Состав оборудования итп. Индивидуальный тепловой пункт для многоквартирного дома

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Этапы установки теплового пункта

Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

  1. собственно, позитивное решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.

БТП - Блочный тепловой пункт - 1вар. - это компактная тепломеханическая установка полной заводской готовности, расположенная (размещенная) в блок-контейнере, который представляет собой цельнометаллический несущий каркас с ограждениями из сэндвич-панелей.

ИТП в блок-контейнере применяется для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок целого здания или его части.

БТП - Блочный тепловой пункт - 2вар. Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП. Поставка оборудования ИТП по спецификации - теплообменники, насосы, автоматика, запорно-регулирующая арматура, трубопроводы и т.д. - поставляется отдельными позициями.

БТП - это изделие полной заводской готовности, что дает возможность подключить реконструируемые или вновь строящиеся объекты к тепловым сетям в наиболее короткие сроки. Компактность БТП способствует минимизации площади размещения оборудования. Индивидуальный подход к проектированию и монтажу блочных индивидуальных тепловых пунктов позволяют учесть все пожелания клиента и воплотить их в готовый продукт. гарантия на БТП и все оборудование от одного производителя, один сервисный партнер на весь БТП. простота монтажа БТП на месте установки. Изготовление и проверка БТП в заводских условиях - качество. Так же стоит отметить, что при массовой, квартальной застройке или объемной реконструкции тепловых пунктов – применение БТП предпочтительнее по сравнению с ИТП. Так как в этом случае необходимо в короткий период времени смонтировать значительное количество тепловых пунктов. Такие масштабные проекты возможно реализовать в максимально короткие сроки применяя только типовые БТП заводской готовности.

ИТП (сборка) - возможность монтажа теплового пункта в стесненных условиях, нет необходимости осуществлять перевозку теплового пункта в сборе. Перевозка только отдельных компонентов. Срок поставки оборудования значительно меньше, чем БТП. Стомость ниже. -БТП - необходимость транспортировки БТП к месту монтажа (транспортные расходы), размеры проемов для проноса БТП накладывают ограничения на габаритные размеры БТП. Сроки поставки от 4-недель. Цена.

ИТП - гарантия на разные компоненты теплового пункта от разных производителей; несколько разных сервисных партнеров для различного оборудования, входящего в состав теплового пункта; выше стоимость монтажных работ, сроки монтажных работ,Т. е. при монтаже ИТП учитываются индивидуальные особенности конкретного помещения и «творческие» решения конкретного исполнителя работ, что с одной стороны упрощает организацию процесса, а с другой - может снизить качество. Ведь сварной шов, изгиб трубопровода и т. д. по «месту» качественно выполнить намного сложнее, чем в заводских условиях.

С. Дейнеко

Индивидуальный тепловой пункт - важнейшая составляющая систем теплоснабжения зданий. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Поэтому тепловым пунктам уделяется большое внимание в ходе термомодернизаций зданий, масштабные проекты которых в ближайшем будущем планируется воплотить в жизнь в различных регионах Украины

Индивидуальный тепловой пункт (ИТП) — комплекс устройств, расположенный в обособленном помещении (как правило, в подвальном помещении), состоящий из элементов, обеспечивающих присоединение системы отопления и горячего водоснабжения к централизованной тепловой сети. По подающему трубопроводу осуществляется подача теплоносителя в здание. С помощью второго обратного трубопровода в котельную попадает уже охлажденный теплоноситель из системы.

Температурный график работы тепловой сети определяет то, в каком режиме тепловой пункт будет работать в дальнейшем и какое оборудование необходимо в нем устанавливать. Различают несколько температурных графиков работы тепловой сети:

  • 150/70°С;
  • 130/70°С;
  • 110/70°С;
  • 95 (90)/70°С.

Если температура теплоносителя не превышает 95°С, то его остается только распределить по всей отопительной системе. В этом случае возможно применять только коллектор с балансировочными клапанами для гидравлической увязки циркуляционных колец. Если же температура теплоносителя превышает 95°С, то такой теплоноситель нельзя напрямую использовать в системе отопления без его температурной регулировки. Именно в этом и заключается важная функция теплового пункта. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

В тепловых пунктах старого образца (рис. 1, 2) в качестве регулирующего устройства применялся элеваторный узел. Это позволяло существенно снизить стоимость оборудования, однако с помощью такого ТП было невозможно осуществлять точную регулировку температуры теплоносителя, особенно при переходных режимах работы системы. Элеваторный узел обеспечивал только «качественную» регулировку теплоносителя, когда температура в системе отопления изменяется в зависимости от температуры теплоносителя, приходящего от централизованной тепловой сети. Это приводило к тому, что «регулировка» температуры воздуха в помещениях производилась потребителями при помощи открытого окна и с огромными тепловыми затратами, уходящими в никуда.

Рис. 1.
1 - подающий трубопровод; 2 - обратный трубопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления

Поэтому минимальные изначальные капиталовложения выливались в финансовые потери в долгосрочной перспективе. Особенно низкая эффективность работы элеваторных узлов проявилась с ростом цен на тепловую энергию, а также с невозможностью работы централизованной тепловой сети по температурному или гидравлическому графику, на который были рассчитаны установленные ранее элеваторные узлы.


Рис. 2. Элеваторный узел «советской» эпохи

Принцип работы элеватора заключается в том, чтобы смешивать теплоноситель из централизованной тепловой сети и воду из обратного трубопровода системы отопления до температуры, соответствующей нормативной для данной системы. Это происходит за счет принципа эжекции при использовании в конструкции элеватора сопла определенного диаметра (рис. 3). После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Элеватор совмещает одновременно два устройства: циркуляционный насос и смесительное устройство. На эффективность смешения и циркуляции в системе отопления не влияют колебания теплового режима в тепловых сетях. Вся регулировка заключается в правильном подборе диаметра сопла и обеспечения необходимого коэффициента смешения (нормативный коэффициент 2,2). Для работы элеваторного узла нет необходимости подводить электрический ток.

Рис. 3. Принципиальная схема конструкции элеваторного узла

Однако имеются многочисленные недостатки, которые сводят на нет всю простоту и неприхотливость обслуживания данного устройства. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Так, для нормального смешения, перепад давлений в подающем и обратном трубопроводах необходимо поддерживать в пределах 0,8 - 2 бар; температура на выходе из элеватора не поддается регулировке и напрямую зависит только от изменения температуры тепловой сети. В этом случае, если температура теплоносителя, поступающего из котельной, не соответствует температурному графику, то и температура на выходе из элеватора будет ниже необходимой, что напрямую повлияет на внутреннюю температуру воздуха в помещениях здания.

Подобные устройства получили широкое применение во многих типах зданий, подключенных к централизованной тепловой сети. Однако в настоящее время они не соответствуют требованиям по энергосбережению, в связи с чем подлежат замене на современные индивидуальные тепловые пункты. Их стоимость значительно выше и для работы обязательно требуется электропитание. Но, в то же время, эти устройства более экономны - позволяют снизить энергопотребление на 30 - 50%, что с учетом роста цен на теплоноситель позволит уменьшить срок окупаемости до 5 - 7 лет, а срок службы ИТП напрямую зависит от качества используемых элементов управления, материалов и уровня подготовки технического персонала при его обслуживании.

Современные ИТП

Энергосбережение достигается, в частности, за счет регулирования температуры теплоносителя с учетом поправки на изменение температуры наружного воздуха. Для этих целей в каждом тепловом пункте применяют комплекс оборудования (рис. 4) для обеспечения необходимой циркуляции в системе отопления (циркуляционные насосы) и регулирования температуры теплоносителя (регулирующие клапаны с электрическими приводами, контроллеры с датчиками температуры).

Рис. 4. Принципиальная схема индивидуального теплового пункта и использованием контроллера , регулирующего клапана и циркуляционного насоса

Большинство тепловых пунктов имеет в своем составе также теплообменник для подключения к внутренней системе горячего водоснабжения (ГВС) с циркуляционным насосом. Набор оборудования зависит от конкретных задач и исходных данных. Именно поэтому, из-за различных возможных вариантов конструкции, а также своей компактности и транспортабельности, современные ИТП получили название модульных (рис. 5).


Рис. 5. Современный модульный индивидуальный тепловой пункт в сборе

Рассмотрим использование ИТП в зависимых и независимых схемах подключения системы отопления к централизованной тепловой сети.

В ИТП с зависимым присоединением системы отопления к внешним тепловым сетям циркуляция теплоносителя в отопительном контуре поддерживается циркуляционным насосом. Управление насосом осуществляется в автоматическом режиме от контроллера или от соответствующего блока управления. Автоматическое поддержание необходимого температурного графика в отопительном контуре также осуществляется электронным регулятором. Контролер воздействует на регулирующий клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»). Между подающим и обратным трубопроводами установлена смесительная перемычка с обратным клапаном, за счет которой осуществляется подмес в подающий трубопровод из обратной линии теплоносителя, с более низкими температурными параметрами (рис. 6).

Рис. 6. Принципиальная схема модульного теплового пункта, подключенного по зависимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами

В данной схеме работа системы отопления зависит от давлений в центральной тепловой сети. Поэтому во многих случаях потребуется установка регуляторов перепада давления, а, в случае необходимости, и регуляторов давления «после себя» или «до себя» на подающем или на обратном трубопроводах.

В независимой системе для присоединения к внешнему источнику тепла используется теплообменник (рис. 7). Циркуляция теплоносителя в системе отопления осуществляется циркуляционным насосом. Управление насосом производится в автоматическом режиме контролером или соответствующим блоком управления. Автоматическое поддержание необходимого температурного графика в нагреваемом контуре также осуществляется электронным регулятором. Контроллер воздействует на регулируемый клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»).


Рис. 7. Принципиальная схема модульного теплового пункта, подключенного по независимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами; 13 - теплообменник системы отопления

Достоинством данной схемы является то, что отопительный контур независим от гидравлических режимов централизованной тепловой сети. Также система отопления не страдает от несоответствия качества входящего теплоносителя, поступающего из центральной тепловой сети (наличия продуктов коррозии, грязи, песка и т.д.), а также перепадов давления в ней. В то же время стоимость капитальных вложений при применении независимой схемы больше - по причине необходимости установки и последующего обслуживания теплообменника.

Как правило, в современных системах применяются разборные пластинчатые теплообменники (рис. 8), которые достаточно просты в обслуживании и ремонтопригодны: при потере герметичности или выходе из строя одной секции, теплообменник возможно разобрать, а секцию заменить. Также, при необходимости, можно повысить мощность путем увеличения количества пластин теплообменника. Кроме того, в независимых системах применяют паяные неразборные теплообменники.

Рис. 8. Теплообменники для независимых систем подключения ИТП

Согласно ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети», в общем случае предписано подсоединение систем отопления по зависимой схеме. Независимая схема предписана для жилых зданий с 12 и более этажами и других потребителей, если это обусловлено гидравлическим режимом работы системы или техническим заданием заказчика.

ГВС от теплового пункта

Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 9). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода, из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей из подающего трубопровода тепловой сети.

Рис. 9. Схема с зависимым присоединением системы отопления к тепловой сети и одноступенчатым параллельным присоединением теплообменника ГВС

Охлажденная сетевая вода подается в обратный трубопровод тепловой сети. После подогревателя горячего водоснабжения нагретая водопроводная вода подается в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в подогреватель ГВС.

Эту схему с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения рекомендуется применять, если отношение максимального расхода теплоты на ГВС зданий к максимальному расходу теплоты на отопление зданий менее 0,2 или более 1,0. Схема используется при нормальном температурном графике сетевой воды в тепловых сетях.

Кроме того, применяется двухступенчатая система подогрева воды в системе ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30 ˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60 ˚С) используется сетевая вода из подающего трубопровода тепловой сети (рис. 10). Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в системе ГВС. В летний период нагрев происходит по одноступенчатой схеме.

Рис. 10. Схема теплового пункта с зависимым присоединением системы отопления к тепловой сети и двухступенчатым нагревом воды

Требования к оборудованию

Важнейшей характеристикой современного теплового пункта является наличие приборов учета тепловой энергии, что в обязательном порядке предусмотрено ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети».

Согласно разделу 16 указанных норм, в тепловом пункте должно быть размещено оборудование, арматура, устройства контроля, управления и автоматизации, с помощью которых осуществляют:

  • регулирование температуры теплоносителя по погодным условиям ;
  • изменение и контроль параметров теплоносителя;
  • учет тепловых нагрузок, затрат теплоносителя и конденсата;
  • регулирование затрат теплоносителя;
  • защиту локальной системы от аварийного повышения параметров теплоносителя;
  • доочистку теплоносителя;
  • заполнение и подпитку систем отопления;
  • комбинированное теплообеспечение с использованием тепловой энергии от альтернативных источников.

Подсоединение потребителей к теплосети должно осуществляться по схемам с минимальными затратами воды, а также экономией тепловой энергии за счет установки автоматических регуляторов теплового потока и ограничения затрат сетевой воды. Не допускается присоединение системы отопления к тепловой сети через элеватор вместе с автоматическим регулятором теплового потока.

Предписано использовать высокоэффективные теплообменники с высокими теплотехническими и эксплуатационными характеристиками и малыми габаритами. В наивысших точках трубопроводов тепловых пунктов следует устанавливать воздухоотводчики, причем рекомендуется применять автоматические устройства с обратными клапанами. В нижних точках следует устанавливать штуцеры с запорными кранами для спуска воды и конденсата.

На вводе в тепловой пункт на подающем трубопроводе следует устанавливать грязевик, а перед насосами, теплообменниками, регулирующими клапанами и счетчиками воды - сетчатые фильтры. Кроме того, фильтр-грязевик необходимо устанавливать на обратной линии перед регулирующими устройствами и приборами учета. По обе стороны от фильтров следует предусмотреть манометры.

Для защиты каналов ГВС от накипи нормами предписано использовать устройства магнитной и ультразвуковой обработки воды. Принудительная вентиляция, которой необходимо обустраивать ИТП, рассчитывается на кратковременное действие и должна обеспечивать 10-кратный обмен с неорганизованным приливом свежего воздуха через входные двери.

Во избежание превышения уровня шума, ИТП не допускается располагать рядом, под или над помещениями жилых квартир, спален и комнат игр детсадов и т.д. Кроме того, регламентируется, что установленные насосы должны быть с допустимым низким уровнем шума.

Тепловой пункт следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливают на месте или на щите управления.

Автоматизация ИТП должна обеспечивать:

  • регулирование затрат тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
  • заданную температуру в системе ГВС;
  • поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
  • заданное давление в обратном трубопроводе или необходимый перепад давления воды в подающем и обратном трубопроводах тепловых сетей;
  • защиту систем теплопотребления от повышенного давления и температуры;
  • включение резервного насоса при отключении основного рабочего и др.

Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. Это позволяет организовать централизованную систему диспетчеризации и осуществлять контроль за работой систем отопления и ГВС. Поставщиками оборудования для ИТП являются ведущие компании-производители соответствующего теплотехнического оборудования, например: системы автоматики - Honeywell (США), Siemens (Германия), Danfoss (Дания); насосы - Grundfos (Дания), Wilo (Германия); теплообменники - Alfa Laval (Швеция), Gea (Германия) и др.

Стоит также отметить, что современные ИТП включают достаточно сложное оборудование, которое требует периодического технического и сервисного обслуживания, заключающегося, к примеру, в промывке сетчатых фильтров (не реже 4 раз в год), чистке теплообменников (минимум 1 раз в 5 лет) и т.д. При отсутствии надлежащего технического обслуживания оборудование теплового пункта может прийти в негодность или выйти из строя. Примеры тому в Украине, к сожалению, уже есть.

В то же время, существуют подводные камни при проектировании всего оборудования ИТП. Дело в том, что в отечественных условиях температура в подающем трубопроводе централизованной сети часто не соответствует нормируемой, которую указывает теплоснабжающая организация в технических условиях, выдаваемых для проектирования.

При этом разница в официальных и реальных данных может быть довольно существенной (например, в реальности поставляется теплоноситель с температурой не более 100˚С вместо указанных 150˚С, или наблюдается неравномерность температуры теплоносителя со стороны центральной тепловой по времени суток), что соответственно, влияет на выбор оборудования, его последующую эффективность работы и, в итоге, на его стоимость. По этой причине рекомендуется при реконструкции ИТП на этапе проектирования, проводить замеры реальных параметров теплоснабжения на объекте и учитывать их в дальнейшем при расчетах и выборе оборудования. При этом из-за возможного несоответствия параметров, оборудование стоит проектировать с запасом в 5-20 %.

Реализация на практике

Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период 2001 - 2005 гг. в рамках реализации проекта Всемирного банка «Энергосбережение в административных и общественных зданиях». Всего было смонтировано 1173 ИТП. К настоящему времени по причине не решенных ранее вопросов периодического квалифицированного технического обслуживания порядка 200 из них пришли в негодность или требуют ремонта.

Видео. Реализованный проект с применением индивидуального теплового пункта в многоквартирном жилом доме, экономия до 30% теплоэнергии

Модернизация установленных ранее тепловых пунктов с организацией удаленного доступа к ним является одним из пунктов программы «Термосанация в бюджетных учреждениях г. Киева» с привлечением кредитных средств Северной экологической финансовой корпорации (NEFCO) и грантов «Фонда Восточного партнерства по энергоэффективности и окружающей среде» (E5P).

Помимо того, в минувшем году Всемирный банк объявил о старте масштабного шестилетнего проекта, направленного на повышение энергоэффективности теплоснабжения в 10 городах Украины. Бюджет проекта составляет 382 млн. долларов США. Направлены они будут, в частности, и на установку модульных ИТП. Планируется также ремонт котельных, замена трубопроводов и установка счетчиков тепловой энергии. Намечено, что проект поможет в снижении издержек, повышении надежности обслуживания и улучшении общего качества теплоты, поступающей свыше 3 млн. украинцам.

Модернизация теплового пункта - одно из условий повышения энергоэффективности здания в целом. В настоящее время кредитованием внедрения данных проектов занимается ряд украинских банков, в том числе и в рамках государственных программ. Подробнее об этом можно прочитать в предыдущем номере нашего журнала в статье «Термомодернизация: что именно и за какие средства ».

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 183 220

Под аббревиатурой ИТП, в терминологии специалистов теплотехников, понимается индивидуальный тепловой пункт, для гражданских и промышленных зданий. Каждое такое здание может иметь несколько ИТП, и еще дополнительно по одному узлу для учета расхода теплоносителя.

Тепловые пункты имеют конкретное назначение, обеспечивая распределение теплового потока (теплоносителя), от центральной или локальной теплосети, до конечного потребителя. В качестве последнего могут выступать: подъезд дома или жилая секция, зона промышленного здания. ИТП настраивается в соответствии с требованиями к потребителям, и обеспечивает автоматический режим управления комплексом систем отопления, вентиляции и горячего водоснабжения (ГВС).

Принцип работы индивидуального теплового пункта

В общем случае, механизм работы ИТП можно представить как многозвенную систему, в которой происходит преобразование теплоносителя, поступаемого из теплосети, в соответствии с необходимыми потребителям параметрами. Вместе с тем, он представляет сложный принцип работы под управлением контроллера, механических, гидравлических и других процессов распределения теплоносителя.

Каждый ИТП имеет собственную схему, в основе которой лежат потребители и источники теплоносителя. Наиболее распространённая схема подразумевает закрытую систему ГВС и универсальный принцип подключения отопительных систем. Более подробно, принцип работы ИТП представлен многоразовым количеством циклов подачи и возврата теплоносителя.

Первоначально через трубопровод теплового ввода ИТП получает теплоноситель, который затем распределяется между системами ГВС, отопления и вентиляции потребителей. Затем, он поступает в трубопровод вывода и направляется на источник выработки тепла (ТЭЦ или котельная), где начинается новый цикл подачи.

В процессе распределения неизбежны потери теплоносителя, так как потребители берут его частично на себя. Учитывая этот факт, на первоисточнике задействуют собственные источники подпитки теплоносителем из систем водоподготовки.

Принцип работы горячего водоснабжения похож на общий, но имеет свою специфику. Так, изначально, через насосы систем ХВС, холодная вода поступает в тепловой пункт, затем подлежит распределению. Часть воды уходит к потребителям, а другая часть поступает в систему ГВС, которая в свою очередь, так же представляет замкнутый контур. Система ГВС имеет несколько уровней готовности. Часть воды из насосов попадает в подогреватель первой ступени (перового уровня) и лишь потом в замкнутый контур локальной сети ГВС.

Находясь под непрерывным напором давления от насосов ГВС, вода циркулирует от ИТП до конечных потребителей, которые по мере нужды делают ее отбор. Здесь так же присутствует фактор теплопотери, для чего и предусмотрен второй уровень (подогреватель второй ступени). С его помощью поддерживают нужную температуру горячей воды.

По той же схеме осуществляется движение теплоносителя в системе отопления ИТП. Под воздействием насосов отопительного контура он циркулирует в ней. Здесь, проблему теплопотери решают за счет запитывания из первичной тепловой сети ИТП.

Отдельно следует упомянуть о приборах учета, поскольку они выполняют важную роль в работе ИТП. Они представлены модульным набором приборов, врезаемых в трубопроводы и создающим условия для рационального расхода тепловых ресурсов.

Таким образом, разобрав систему функционирования нескольких локальных систем ИТП, и их взаимодействие с первоисточником производства теплоносителя, мы получаем представление о сложном процессе подачи тепла в наши дома.

В стандартной комплектации схема индивидуального теплового пункта состоит из двух модулей – системы отопления и системы горячего водоснабжения. Получив теплоноситель из системы централизованного теплоснабжения, ИТП задает необходимые тепловые параметры в системе отопления здания, а также готовит и подает в помещения горячую воду.

Источником тепла для ИТП служат теплогенерирующие предприятия (котельные, теплоэлектроцентрали). ИТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети.

Современный блочный индивидуальный тепловой пункт – это инструмент, с помощью которого потребители могут обеспечить стабильное и экономное теплоснабжение зданий. «Настроив» оборудование в соответствии со своими предпочтениями, собственники помещений жилого дома могут достичь того уровня теплового комфорта, который им необходим.

ВАЖНО! Нагрузка на электросети здания после установки вырастет незначительно, так как мощность оборудования ИТП эквивалентна мощности одного электрического чайника (2-3 КВт).

Ключевые компоненты ИТП

  • Счетчик тепловой энергии, учитывающий потребление тепловой энергии на отопление и горячее водоснабжение, а также внутренний узел учета ГВС для распределения потребленной многоквартирным домом теплоэнергии.
  • Пульт управления, регулирующий подготовку и подогрев горячей воды в соответствии с заданной программой и показаний датчика температуры наружного воздуха.
  • Регулирующий клапан горячей воды с исполнительным механизмом и теплообменник, обеспечивающие постоянную необходимую температуру горячей воды.
  • Регулирующий клапан отопления с исполнительным механизмом и теплообменник, обеспечивающие качественное отопление в соответствии с температурным графиком и учетом показаний датчика температуры наружного воздуха.
  • Насосы горячей воды и системы отопления, создающие циркуляцию воды в системах горячего водоснабжения и отопления.
  • Регулятор перепада давления, поддерживающий постоянное давление на первичной стороне ИТП, улучшая качество теплоснабжения и увеличивая срок службы теплотехнического оборудования.
  • Расширительный бак (устанавливается в зависимости от типа здания), заполняющий систему отопления здания при изменениях температуры теплоносителя

Применяемые решения

  1. Контур системы централизованного теплоснабжения (СЦТ) и контур дома разделены.
  2. Температура от ТЭЦ/котельной до потребителя постоянна.
  3. Система отопления и ГВС здания потребляет из СЦТ столько тепла, сколько необходимо.
  4. Индивидуальный подход к регулировке режима теплоснабжения.

Недовольство хозяев некоторых квартир по поводу качества предоставления услуг теплоснабжения можно понять. Тепло в доме временами пропадает. Создается впечатление, что учет тепла никто не контролирует. Температуру в помещении практически невозможно отрегулировать. Отопление слишком поздно включают осенью, вследствие чего приходится мерзнуть. Поквартирный учет обогрева не очень-то помогает.

А весной, когда температура за окном меняется очень сильно, тепло от радиаторов под нее не подстраивается и счетчики этому не способствуют. Еще одним недостатком централизованного отопления можно считать очень высокую стоимость. Коммунальщики ведут поквартирный учет отопления в новостройках. А ведь наши желания просты: в мороз нам хочется тепла, а теплыми весенними днями не жариться воздухом от радиаторов. А требования СНиП должны этому способствовать.

Решений у этой задачи может быть несколько. Самый радикальный способ – переехать в частный дом , где все коммуникации находятся под вашим контролем (в соответствии со СНиП). Еще один способ – ставить счетчики тепла и регуляторы подачи на радиаторах центрального отопления. Однако этот пункт не всегда может быть реализован и сгладить он сможет не все недостатки общего теплоснабжения. Учет – не регулировка. Если хорошо все рассчитать, то можно обеспечить себе индивидуальное отопление в многоквартирном доме .

Стоит иметь в виду, что оснащение автономным отопительным комплексом жилплощади в многоэтажке может иметь два важных аспекта: юридический и технический (соответствие требованиям СНиП). Это покажется необычным, но второй момент разрешить намного проще, чем первый. Ввести поквартирный учет отопления УК может по требованию собственников жилых помещений. Однако счетчики придется устанавливать за свой счет.

Выглядеть автономный пункт обогрева может по-разному, но должен соответствовать СНиП. На рынке можно найти разнообразные модели автономных систем отопления: от обычных тепловых пушек до совершенных комплексов, которые работают от возобновляемых источников энергии. А оформить по закону свое решение отказа от центрального отопления будет проблематично.

Начнем с рассмотрения наиболее категоричного способа – отключиться от централизованного теплоснабжения. Это кажется логичным: какой смысл оплачивать одновременно два источника тепла? Зачем оплачивать поставки тепла от ЖКХ (есть счетчики или нет) и поддерживать свой собственный пункт?

Первым делом вам предстоит физически убрать все пути прохождения теплоносителя по территории квартиры, не нарушая СНиП. Но перед этим стоит получить разрешение теплоснабжающей организации.

В домах новой планировки добиться этого намного проще (действуют новые СНиП). Если в доме создана схема разводки, при которой тепло подается отдельно в каждую из квартир, то при наличии теплосчетчика нужно просто отключить доступ тепла. Делается это при помощи индивидуальной задвижки, которой оборудованы счетчики. В этом случае счета за отопление вам выставляться не будут.

Если дома построены еще в советское время, то отключиться от центральной подачи тепла – задача не из легких. Все из-за того, что проекты не предусматривали индивидуальную подводку отопления. Здесь даже не поставить счетчики на тепло. СНиП этого не требовали. Поэтому убрать отопительные трубы полностью в квартирах не крайних этажей нельзя.

А в квартирах последнего этажа, где находятся края стояков, оборудовать свой пункт обогрева вместо общего можно, если не нарушать СНиП. Владелец одной из таких квартир убрал все отопительные приборы . Для этого ему понадобилась помощь проектной организации для составления плана работ и лицензированных строителей для непосредственной работы с трубами.

Во время проведения таких переделок нужно проследить, чтобы трубы центрального отопления не выделяли тепло в ваше помещение (счетчики уже не понадобятся). Контур можно замкнуть в стяжке пола при помощи металлопластиковых труб , как того требуют СНиП. Этот материал отдает минимум тепла через свои стенки. Такое решение позволило сохранить тепло в остальных квартирах.

Когда работы по переоборудованию завершены, нужно получить свидетельство о вводе жилого помещения в эксплуатацию, встать на особый учет. В документе должно быть указано его новая схема обогрева. С этой бумагой следует идти в свою управляющую компанию и требовать исключения из ваших квитанций строчки за теплоснабжение.

Как поставить свой пункт теплоснабжения

Параллельно с работами по отсоединению от общего источника отопления, стоит решить вопрос с выбором индивидуальной системы снабжения теплом. Выбор будет зависеть от наличия или отсутствия газификации дома. Если в многоэтажке есть только электричество, то можно воспользоваться распространенным решением – установкой теплых полов. Такой перевод обернется тем, что придется вести учет потраченной электроэнергии. Они могут быть смонтированы во всех комнатах и обладать отдельными регулировками для каждого помещения.

Регулировать подачу тепла можно поручить автоматике, тогда она будет зависеть от фактической температуры в комнате. Установить такую систему будет под силу даже начинающему мастеру. Однако предстоит решить одну важную техническую задачу. Существующая электропроводка, сделанная из алюминиевых проводов , может не выдержать такую нагрузку. В таком случае предстоит провести новый медный кабель до каждого помещения от распределительного щитка (где стоят счетчики) через индивидуальный автомат.

Перевод отопления на базу жидко- и твердотопливных котлов – плохой вариант. Они потребуют выделить для себя и топлива особый пункт. А держать в квартире уголь, солярку, дрова и т.п. недопустимо по правилам пожарной безопасности. Разрешение на такое хранилище никто не даст. К тому же доставлять все это к себе домой будет неудобно.


Если же ваш дом газифицирован, то лучше предпочесть перевод отопления на систему с газовым котлом . Вы сами будете вести учет потраченного ресурса. Это распространенный вариант еще и по той причине, что у многих горячая вода поступает в кран из газового нагревателя . Центральной частью новой отопительной системы станет газовый котел с двумя контурами оборота воды. Установить этот пункт не сложно, для этого не понадобится создавать газоходы. По желанию, можно установить счетчики газа.

В бойлер кислород поступает из уличного воздуха, а отработанные газы уходят через систему вентиляции. Он снабжен надежной электроникой, которая будет в автоматическом режиме управлять его работой. Вам не потребуется следить за поддержанием температуры и прочими характеристиками. Компактное и практичное устройство будет служить долгие годы.

Где поставить пункт обогрева квартиры?

Сделать пункт нагрева теплоносителя можно только в особом помещении. Есть определенные требования к бойлерной:

  1. Площадь от 4 кв. м. Дверь в пункт должна иметь ширину от 0,8 м.
  2. Наличие окна, которое смотрит на улицу.
  3. В отдельных случаях наличие принудительной вентиляции.
  4. Крепление котла к негорючей поверхности стены. В противном случае необходимо обеспечить надежную прослойку из негорючего материала.
  5. Расстояние между бойлером и другим газовым и отопительным оборудованием должно быть не менее 0,3 м.

Соблюдение этих простых требований СНиП позволит избежать проблем с постановкой системы на учет. Поквартирный учет подачи тепла вам будет уже не важен.

Наша компания предлагает комплекс услуг на проектирование и монтаж ИТП, цена которых приведена на этой странице в прайс-таблицах.

Мы строим автоматизированные индивидуальные и центральные тепловые пункты по разумной цене более 14 лет.

Стоимость строительства ЦТП (ИТП) формируется из двух основных составляющих:

  • стоимость проекта;
  • цена на монтаж.

Конечная цена ИТП зависит от различных факторов, среди которых:

  • наличие автоматизации и диспетчеризации;
  • сложность функциональной схемы;
  • ценовой диапазон выбранного оборудования.
  • В коммерческом предложении на монтаж ЦТП цена может быть указана в подробном виде, где отдельно выделена стоимость работ без материала и цена рекомендуемого оборудования ИТП.

    По окончанию строительства теплового пункта мы оформляем полный пакет документации и осуществляем сдачу в соответствующие надзорные органы.

    Стоимость ИТП для многоквартирного дома включает сдачу ИТП в МОЭК и также входит в стоимость работ по монтажу.

    Стоимость проекта ИТП, ЦТП

    Цена проектирования теплового пункта зависит от количества и типа входящих систем:

    • система отопления (ОТ);
    • система горячего водоснабжения (ГВС);
    • система вентиляции (ВК).

    Стоимость проектирования ИТП или ЦТП в нашей компании включает согласование проекта теплового пункта в надзорных органах - МОЭК, Ростехнадзор и др.

    Получите скидку до 30% на проект ИТП или ЦТП при одновременном заказе строительно-монтажных работ

    Цена проектирования теплового пункта включает:

    Проект в составе следующих разделов:

    • тепломеханика (раздел ТМ, ТС);
    • электрооборудование и освещение (раздел ЭОМ, ЭО, ЭМ);
    • автоматизация (раздел АТС, АТМ);
    • узел учета тепловой энергии (раздел АТС-УУТЭ).

    Сведения для расчета стоимости проектирования ИТП (ЦТП)

    • технические условия;
    • техническое задание;
    • нагрузки теплопотребляющих систем(скачать анкету для заполнения).

    Отправьте их нам и наш специалист подготовит для вас коммерческое предложение.

    Стоимость монтажа ИТП, ЦТП

    В стоимость работ по не включена цена проекта теплового пункта. Проект заказывается отдельно или предоставляется вами. Обратите внимание, что строительство теплового пункта возможно только по согласованному проекту.

    Здесь приведены цены на монтаж ИТП в Москве и Московской области. Для регионов стоимость строительства ИТП (ЦТП) рассчитывается индивидуально в зависимости от условий и региона выполнения работ.

    Обращаем ваше внимание, что стоимость строительства отдельного здания теплового пункта не входит в приведенную стоимость монтажа.

    Стоимость монтажа стандартного ИТП
    Стоимость строительства ИТП, в руб. с НДС
    0,1 2 000 тыс.
    0,3 2 500 тыс.
    0,5 2 700 тыс.
    1 3 500 тыс.
    1,5 3 900 тыс.
    2 4 950 тыс.
    3 6 300 тыс.
    4 8 300 тыс.
    5 10 160 тыс.
    6 12 200 тыс.
    7 14 200 тыс.
    8 15 950 тыс.
    9 12 950 тыс.
    10 19 850 тыс.

    Расчет стоимости ИТП включает:

    • поставка материалов и оборудования;
    • монтаж тепломеханического оборудования;
    • монтаж электрооборудования;
    • монтаж автоматики;
    • пуско-наладочные работы;
    • сдача надзорным органам.

    Функциональная схема стандартного ИТП включает в себя независимую систему отопления и систему горячего водоснабжения.

    Сведения для расчета цены монтажа ИТП (ЦТП)

    В качестве исходных данных необходим только один документ:

    • согласованный проект теплового пункта.

    Вы можете указать предпочтения по производителям оборудования ИТП и необходимой ценовой категории.

    Стоимость обслуживания ИТП, ЦТП

    Ежемесячная стоимость обслуживания теплового пункта зависит от тепловой нагрузки и оснащенности теплового пункта технологически оборудованием.

    Цена или ЦТП, заказанного у нас, быстро окупается за счет оптимальной настройки режима работы оборудования нашим персоналом с богатым опытом эксплуатации. Ваши затраты на тепловую энергию сократятся, а микроклимат помещений станет комфортней.

    В рамках сервисного обслуживания ИТП мы берем на себя необходимое взаимодействие с теплоснабжающей организацией.

    Цена технического обслуживания ИТП включает:

    Выполнение стандартного регламента работ, а также:

    • подготовка к отопительному сезону;
    • промывка и переборка при необходимости;
    • обслуживание автоматики и наладка оптимального режима;
    • обслуживание узла учета тепловой энергии;
    • бесплатная замена расходных материалов;

    Сведения для калькуляции стоимости обслуживания теплового пункта

    Подготовьте следующие документы:

    • функциональная схема теплового пункта;
    • проектная документация на тепловой пункт.

    Отправьте их нам и наш специалист подготовит для вас коммерческое предложение. Вместе с калькуляцией техобслуживания вы получите подробный перечень работ.

    Что еще почитать