Теплонасосные установки в россии. Большая энциклопедия нефти и газа

Теплонасосные агрегаты и установки следует рассматривать как устройства, осуществляющие полный цикл циркуляции хладагента и приборы регулирования, включающих в себя привод. Причем в теплонасосных агрегатов относятся компактные, готовые к работе блоки, а в теплонасосных установок - комплексы, состоящие из нескольких отдельных устройств или блоков. В зависимости от вида нагрузки со стороны источника и приемника тепловые насосы можно классифицировать в соответствии с табл. 1.2.

Установлено, что благодаря одинаковому термодинамическому круговом цикла холодильных установок и тепловых насосов и незначительном расхождении температурных интервалов оборудования тепловые насосы следует подбирать непосредственно из ассортимента, который применяется для холодильного оборудования с некоторыми модификациями, и только в некоторых случаях требуется разработка специальных узлов.

Таблица 1.2.

Термоэлектрические тепловые насосы не получили до сих пор распространение через низкий коэффициент преобразования.

Компрессионные теплонасосные установки

К ТН малой мощности относятся небольшие водоподогреватели и и оконные кондиционеры, включающих в себя тепловые насосы. В целом тепловые насосы, предназначенные преимущественно для производства тепла при мощности 2 ... 3 кВт, не могут конкурировать с простыми электронагревательными устройствами (с нагревателем электроопору) через высокие удельные расходы. Только агрегаты, предназначенные в основном для производства холода и выработки теплоты, благодаря возможности простого переключения имеют практическое значение. Это, в частности, оконные кондиционеры с переключением (рис. 1.29).

Такие агрегаты, как правило, состоят из холодильной машины с герметичным корпусом, испарителя и конденсатора с принудительной циркуляцией воздуха. С помощью четырехходовой вентиля они могут переключаться на режим теплового насоса, то есть осуществлять отопление помещений. Каждый вентилятор имеет устройство для переключения работы испарителя на конденсатор, и на перемещение внутреннего и наружного воздуха.

Рис. 1.29. А - схема коммуникаций; б - схема включения кондиционера; в - схема включения теплового насоса; / -конденсатор; // - Дроссель; Ш компрессор; IV- испаритель

Тепловая мощность составляет 1,5 ... 4,5 кВт. Коэффициент преобразования при температуре помещения 21 ° С и внешней 7,5 ° С редко превышает 2.

Часть кондиционеров большой мощности, предназначенных для общих промышленных зданий, также выполняется с переключением на работу по схеме теплового насоса.

Компрессионные тепловые насосы также могут работать с приводом от тепловых двигателей. В этом случае весь агрегат состоит из компрессионного теплового насоса и теплового двигателя. Преобразования химической энергии топлива в теплоту происходит непосредственно внутри теплового двигателя (например, двигателя Стирлинга). В двигателе согласно термодинамического кругового цикла часть теплоты переходит в механическую энергию, которая приводит в действие собственный компрессионный тепловой насос, благодаря чему увеличивается полезный температурный уровень низкотемпературного окружающей среды или отработанной теплоты. Отработанная теплота двигателя также может быть использована. Теплообменник отработанной теплоты в зависимости от температурных условий подключается параллельно или последовательно конденсатора компрессионного теплового насоса или тепло подводится к специальным потребителей.

Как приводы в принципе могут быть использованы тепловые двигатели всех типов, однако наиболее удобные газовые и дизельные двигатели, потому что они работают на природном газе и нефти - высококачественных носителях первичной энергии, применяемых для отопления. Полученная теплота с помощью такой системы отопления с двигателем может сократить расход первичной энергии примерно вдвое по сравнению с обычным способом получения тепла при сжигании топлива.

Можно достичь коэффициента преобразования, равного 1,8 ... 1,9.

Абсорбционные теплонасосные установки

По степени агрегатирования АПТ разделяются на агрегатирован (с конструктивным объединением всех элементов в один или несколько блоков) и неагрегатировани (с отдельно выполненным элементами АПТ). К агрегатирован относятся бромистолитиеви АПТ.

В зависимости от схемы включения АПТ в технологические процессы различных производств их можно разделить на автономные, не зависящие от схемы технологического процесса, и встроенные - с объединением части цикла АПТ с технологическим процессом.

Число абсорбционных тепловых насосов, выпускаемых до сих пор, небогатое, но уже достигнуты высокие коэффициенты трансформации. При этом абсорбционные тепловые насосы могут более полно отвечать специальным условиям источников тепла и приводной энергии, чем компрессионные.

В Германии, например, выпускаются абсорбционные тепловые насосы с тепловой мощностью 1 ... 3 МВт. Коэффициент трансформации зависит от рабочей температуры и температуры испарения. Для малых установок нельзя достичь высоких показателей (С, < 1,5). В разных странах проводятся работы по совершенствованию малых абсорбционных тепловых насосов.

Вопрос 26. Полезное использование низкопотенциальных энергоресурсов. Теплонасосные установки

В последнее время появилась реальная возможность принципиально по-новому решать вопросы комплексного энергоснабжения промышленных предприятий путем применения тепловых насосов, использующих низкопотенциальные выбросы для выработки одновременно теплоты и холода. Одновременная выработка этих энергоносителей на тепловых насосах практически всегда более эффективна, чем раздельное получение теплоты и холода на традиционных установках, так как в этом случае необратимые потери холодильного цикла используются для получения теплоты, отдаваемой потребителю.

В теплонасосных установках температура теплоотдатчика равна или несколько выше температуры окружающей среды, а температура теплоприемника значительно выше температуры окружающей среды, т.е. Т н >Т о. Тепловыми насосами называются установки, при помощи которых осуществляется перенос энергии в форме теплоты от более низкого к более высокому температурному уровню, необходимому для теплоснабжения. Основное назначение этих установок состоит в использовании теплоты низкопотенциальных источников, например, окружающей среды.

В настоящее время разработаны и находят применение три основные группы тепловых насосов: компрессионные (паровые); струйные (эжекторного типа); абсорбционные.

Компрессионные тепловые насосы применяются для теплоснабжения отдельных зданий или групп зданий, а также для теплоснабжения отдельных промышленных цехов или установок.

В качестве рабочего агента в теплонасосных установках используются обычно фреоны.

На рис.4 приведена принципиальная схема идеального парокомпрессионного теплового насоса. В испаритель I подводится располагаемая теплота низкого потенциала при температуре Тн. Пары рабочего агента поступают из испарителя I в компрессор II в состоянии 1 сжимаются до давления рк и соответствующей ему температуре насыщения Тк. В состоянии 2 сжатые пары рабочего агента поступают в конденсатор III, где передают теплоту теплоносителю системы теплоснабжения. В конденсаторе пары рабочего агента конденсируются. Из конденсатора рабочий агент поступает в жидком виде в детандер IV (устройство, в котором расширение рабочего тела, производимое совместно с охлаждением, происходит с совершением полезной работы), где происходит расширение рабочего агента от давления р к до давления р о, сопровождающееся снижением его температуры и отдачей теплоты. Из детандера рабочий агент поступает в испаритель I и цикл замыкается.

Схема тепловых насосов, работающих по замкнутому циклу, принципиально ничем не отличаются от схемы паровых компрессионных холодильных установок. Однако присоединение потребителей осуществ-ляется по-разному. В схемах холодильных установок потребитель холода присое-динен к испарителю, а в теп-лонасосных - потребитель тепла к конденсатору.

Тепловые насосы относятся к установкам трансформации теплоты, к которым также относятся холодильные ( 120 К), криогенные ( =0…120 К) и комбинированные ( , ) установки. Все данные установки работают по обратным термодинамическим циклам, в которых с затратой внешней работы происходит перенос тепловой энергии от тел с низкой температурой (теплоотдатчиков) к телам с высокой температурой (теплоприемникам). Но если функция холодильных и криогенных установок – охлаждение тел и поддержание низкой температуры в холодильной камере, т.е. отвод тепла, то основная функция тепловых насосов – подвод теплоты к высокотемпературному источнику с использованием низкотемпературной тепловой энергией. При этом выгодно то, что количество получаемой высокотемпературной теплоты может быть в несколько раз выше затраченной работы.

Трансформатор тепла может работать одновременно как холодильная и теплонасосная установка; при этом Т н < Т о и Т н > Т о. Такой процесс называется комбинированным. В комбинированном процессе происходит одновременно выработка тепла и холода - охлаждается среда А и нагревается среда Б. Таким образом, в холодильных установках осуществляется искусственное охлаждение тел, температура которых ниже температуры окружающей среды. В теплонасосных установках используется тепло окружающей среды или других низкопотенциальных сред для целей теплоснабжения.

Идеальные циклы Карно установок трансформации теплоты представлены на рис.5.

Эффективность холодильных машин ( - полезный эффект, количество теплоты, отобранной от более холодного теплоносителя) оценивается холодильным коэффициентом. Для теплового насоса используется понятие коэффициент трансформации ( - полезный эффект, количество теплоты, отданное нагреваемому теплоносителю) или отопительный коэффициент, т.е. количество полученной теплоты на единицу затраченной работы.

, ,

, .

Для реальных тепловых насосов = 2 - 5.

Реальная установка имеет потери, вызванные необратимостью процессов сжатия (внутренняя) и теплообмена (внешняя). Внутренняя необратимость обусловлена вязкостью хладоагента и выделением теплоты внутреннего трения при сжатии в компрессоре (энтропия растет). Действительная работа сжатия , где - идеальная работа в обратимом процессе; - относительный внутренний КПД компрессора; - электромеханический КПД привода.

Внешняя необратимость объясняется необходимостью иметь разность температур для возникновения теплообмена, которая задается (определяется) площадью теплообменной поверхности при заданном тепловом потоке.

Поэтому и ,

где , - температуры соответственно в испарителе и конденсаторе установки.

Струйные тепловые насосы эжекторного типа в настоящее время получили широкое применение. Пар высокого давления поступает в струйный аппарат, и за счет использования энергии рабочего потока происходит сжатие инжектируемого потока. Из аппарата выходит смесь двух потоков. Таким образом, при сжатии инжектируемого пара одновременно повышается его температура. Сжатый поток пара затем выводится из установки.

Пар высокого давления с параметрами р р и Т р поступает в струйный аппарат (рис.6). За счет использования энергии рабочего потока происходит сжатие инжектируемого потока с па­раметрами р н и Т н . Из аппарата выходит смесь потоков с параметрами р с и Т с. Таким образом, при сжатии инжектируемого пара одновременно повышается его температура (а следовательно, и энтальпия). Сжатый поток пара затем выводится из установки. Степень повышения давления р с / р н в таких аппаратах, называемых струйными компрессорами, сравнительно невелика и находится в пределах 1,2 ≤ р с / р н ≤ 4.



Струйные тепловые насосы получили в настоящее время наибольшее распространение благодаря простоте обслуживания, компактности, отсутствии дорогостоящих элементов.

Абсорбционные тепловые насосы работают на принципе поглощения водяного пара водными растворами щелочей (NaOH, KOH). Процесс абсорбции водяного пара происходит экзотермически, т.е. с выделением тепла. Это тепло расходуется на подогрев раствора до температуры, значительно превышающей температуру абсорбируемого пара. Нагретый раствор щелочи по выходе из абсорбера направляют в поверхностный испаритель, где генерируется вторичный пар более высокого давления, чем первичный пар, поступающий в абсорбер. Таким образом, в абсорбционных тепловых насосах процесс получения пара повышенного давления осуществляется за счет использования тепла, подведенного извне.

Принципиальная схема абсорбционного теплового насоса приведена на рис.7.

В качестве рабочего вещества в абсорбционных тепловых насосах применяется раствор двух веществ (бинарная смесь), которая различается температурой кипения при одинаковом давлении. Одно вещество поглощает и растворяет второе вещество, являющееся рабочим агентом. Рабочий цикл абсорбционного теплового насоса осуществляется следующим образом. В испарителе 3 через стенки теплообменника к бинарному раствору подводится теплота низкого потенциала при температуре T о. Подведенная теплота обеспечивает испарение из бинарной смеси рабочего агента при давлении р о. Полученные пары рабочего агента из испарителя по трубопроводу поступают в абсорбер 2, где поглощаются растворителем (абсорбентом), и выделяется теплота абсорбции Q a . Образовавшийся в абсорбере крепкий жидкий раствор насосом 1 подается в генератор 6. К генератору подводится теплота Q г затрачиваемая на выпаривание рабочего агента при высоком давлении р к, и соответственно высокой температуре Т к. При выпаривании над поверхностью раствора образуются пары рабочего агента, а сам раствор становится слабым. Слабый раствор по трубопроводу направляется в абсорбер 2, понижая давление во вспомогательном терморегулирующем вентиле 7 до давления в испарителе р о. Образовавшиеся в генераторе пары рабочего агента поступают в конденсатор 5, где через разделительную стенку отдают теплоту конденсации Q к при высокой температуре Т к. Сконденсировавшийся в конденсаторе рабочий агент понижает в терморегулирующем вентиле давление с р к до р о, с которым поступает в испаритель. Затем процесс повторяется.

Для работы идеального абсорбционного теплового насоса характерно следующее уравнение теплового баланса:

где Q н - количество теплоты низкого потенциала, подведенной в испарителе;

Q г - количество теплоты высокого потенциала, подведенной к генератору;

Q нас - теплота, эквивалентная работе насоса;

Q к - количество отведенной теплоты высокого потенциала в конденсаторе;

Q а - количество отведенной теплоты низкого потенциала в абсорбере.

Рабочим агентом обычно является вода, а абсорбентом - бромид лития.

Для химических, нефтехимических и нефтеперерабатывающих предприятий, имеющих большой объем воды для охлаждения технологических агрегатов, температура которой находится в пределах от 20 до 50°С, необходимо применять абсорбционные бромисто-литиевые тепловые насосы, которые в летнее время будут работать в режиме охлаждения оборотной воды, а в зимнее время сбросную теплоту оборотной воды использовать для выработки горячей воды для отопления цехов. В табл.6 указаны параметры абсорбционных бромисто-литиевых тепловых насосов (АБТН).

Абсорбционные тепловые насосы имеют высокий кпд, у них отсутствуют движущиеся части, оборудование может быть легко изготовлено. Однако абсорбционные насосы требуют большой удельной затраты металла, что делает их громоздкими. Возможность коррозии металла требует изготовления аппаратуры из легированной стали. Поэтому абсорбционные тепловые насосы не получили широкого распространения в промышленности.

Таблица 6

Параметры АБТН

Рабочие агенты и теплоносители (хладоносители)

в трансформаторах тепла

Для осуществления процессов в трансформаторах тепла применяют рабочие вещества (агенты), обладающие необходимыми термодинамическими, физико-химическими свойствами. Они могут быть однородными или являются смесью нескольких, обычно двух, веществ. У большинства трансформаторов тепла рабочие вещества подвергаются фазовым превращениям. В настоящее время в трансформаторах тепла применяют следующие рабочие вещества:

а) холодильные агенты - вещества, имеющие при атмосферном давлении низкую температуру кипения от +80 до -130 °С. Холодильные агенты с температурой кипения от +80 до -30 °С применяются обычно в теплонасосных установках, а с более низкими температурами кипения от 0 до -130 °С - в установках умеренного холода;

б) газы и газовые смеси (также воздух) с низкими температурами кипения;

в) рабочие агенты и абсорбенты абсорбционных установок;

г) вода, применяемая по своим теплофизическим свойствам в холодильных установках, где температура нижнего источника, тепла tн>0°С, например для кондиционирования воздуха.

Для экономичной и безопасной работы трансформаторов тепла холодильные агенты должны удовлетворять следующим требованиям:

а) иметь невысокое избыточное давление при температуре кипения и конденсации, большую теплопроизводительность 1 кг агента, малый удельный объем пара (при поршневых компрессорах), малую теплоемкость жидкости и высокие коэффициенты теплопроводности и теплоотдачи;

б) иметь невысокую вязкость, возможно более низкую температуру затвердения, не растворяться в масле (при поршневых компрессорах);

в) быть химически стойким, негорючим, невзрывоопасным, не вызывать коррозии металлов;

г) быть безвредным для организма человека;

д) быть недефицитным и недорогим.

Рабочие агенты газовых холодильных установок должны иметь низкую нормальную температуру кипения, малую вязкость, большую теплопроводность и теплоемкость С р, мало зависящую от температуры и давления.

Рабочие агенты абсорбционных установок, кроме удовлетворения вышеперечисленных требований, должны хорошо абсорбироваться и десорбироваться в сочетании с соответствующими сорбентами.

Экономическая эффективность применения тепловых насосов зависит от:

Температуры низкопотенциального источника тепловой энергии и будет тем выше, чем более высокую температуру он будет иметь;

Стоимости электроэнергии в регионе;

Себестоимости тепловой энергии, производимой с использованием различных видов топлива.

Использование тепловых насосов вместо традиционно используемых источников тепловой энергии экономически выгодно ввиду:

Отсутствия необходимости в закупке, транспортировке, хранении топлива и расходе денежных средств, связанных с этим;

Высвобождения значительной территории, необходимой для размещения котельной, подъездных путей и склада с топливом.

Наибольший потенциал энергосбережения имеется в сфере теплоснабжения: 40 - 50% всего теплопотребления страны. Оборудование существующих ТЭЦ физически и морально изношено, эксплуатируется с перерасходом топлива, тепловые сети являются источником больших потерь энергии, мелкие теплоисточники отличаются низкой энергоэффективностью, высокой степенью загрязнения окружающей среды, повышенными значениями удельных стоимостей и трудозатрат на обслуживание.

ТНУ дают возможность:

1) минимизировать протяженность тепловых сетей (приблизить тепловые мощности к местам потребления);

2) получать в системах отопления 3 - 8 кВт эквивалентной тепловой энергии (в зависимости от температуры низкопотенциального источника, затрачивая при этом 1 кВт электроэнергии).

К настоящему времени масштабы внедрения тепловых насосов в мире следующие:

В Швеции 50% всего отопления обеспечивают тепловые насосы; только за последние годы введено более 100 (от 5 до 80 МВт) теплонасосных станций;

В Германии предусмотрена дотация государства на установку тепловых насосов в размере 400 марок за каждый киловатт установленной мощности;

В Японии ежегодно производится около 3 млн. тепловых насосов;

В США 30 % жилых зданий оборудовано тепловыми насосами, ежегодно производится около 1 млн. тепловых насосов;

В Стокгольме 12% всего отопления города обеспечивается тепловыми насосами общей мощностью 320 МВт, использующими как источник тепла Балтийское море с температурой + 8 о С;

В мире по прогнозам Мирового Энергетического Комитета к 2020 году доля тепловых насосов в теплоснабжении (коммунальная сфера и производства) составит 75%.

Причины массового признания тепловых насосов следующие:

Экономичность. Чтобы передать в систему отопления 1 кВт тепловой энергии, тепловому насосу нужно лишь 0,2 - 0,35 кВт электроэнергии;

Экологическая чистота. Тепловой насос не сжигает топливо и не производит вредных выбросов в атмосферу;

Минимальное обслуживание. Тепловые насосы имеют большой срок службы до капитального ремонта (до 10 - 15 отопительных сезонов) и работают полностью в автоматическом режиме. Обслуживание установок заключается в сезонном техническом осмотре и периодическом контроле режима работы. Для работы теплонасосной станции мощностью до 10 МВт не требуется более одного оператора в смену;

Легкая адаптация к имеющейся системе теплоснабжения;

Короткий срок окупаемости. В связи с низкой себестоимостью произведенного тепла тепловой насос окупается в среднем за 1,5 - 2 года (2 - 3 отопительных сезона).

Сейчас имеются два направления развития ТНУ:

Крупные теплонасосные станции (ТНС) для централизованного теплоснабжения, включающие парокомпрессионные ТНУ и пиковые водогрейные котлы, используемые при низких температурах воздуха. Электрическая (потребляемая) мощность ТНУ составляет 20 - 30 МВт, тепловая – 110 - 125 МВт. По сравнению с обычными котельными достигается экономия топлива в размере 20 - 30%, снижается загрязнение воздуха (нет котельной!);

Децентрализованное индивидуальное теплоснабжение (маломощные парокомпрессионные ТНУ и термоэлектрические полупроводниковые ТН). Экономия топлива по сравнению с мелкими котельными составляет 10 - 20%. Возможно хладоснабжение. Сопровождается высокими удельными расходами топлива, капиталовложениями и трудозатратами.

Д.т.н. В.Е. Беляев, главный конструктор ОМКБ Горизонт,
д.т.н. А.С. Косой, заместитель главного конструктора промышленных ГТУ,
главный конструктор проектов,
к.т.н. Ю.Н. Соколов, начальник сектора тепловых насосов ОМКБ Горизонт,
ФГУП «ММПП «Салют», г. Москва

Использование теплонасосных установок (ТНУ) для энергетики, промышленности и предприятий ЖКХ является одним из наиболее перспективных направлений энергосберегающих и экологически чистых энерготехнологий.

Достаточно серьезный анализ состояния и перспектив развития работ в указанной области был сделан на заседании подсекции «Теплофикация и централизованное теплоснабжение» НТС ОАО РАО «ЕЭС России» 15.09.2004 г. .

Необходимость создания и внедрения ТНУ нового поколения связана с:

♦ огромным отставанием Российской Федерации и стран СНГ в области практического внедрения ТНУ, всевозрастающими потребностями крупных городов, удаленных населенных пунктов, промышленности и предприятий ЖКХ в разработке и использовании дешевой и экологически чистой тепловой энергии (ТЭ);

♦ наличием мощных источников низкопотенциального тепла (грунтовые воды, реки и озера, тепловые выбросы предприятий, зданий и сооружений);

♦ всевозрастающими ограничениями в использовании для теплогенерирующих установок природного газа (ПГ);

♦ возможностями использования прогрессивных конверсионных технологий, накопленных в авиадвигателестроении.

В условиях рыночных отношений важнейшими технико-экономическими показателями эффективности энергогенерирующих установок являются себестоимость и рентабельность производимой энергии (с учетом экологических требований) и, как следствие, - минимизация сроков окупаемости энергоустановок.

Основными критериями выполнения этих требований являются:

♦ достижение максимально возможного в энергоустановке коэффициента использования топлива (КИТ) (отношение полезной энергии к энергии топлива);

♦ предельно возможное снижение капитальных затрат и сроков сооружения энергоустановки.

Вышеназванные критерии были учтены при реализации ТНУ нового поколения.

Впервые для практической реализации крупномасштабных ТНУ в качестве рабочего тела предложено использовать водяной пар (R718). Сама идея использования водяного пара для ТНУ не нова (более того, она была использована В. Томсоном при демонстрации работоспособности первой такой реальной машины еще в 1852 г. - прим. авт.). Однако, из-за весьма значительных удельных объемов водяного пара при низких температурах (по сравнению с традиционными хладонами), создание реального компрессора на водяном паре для использования в парокомпрессионных ТНУ до сих пор осуществлено не было.

Основными преимуществами использования водяного пара в качестве рабочего тела для ТНУ по сравнению с традиционными хладонами (фреоны, бутан, пропан, аммиак и др.) являются:

1. Экологическая чистота, безопасность и простота технологического обслуживания, доступность и низкая стоимость рабочего тела;

2. Высокие теплофизические свойства, благодаря которым наиболее дорогие элементы ТНУ (конденсатор и испаритель) становятся компактными и дешевыми;

3. Существенно более высокие температуры теплоносителя к потребителю (до 100 ОС и выше) по сравнению с 70-80 ОС для фреонов;

4. Возможность реализации каскадной схемы повышения температуры от низкопотенциального источника к теплопотребителю (по циклу Лоренца ) с увеличением коэффициента преобразования в ТНУ (kТНУ) по сравнению с традиционными в 1,5-2 раза;

5. Возможность генерирования в ТНУ химически очищенной воды (дистиллята);

6. Возможность использования компрессора и конденсатора ТНУ для:

♦ отсоса водяного пара с выхода теплофикационных турбин с передачей бросового тепла теплопотребителю, приводящего дополнительно к повышению вакуума на выходе из турбины, увеличению ее генерируемой мощности, снижению расхода циркуляционной воды, затрат на ее перекачку и тепловых выбросов в атмосферу ;

♦ отсоса низкопотенциального водяного пара (бросового) из энерготехнологических устано-

вок химического производства, сушильных и др. с передачей бросовой теплоты к теплопотреби-телю;

♦ создания высокоэффективных эжектирую-щих устройств для конденсаторов паровых турбин, отсоса многокомпонентных смесей и т.д.

Принципиальная схема работы ТНУ на водяном паре и ее конструктивные особенности

На рис. 1 показана принципиальная схема работы ТНУ при использовании в качестве рабочего тела водяного пара (R718).

Особенностью предлагаемой схемы является возможность организации отбора теплоты низкотемпературного источника в испарителе за счет непосредственного испарения части подаваемой в него воды (без теплообменных поверхностей), а также возможность передачи теплоты в теплосеть в конденсаторе ТНУ как при наличии теплообменных поверхностей, так и без них (смесительного типа). Выбор типа конструкции определяется привязкой ТНУ к конкретному источнику низкопотенциального источника и требованиями теплопотребителя по использованию поступающего к нему теплоносителя.

Для практической реализации крупномасштабной ТНУ на водяном паре предложено использовать серийно выпускаемый авиационный осевой компрессор АЛ-21, имеющий следующие важные особенности при его использовании для работы на водяном паре:

♦ большую объемную производительность (до 210 тыс. м3/ч) при числе оборотов ротора компрессора около 8 тыс. об/мин;

♦ наличие 10 регулируемых ступеней, позволяющих обеспечить эффективную работу компрессора в различных режимах;

♦ возможность осуществления впрыска воды в компрессор для улучшения эффективности работы, в том числе снижения потребляемой мощности .

Кроме того, для повышения надежности работы и снижения эксплуатационных затрат было принято решение заменить подшипники качения на подшипники скольжения, использовав при этом вместо традиционной масляной системы систему смазки и охлаждения на воде.

Для изучения газодинамических характеристик компрессора при работе на водяном паре в широком диапазоне определяющих параметров, отработки элементов конструкции и демонстрации надежности работы компрессора в условиях натурных испытаний, был создал на полигон-электростанции ТЭЦ-28 ОАО «Мосэнерго» крупномасштабный испытательный стенд (замкнутого типа, диаметр трубопроводов 800 мм, длина около 50 м ).

В результате проведения испытаний были получены следующие важные результаты:

♦ подтверждена возможность эффективной и устойчивой работы компрессора на водяном паре при n=8000-8800 об/мин с объемным расходом водяного пара до 210 тыс. м3/ч.

♦ продемонстрирована возможность достижения глубокого вакуума на входе в компрессор (0,008 ата);

♦ экспериментально полученный коэффициент сжатия в компрессоре πκ=5 в 1,5 раза превысил требуемое значение для ТНУ с коэффициентом преобразования 7-8;

♦ отработана надежная конструкция подшипников скольжения компрессора на воде.

В зависимости от условий эксплуатации ТНУ предлагается 2 типа ее компоновки : вертикальная (ТНУ в одном агрегате) и горизонтальная.

Для ряда модификаций предлагаемой вертикальной компоновки ТНУ возможна замена трубчатого конденсатора на конденсатор оросительного типа. В этом случае конденсат рабочего тела ТНУ смешивается с теплоносителем (водой) к потребителю. Стоимость ТНУ при этом снижается примерно на 20%.

В качестве привода компрессора ТНУ может быть использован:

♦ встроенный турбопривод мощностью до 2 МВт (для ТНУ производительностью до 15 МВт);

♦ выносные высокооборотные турбоприводы (для ТНУ производительностью до 30 МВт);

♦ газотурбинные двигатели с утилизацией ТЭ с выхода;

♦ электропривод.

В табл. 1 приведены характеристики ТНУ на водяном паре (R718) и фреоне 142.

При использовании в качестве низкопотенциального источника теплоты с температурой 5-25 ОС по технико-экономическим соображениям в качестве рабочего тела ТНУ выбран фреон 142.

Сопоставительный анализ показывает, что для ТНУ на водяном паре капитальные затраты в между водяным теплоносителем и рабочим телом (фреоном).

диапазоне температур низкопотенциального источника:

♦ 25-40 ОС - в 1,3-2 раза ниже, чем для традиционных отечественных ТНУ на фреоне и в 2-3 раза ниже, чем для зарубежных ТНУ;

♦ 40-55 ОС - в 2-2,5 раза ниже, чем для традиционных отечественных ТНУ на фреоне и в 2,5-4 раза ниже, чем для зарубежных ТНУ.

Таблица 1. Характеристики ТНУ на водяном паре и фреоне.

*- при работе на фреоне испаритель и конденсатор ТНУ выполняются с теплообменными поверхностями

**-Т- турбопривод; Г- газотурбинный (газопоршневой); Э - электропривод.

В работе в условиях реальной эксплуатации ТНУ на ТЭЦ была продемонстрирована возможность эффективной передачи в теплосеть сбросной теплоты из паровой турбины с коэффициентом преобразования ТНУ равным 5-6. В предложенной в и показанной на рис. 2 схеме коэффициент преобразования ТНУ будет существенно выше за счет исключения испарителя ТНУ и, соответственно, отсутствия температурного перепада между низкотемпературным источником и рабочим паром на входе в компрессор.

В настоящее время создание высокоэффективных и экологически чистых теплогенерирующих энергоустановок на базе ТНУ является крайне актуальной задачей .

В описаны результаты внедрения ТНУ различного типа для нужд теплоснабжения, промышленных предприятий и ЖКХ.

В на основе реальных испытаний ТНУ на ТЭЦ-28 ОАО «Мосэнерго» предложены 2 конкретные схемы передачи сбросной теплоты в градирни с помощью ТНУ в теплосеть (прямая передача в обратную тепломагистраль и для нагрева подпиточной сетевой воды).

В проанализированы пути создания высокоэффективных компрессионных ТНУ на водяном паре при использовании в качестве низкопотенциального источника теплоты в диапазоне температур от 30 до 65 ОС с газотурбинным приводом компрессора и утилизацией теплоты уходящих газов из ГТУ. Результаты технико-экономического анализа показали, что в зависимости от условий, себестоимость генерируемой теплоты ТНУ может в несколько раз быть ниже (а КИТ в несколько раз выше), чем при традиционной выработке теплоты на ТЭЦ.

В проведен анализ эффективности использования тепловых насосов в централизованных системах горячего водоснабжения (ГВС). Показано, что эта эффективность существенно зависит от действующих тарифов на энергоносители и температуры используемой низкопотенциальной теплоты, поэтому к проблеме использования ТНУ необходимо подходить взвешенно, с учетом всех конкретных условий.

ТНУ в качестве альтернативного источника ГВС потребителей централизованного теплоснабжения в отопительный период

В настоящей работе, на основе накопленного опыта, анализируется возможность и технико-экономические показатели более углубленного по сравнению с использования ТНУ для ГВС, в частности, практически 100% вытеснения теплоты от традиционных ТЭЦ на эти цели в отопительный период.

Для примера рассмотрена возможность реализации такого подхода для наиболее крупного Московского региона РФ при использовании в качестве бросовой теплоты двух источников:

♦ теплоты естественных природных водных источников: Москва-реки, озер, водоемов и других со средней температурой около 10 ОС;

♦ сбросной теплоты канализационных стоков и других источников;

♦ сбросной теплоты в градирни (с выхода паровых турбин ТЭЦ в отопительный период в режиме вентиляционного пропуска с температурой пара на выходе 30-35 ОС). Суммарная величина этой теплоты составляет около 2,5 тыс. МВт.

В настоящее время на нужды ГВС Московского региона расходуется около 5 тыс. МВт ТЭ (примерно 0,5 кВт на 1 чел.). Основное количество теплоты для ГВС поступает от ТЭЦ по системе централизованного теплоснабжения и осуществляется на ЦТП московской городской теплосети. Нагрев воды на ГВС (от ~10 ОС до 60 ОС) осуществляется, как правило, в 2-х последовательно включенных теплообменниках 7 и 8 (рис. 3) сначала от теплоты сетевой воды в обратной тепломагистрали и затем от теплоты сетевой воды в прямой тепломагистрали. При этом на нужды ГВС расходуется ~650-680 т у.т./ч ПГ.

Реализация схемы расширенного (комплексного) использования вышеуказанных источников бросовой теплоты для ГВС с помощью системы двух ТНУ (на фреоне и водяном паре, рис. 4) позволяет в отопительный период практически 100% скомпенсировать около 5 тыс. МВт теплоты (соответственно, сэкономить огромное количество ПГ, уменьшить тепловые и вредные выбросы в атмосферу).

Естественно, при наличии действующих ТЭЦ в неотопительный период времени с помощью ТНУ передавать теплоту нецелесообразно, поскольку ТЭЦ из-за отсутствия тепловой нагрузки вынуждены переходить в конденсационный режим работы со сбросом в градирни большого количества теплоты сожженного топлива (до 50%).

Теплонасосная установка ТНУ-1 с рабочим телом на фреоне (R142) может обеспечить нагрев воды от ~10 ОС на входе в испаритель 10 до ~35 ОС на выходе из него, используя в качестве низкотемпературного природного источника воду с температурой около 10 ОС с kТНУ около 5,5. При использовании в качестве низкотемпературного источника сбросной воды промышленных предприятий или ЖКХ ее температура может значительно превышать 10 ОС. В этом случае kТНУ будет еще выше.

Таким образом, ТНУ-1 может с большой эффективностью обеспечить 50% нагрев воды для ГВС суммарной величиной передаваемой теплоты до 2,5 тыс. МВт и выше. Масштабы внедрения таких ТНУ достаточно велики. При средней единичной тепловой мощности ТНУ-1 около 10 МВт только для Московского региона потребовалось бы около 250 таких ТНУ.

При kТНУ=5,5 на привод компрессоров ТНУ необходимо затратить около 450 МВт электрической или механической мощности (при приводе, например, от ГТУ). Теплонасосные установки ТНУ-1 должны устанавливаться вблизи от тепло-потребителя (на ЦТП городской теплосети).

Теплонасосные установки ТНУ-2 устанавливаются на ТЭЦ (рис. 4) и используют в отопительный период в качестве низкотемпературного источника пар с выхода теплофикационных турбин (вентиляционный пропуск части низкого давления (ЧНД)). При этом, как уже отмечалось выше, пар с температурой 30-35 ОС поступает непосредственно в компрессор 13 (рис. 2, испаритель ТНУ отсутствует) и после его сжатия подается в конденсатор 14 теплонасосной установки ТНУ-2 на нагрев воды из обратной сетевой магистрали.

Конструктивно пар может отбираться, например, через предохранительный (сбросной) клапан ЧНД паровой турбины 1. Компрессор 13, создавая существенно более низкое давление на выходе из ЧНД турбины 1 (чем при отсутствии ТНУ-2), соответственно, снижает температуру конденсации (насыщения) пара и «отключает» конденсатор турбины 3.

На рис. 4 схематично показан случай, когда бросовая теплота передается конденсатором 14 в обратную тепломагистраль до ПСВ 4. В этом случае даже при передаче всей бросовой теплоты с выхода ЧНД турбины в обратную тепломагистраль температура перед ПСВ увеличится всего на ~5 ОС, незначительно повысив при этом давление греющего пара из отбора турбины на ПСВ 4.

Более эффективно передать сначала часть сбросной теплоты на нагрев подпиточной сетевой воды (вместо ее традиционного нагрева отборным паром из турбины), а затем уже остаток сбросной теплоты отдать в обратную тепломагистраль (на рис. 4 этот вариант не показан).

Важным результатом предлагаемого подхода является возможность вытеснения с помощью дополнительно установленных на ТЭЦ ТНУ-2 в отопительный период применительно к Московскому региону до 2,5 тыс. МВтТЭ (передаваемых пиковыми водогрейными котлами). При единичной мощности ТНУ-2 на водяном паре равной ~6-7 МВт для передачи такого количества теплоты потребовалось бы 350-400 таких установок.

Учитывая весьма низкий уровень температурного перепада в ТНУ (~15 ОС между низкотемпературным источником и температурой обратной сетевой воды), коэффициент преобразования ТНУ-2 будет еще более высоким (kТНУ ~6,8), чем для ТНУ-1. При этом для передачи в теплосеть ~2,5 тыс. МВтТЭ необходимо суммарно затратить около 370 МВт электрической (или механической) энергии.

Таким образом, суммарно с помощью ТНУ-1 и ТНУ-2 в отопительный период на нужды ГВС Московского региона можно передать до 5 тыс. МВт ТЭ. В табл. 2 дана технико-экономическая оценка такого предложения.

В качестве привода ТНУ-1 и ТНУ-2 может быть использован газотурбинный привод с N=1 -5 МВт и КПД 40-42% (за счет регенерации теплоты уходящих газов). При затруднениях, связанных с установкой на ЦТП городской теплосети ГТУ (дополнительный подвод ПГ и др.), в качестве привода для ТНУ-1 может использоваться электропривод.

Технико-экономические оценки сделаны для тарифов на топливо и ТЭ на начало 2005 г. Важным результатом анализа является существенно более низкая себестоимость генерируемой ТЭ с помощью ТНУ (для ТНУ-1 - 193 руб./Гкал и ТНУ-2 - 168 руб./Гкал) по сравнению с традиционным способом ее генерирования на ТЭЦ ОАО «Мосэнерго».

Известно, что в настоящее время себестоимость ТЭ, рассчитанная по так называемому «физическому способу разделения топлива на производство электроэнергии и тепла», значительно превышает 400 руб./Гкал (тариф на ТЭ). При таком подходе производство тепла даже на самых современных ТЭЦ является нерентабельным, и эта убыточность компенсируется увеличением тарифов на электроэнергию.

На наш взгляд, такая методика разделения затрат топлива некорректна, но до сих пор используется, например, в ОАО «Мосэнерго».

По нашему мнению, приведенные в табл. 2 сроки окупаемости ТНУ (от 4,1 до 4,7 лет) не являются большими. При расчете принято 5 тыс. часов работы ТНУ в году. В действительности, в летний период времени эти установки могут работать по примеру передовых западных стран в режиме централизованного холодоснабжения, существенно улучшая при этом среднегодовые технико-экономические показатели работы.

Из табл. 2 видно, что КИТ для указанных ТНУ варьируется в диапазоне от~2,6 до~3,1, что более чем в 3 раза превышает его значение для традиционных ТЭЦ. С учетом пропорционального снижения тепловых и вредных выбросов в атмосферу, затрат на перекачку и потери циркуляционной воды в системе: конденсатор турбины - градирня, повышения вакуума на выходе ЧНД турбин (при работе ТНУ-2) и, соответственно, генерируемой мощности, технико-экономические преимущества указанного предложения будут еще более значительными.

Таблица 2. Технико-экономическое обоснование использования ТНУ на водяном паре и фреоне.

Наименование Размерность Тип ТНУ
ТНУ-1 на фреоне ТНУ-2 на водяном паре
1 Температура низкотемпературного источника °С 10 35
2 Температура к потребителю °С 35 45-55
3 Q-гну (единичная) МВт 10 6-7
4 Q ТНУ для ГВС, суммарная Q утилизации тепла с выхода ГГУ* Q суммарная к потребителю МВт 2500 -450 -2950 2500 -370 -2870
5 кТНУ - 5,5 6,8
6 Суммарная мощность ГТД на привод компрессоров МВт -455 -368
7 Суммарный расход ПГ на ГТД компрессора τ у.т./ч 140 113
8 Q топлива на ГТД МВт 1138 920
9 КИТ - 2,59 3,12
10 Удельная стоимость сооружения ТНУ с ГТД приводом долл. США/кВт тыс. долл. США/Гкал 220 256 200 232
11 Суммарные капитальные затраты млн долл. США -649 -574
12 Число часов использования в году ч 5000
13 Затраты в год, из них: - топливо (1230 руб./т у.т.); - амортизационные отчисления (6,7%/год); - прочие (обслуживание, ФЗП и др.). млн руб. 2450 862 1218 370 2070 695 1075 300
14 Стоимость всего объема вырабатываемой ТЭ в год (400 руб./Гкал или 344 руб./МВтч) млн руб. 5070 4936
15 Себестоимость ТЭ руб./Гкал 193 168
16 Прибыль в год млн руб. млн долл. США 2620 -94 2866 -102
17 Срок окупаемости (с возвратом амортизационных отчислений) в годах -4,7 -4,1

* - дополнительная теплота при утилизации тепла уходящих газов из газотурбинных приводных установок может быть использована для вытеснения части теплоты от ТЭЦ на централизованное теплоснабжение.

С учетом неизбежного роста цен на энергоносители при вступлении России в ВТО, ограничений на использование ПГ для энергетики и потребностей широкого внедрения высокоэффективных энергосберегающих и экологически чистых энерготехнологий технико-экономические преимущества внедрения ТНУ будут неизменно расти.

Литература

1. Новое поколение тепловых насосов для целей теплоснабжения и эффективность их использования в условиях рыночной экономики // Материалы заседания подсекции Теплофикации и централизованного теплоснабжения НТС ОАО РАО «ЕЭС России», Москва, 15 сентября 2004 г.

2. АндрюшенкоА.И. Основы термодинамики циклов теплоэнергетических установок. - М.: Высш. школа, 1985 г.

3. Беляев В.Е., Косой А.С., Соколов Ю.Н. Способ получения тепловой энергии. Патент РФ № 2224118 от 05.07.2002г., ФГУП«ММПП«Салют».

4. Середа С.О., Гельмедов Ф.Ш., Сачкова Н.Г. Расчетные оценки изменения характеристик многоступенчатого

компрессора под влиянием испарения воды в его проточной части, ММПП «Салют»-ЦИАМ// Теплоэнергетика. 2004. №11.

5. Елисеев Ю.С., Беляев В.В., Косой А.С., Соколов Ю.Н. Проблемы создания высокоэффективной парокомпрес-сионной установки нового поколения. Препринт ФГУП «ММПП «Салют», май 2005.

6. ДевянинД.Н., Пищиков С.И., Соколов Ю.Н. Разработка и испытание на ТЭЦ-28 ОАО «Мосэнерго» лабораторного стенда по апробации схем использования ТНУ в энергетике // «Новости теплоснабжения». 2000. № 1. С. 33-36.

7. Проценко В. П. О новой концепции теплоснабжения РАО «ЕЭС России» // Энерго-пресс, № 11-12, 1999.

8. Фролов В.П., Щербаков С.Н., Фролов М.В., Шелгин-ский А.Я. Анализ эффективности использования тепловых насосов в централизованных системах горячего водоснабжения // «Энергосбережение». 2004. №2.

Принципиальная схема теппонасосной установки (а и изображение в диаграмме Т - s ее обратимого цикла (б.  

Теплонасосные установки могут успешно и эффективно применяться в установках совместного зимнего отопления и летнего кондиционирования воздуха; в установках совместного получения холода и тепла; в выпарных опреснительных и ректификационных установках; на гидростанциях для использования тепла воздуха и водорода, охлаждающих электрические генераторы; на нефтеперерабатывающих и нефтехимических заводах при использовании тепла горячих нефтепродуктов и горячей воды (t 60 Ч - 120 С) для получения водяного пара давлением 10 кГ / еж2 и горячей воды температурой 130 - 150 С.  

Теплонасосная установка, которая служит в зимнее время для отопления курортного зала, использует в качестве источника теплоты морскую воду. Как изменится тепловая мощность установки, если она будет работать по внутреннему обратимому циклу Карно при тех же температурных напорах в испарителе и конденсаторе. Как изменится отопительный коэффициент, если устранить внешнюю необратимость в теплообменниках установки, работающей по обратному циклу Карно.  


Теплонасосные установки наиболее целесообразно использовать для удовлетворения постоянной тепловой нагрузки при наличии постоянного источника низкопотенциальной теплоты и при относительно небольшом необходимом теплоподъеме, т.е. при небольшом значении & TTS-Та или при отношении TS / TB, близком к единице. Такие условия обычно имеют место при удовлетворении с помощью теплона-сосных установок сравнительно постоянной промышленной тепловой нагрузки невысокого потенциала или нагрузки горячего водоснабжения, при наличии отходов низкопотенциальной промышленной теплоты с температурой 20 - 40 С и выше. В этих условиях Теплонасосные установки как по энергетическим показателям (расходу топлива), так и по приведенным затратам вполне конкурентоспособны с высокоэкономичными котельными установками.  

Теплонасосная установка (Heat pump plant) состоит из теплового насоса, установки для отбора теплоты от ее источника и другого оборудования.  

Теплонасосная установка, как правило, имеет более высокую начальную стоимость, чем отопление, действующее от котла.  


Теплонасосные установки наиболее целесообразно использовать для удовлетворения постоянной тепловой нагрузки при наличии постоянного источника низкопотенциальной теплоты и при относительно небольшом необходимом теплоподъеме, т.е. при небольшом значении & ТТВ-Ts или при отношении ТБ / ТВ, близком к единице. Такие условия обычно имеют место при удовлетворении с помощью теплона-сосных установок сравнительно постоянной промышленной тепловой нагрузки невысокого потенциала или нагрузки горячего водоснабжения, при наличии отходов низкопотенциальной промышленной теплоты с температурой 20 - 40 С и выше. В этих условиях Теплонасосные установки как по энергетическим показателям (расходу топлива), так и по приведенным затратам вполне конкурентоспособны с высокоэкономичными котельными установками.  

Двухступенчатые теплонасосные установки иногда применяются в системах теплоснабжения, покрывающих отопительную нагрузку.  


Впервые парокомпрессионная аммиачная теплонасосная установка была использована для отопления помещения в 1930 г. С тех пор было сооружено большое число тепловых насосов. Есть основания полагать, что в дальнейшем использование тепловых насосов будет более широким.  

Физические свойства водного раствора хлористого натрия.| Физические свойства водного раствора хлористого кальция.| Физические свойства водных растворов пропиленгликоля.  

Теплонасосные установки (ТНУ) используют естественную возобнов­ляемую низкопотенциальную тепловую энергию окружающей среды (воды, воздуха, грунта) и повышают потенциал основного теплоносителя до более высокого уровня, затрачивая при этом в несколько раз меньше первичной энергии или органического топлива. Теплонасосные установки работают по термодинамическому циклу Карно, в котором рабочей жидкостью служат низкотемпературные жидкости (аммиак, фреон и др.). Перенос теплоты от источника низкого потенциала на более высокий температурный уровень осуществляется подводом механической энергии в компрессоре (пароком - прессионные ТНУ) или дополнительным подводом теплоты (в абсорбцион­ных ТНУ).

Применение ТНУ в системах теплоснабжения - одно из важнейших пересечений техники низких температур с теплоэнергетикой, что приводит к энергосбережению невозобновляемых источников энергии и защите ок­ружающей среды за счет сокращения выбросов СО2 и NOx в атмосферу. Применение ТНУ весьма перспективно в комбинированных системах теп­лоснабжения в сочетании с другими технологиями использования возоб­новляемых источников энергии (солнечной, ветровой, биоэнергии) и по­зволяет оптимизировать параметры сопрягаемых систем и достигать наи­более высоких экономических показателей.

Выберем в качестве рабочего хладагента - R 22, имеющего следующие параметры: расход хладагента Оа = 0,06 кг/с; температура кипения Т0 = 3 °С; температура конденсации Тк = 55 °С; температура теплоносителя на входе в испаритель от источника низкого потенциала Ґн = 8 °С; температу­ра теплоносителя (воды) на выходе из конденсатора f = 50 °C; расход теп­лоносителя в конденсаторе Ок = 0,25 кг/с; перепад температур теплоноси­теля в конденсаторе Д4 = 15 °C; мощность, потребляемая компрессором, N = 3,5 кВт; теплопроизводительность ТНУ = 15,7 кВт; коэффициент пре­образования цтн = 4,5.

Принципиальная схема парокомпрессионной ТНУ приведена на рис. 7.2 и включает испаритель, компрессор, конденсатор и дроссель.

4 - расширительный дроссельный клапан; 5 - змеевик испарения хладаген­та;

6 - бак испарения; 7 - вода низкопотенциального источника энергии

8 - сток к НИЭ; 9 - вода из системы отопления или водопровода;

Что еще почитать