, то последняя и является истинным регулятором белкового обмена.

На ход обмена белков оказывает большое влияние характер пищи. При мясной пище повышено количество образующейся мочевой кислоты, креатинина и аммиака. При растительной пище эти вещества образуются в значительно меньших количествах, так как в растительной пище мало пуринових тел и креатина. Количество аммиака, образующегося в почках, зависит от кислотно-щелочного равновесия в организме -- при ацидозе его образуется больше, при алкалозе -- меньше. С растительной пищей вводится значительное количество щелочных солей органических кислот. Органические кислоты окисляются до углекислого газа, выводимого через легкие. Соответствующая доля основания, остающаяся в организме и выводимая затем с мочой, сдвигает кислотно-щелочное равновесие в сторону алкалоза. Поэтому при растительной пище нет необходимости в образовании в почках аммиака для нейтрализации избытка кислот, и в этом случае содержание его в моче незначительно.

3. Роль белков в организме

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы. Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций. Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин. Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы. Регуляторную функцию выполняют белки-гормоны. Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000. Одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление. Вазопрессин - это октапептид циклического строения с боковой цепью. Регуляторную функцию выполняют и белки, содержащиеся в щитовидной железе - тиреоглобулины, молекулярная масса которых около 600000. Эти белки содержат в своем составе йод. При недоразвитии железы нарушается обмен веществ. Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией. В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть рецепторы звуковые, вкусовые, световые и другие рецепторы. Следует упомянуть и о существовании белковых веществ, тормозящих действие ферментов. Такие белки обладают ингибиторными функциями. При взаимодействии с этими белками фермент образует комплекс и теряет свою активность полностью или частично. Многие белки - ингибиторы ферментов - выделены в чистом виде и хорошо изучены. Их молекулярные массы колеблются в широких пределах; часто они относятся к сложным белкам - гликопротеидам, вторым компонентом которых является углевод. Если белки классифицировать только по их функциям, то такую систематизацию нельзя было бы считать завершенной, так как новые исследования дают много фактов, позволяющих выделять новые группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за жизненно важные процессы: сна, памяти, боли, чувства страха, тревоги).Биологические катализаторы. В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, то есть в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствие кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов. Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов играющие роль биологических катализаторов. В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2 тыс. ферментов. Белки играют важнейшую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть -- на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. То есть белки выполняют каталитические (ферменты), регуляторные (гормоны), транспортные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции Белки -- важнейшие компоненты пищи человека. Совокупность непрерывно протекающих химических превращений белков занимает ведущее место в обмене веществ организмов. Скорость обновления белков зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот.

Список использованной литературы

1. Камкин, А.Г. , Каменский, А.А. Фундаментальная и клиническая физиология. - М.: ACADEMIA , 2004. - 435 с.

2. Макаров, В.А. Физиология (основные законы, формулы, уравнения). - М.: ГЭОТАР-МЕД, 2001. - 324 с.

3. Плейфер, Дж. Наглядная иммунология: Учебное пособие для медвузов.

М.: ГЭОТАР-МЕД, 2000. - 165 с.

4. Покровский, В.М. Физиология человека. - М.: Медицина, 2003. - 343 с.

5. Смирнов, А.Н. Элементы эндокринной регуляции. - М.: ГЭОТАР-

МЕДИА, 2005. - 432 с.

6. Филимонов, В.И. Руководство по общей и клинической физиологии. -

М.: Медицинское Информационное Агентство, 2002. - 232 с.

7. Хеффнер, Л. М Половая система в норме и патологии: учебное пособие

для медвузов.-М.: ГЭОТАР-МЕД, 2000. - 234 с.

Размещено на Allbest.ru

...

Подобные документы

    Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа , добавлен 06.12.2008

    Биосинтез гемоглобина. Обмен хромопротеидов. Биохимические процессы, протекающие в печени. Роль печени в углеводном обмене и обмене стеринов. Синтез гликогена в печени. Участие печени в распаде белка. Механизм обезвреживания токсических веществ в печени.

    реферат , добавлен 23.01.2009

    Процесс обмена белков, аминокислот и отдельных аминокислот. Биогенные амины, их роль и значение. Окисление биогенных аминов (моноаминоксидазы). Роль гистамина в развитии воспаления и аллергических реакций. Антигистаминные препараты, их задачи и функции.

    презентация , добавлен 13.04.2015

    Особое место белкового обмена в многообразных превращениях веществ во всех живых организмах. Нарушения биосинтеза и распада белков в органах и тканях. Наследственные дефекты биосинтеза белков. Нарушения выделения и конечных этапов метаболизма аминокислот.

    реферат , добавлен 22.01.2010

    Классификация процессов метаболизма: ассимиляция и диссимиляция. Схема обмена веществ. Энергетический и пластический обмен. Автотрофы и гетеротрофы. Функции белков в организме. Насыщенные и ненасыщенные жирные кислоты. Регуляция обмена углеводов.

    презентация , добавлен 29.01.2015

    Роль белков в полноценности рациона. Особенности заболеваний, вызванных недостатком белков. Описание кахесии как крайней степени истощения. Квашиоркор - вид тяжёлой дистрофии на фоне недостатка белков в пищевом рационе. Симптомы алиментарного маразма.

    реферат , добавлен 21.05.2012

    Виды смешанных дистрофий. Нарушение обмена сложных белков – нуклеопротеидов, образование в результате мочевой кислоты и ее соли. Последствия нарушения обмена минералов: меди и фосфора. Заболевания, связанные с этими видами нарушений. Мочекаменная болезнь.

    презентация , добавлен 26.04.2014

    Химия белков, их участие в процессах, обеспечивающих жизнедеятельность организма. Структура, классификации биологические функции белков. Простые и сложные белки (протеины и протеиды). Причины нарушений белкового обмена при онтогенезе и болезнях.

    презентация , добавлен 26.10.2014

    Пищевая и биологическая ценность белков животного и растительного происхождения, факторы, влияющие на их усвояемость. Источники, классификация и рекомендуемые нормы витаминов в питании различных групп населения. Характеристика диет при заболевании почек.

    контрольная работа , добавлен 31.03.2015

    Общая характеристика полезных свойств правильного рационального питания. Химические элементы, входящие в состав пищевых веществ. Биологическая ценность белков и углеводов для организма человека, их состав и классификация. Состав и полезные свойства жиров.

Что еще почитать