Гравитационные силы. Закон всемирного тяготения

Сила всемирного тяготения

Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле. Только ли Земля обладает свойством притягивать к себе тела, находящиеся вблизи ее поверхности? В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.

Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?

Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметного значения только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.

"ДЫРЫ" В ПРОСТРАНСТВЕ И ВРЕМЕНИ

Черные дыры - это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет. Современная наука раскрыла связь времени с физическими процессами, позвонило "прощупать" первые звенья цепи времени в прошлом и проследить за ее свойствами в далеком будущем.

Роль масс притягивающихся тел

Ускорение свободного падения отличаются той любопытной особенностью, что оно в данном месте одинаково для всех тел, для тел любой массы. Как объяснить это странное свойство?

Единственное объяснение, которое можно найти тому, что ускорение не зависит от массы тела, заключается в том, что сила F, с которой Земля притягивает тело, пропорционально его массе m.

Действительно, в этом случае увеличение массы m, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно отношению F/m, останется неизменным. Ньютон и сделал этот единственно правильный вывод: сила всемирного тяготения пропорционально массе того тела, на которое она действует.

Но ведь тела притягиваются взаимно, причем силы взаимодействия всегда одной природы. Следовательно, и сила, с которой тело притягивает Землю, пропорциональна массе Земли. По третьему закону Ньютона эти силы равны по модулю. Значит, если одна из них пропорциональна массе Земли, то и равная ей другая сила также пропорциональна массе Земли. От сюда следует, что сила взаимного притяжения пропорциональна массам обоих взаимодействующих тел. А это значит, что она пропорциональна произведению масс обоих тел.

ПОЧЕМУ ГРАВИТАЦИЯ В КОСМОСЕ НЕ ТАКАЯ, КАК НА ЗЕМЛЕ?

Каждый предмет во Вселенной воздействует на другой предмет, они притягивают друг друга. Сила притяжения, или гравитация, зависит от двух факторов.

Во-первых, это зависит от того, сколько вещества содержит объект, тело, предмет. Чем больше масса вещества тела, тем сильней гравитация. Если тело обладает очень небольшой массой, его гравитация мала. Например, масса Земли во много раз больше массы Луны, поэтому земля имеет большую силу тяжести, чем Луна.

Во-вторых, сила тяжести зависит от расстояниями между телами. Чем ближе тела находятся друг к другу, тем сила притяжения больше. Чем они дальше друг от друга, тем гравитация меньше.

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету .

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в раз больше первой:

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

Гравитационные силы. Закон всемирного тяготения. Сила тяжести.

Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным , а само явление всемирного тяготениягравитацией.

Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем .

Гравитационные силы (силы тяготения) обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующие точки.

Выражение для силы тяготения в 1666 году получил Ньютон, когда ему было всего 24 года.

Закон всемирного тяготения : два тела притягиваются друг к другу с силами прямопропорциональными произведению масс тел и обратно пропорциональными квадрату расстояния между ними:

Закон справедлив при условии, что размеры тел пренебрежимо малы по сравнению с расстояниями между ними. Также формула может применяться для расчета сил всемирного тяготения, для тел шаровой формы, для двух тел, одно из которых является шаром, другое материальной точкой.

Коэффициент пропорциональности G = 6,68·10 -11 носит название гравитационной постоянной .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются два тела массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга.

Сила тяжести

Сила, с которой Земля притягивает находящиеся вблизи тела, называется силой тяжести , а гравитационное поле Земли – полем тяжести .

Направлена сила тяжести вниз, к центру Земли. В теле же она проходит через точку, которая называется центром тяжести . Центр тяжести однородного тела, имеющего центр симметрии (шар, прямоугольная или круглая пластина, цилиндр и т.д.), находится в этом центре. При этом он может и не совпадать ни с одной из точек данного тела (например, у кольца).

В общем случае, когда требуется найти центр тяжести какого-либо тела неправильной формы, следует исходить из следующей закономерности: если тело подвешивать на нити, прикрепляемой последовательно к разным точкам тела, то отмеченные нитью направления пересекутся в одной точке, которая как раз и является центром тяжести этого тела.

Модуль силы тяжести находиться с помощью закона всемирного тяготения и определяется по формуле:

F т = mg, (2.7)

где g – ускорение свободного падения тела (g=9,8 м/с 2 ≈10м/с 2).

Так как направление ускорения свободного падения g совпадает с направлением силы тяжести F т то можно последнее равенство переписать в виде

Из (2.7) следует, что т. е. отношение силы, действующей на тело массой m в какой-либо точке поля, к массе тела определяет ускорение свободного падения в данной точке поля.

Для точек находящихся на высоте h от поверхности Земли ускорение свободного падения тела равно:

(2.8)

где R З - радиус Земли; М З - масса Земли; h - расстояние от центра тяжести тела до поверхности Земли.

Из этой формулы вытекает, что,

во-первых , ускорение свободного падения не зависит от массы и размеров тела и,

во-вторых , с увеличением высоты над Землёй ускорение свободного падения уменьшается. Например, на высоте 297 км оно оказывается равным не 9,8 м/с 2 , а 9 м/с 2 .

Уменьшение ускорения свободного падения означает, что и сила тяжести по мере увеличения высоты над Землёй также уменьшается. Чем дальше тело находится от Земли, тем слабее она его притягивает.

Из формулы (1.73) видно, что g зависит от радиуса Земли R з.

Но из-за сплюснутости Земли в разных местах имеет разное значение: оно убывает по мере продвижения от экватора к полюсу. На экваторе, например, оно равно 9,780м/с 2 , а на полюсе - 9,832м/с 2 . Кроме того, местные значения g могут отличаться от их средних значений g ср из-за неоднородного строения земной коры и недр, горных массивов и впадин, а также залежей полезных ископаемых. Разность значений g и g ср называют

В 1667 году. Ньютон понимал, что для того, чтобы Луна вращалась вокруг Земли, а Земля и другие планеты вокруг Солнца, должна существовать сила, удерживающая их на круговой орбите. Он предположил, что сила тяжести, действующая на все тела на Земле и сила, удерживающая планеты на их круговых орбитах, есть одна и та же сила. Эта сила получила название сила всемирного тяготения или гравитационная сила . Эта сила является силой притяжения и действует между всеми телами. Ньютон сформулировал закон всемирного тяготения : две материальные точки притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними .

Коэффициент пропорциональности G во времена Ньютона был неизвестен. Впервые он был экспериментально измерен английским ученым Кавендишем . Этот коэффициент называется гравитационной постоянной . Ее современное значение равно . Гравитационная постоянная является одной из самых фундаментальных физических констант. Закон всемирного тяготения можно записать в векторном виде. Если сила, действующая на вторую точку со стороны первой равна F 21 , а радиус-вектор второй точки относительно первой равен R 21 , то:

Представленный вид закона всемирного тяготения справедлив только для гравитационного взаимодействия материальных точек. Для тел произвольной формы и размеров его использовать нельзя. Вычисление гравитационной силы в общем случае является очень непростой задачей. Однако, есть тела, не являющиеся материальными точками, для которых гравитационную силу можно считать по приведенной формуле. Это тела, обладающие сферической симметрией, например, имеющие форму шара. Для таких тел приведенный закон справедлив, если под расстоянием R понимать расстояние между центрами тел. В частности силу тяжести, действующую на все тела со стороны Земли можно считать по этой формуле, так как Земля имеет форму шара, а все остальные тела можно считать материальными точками по сравнению с радиусом Земли.

Так как сила тяжести является гравитационной силой, то можно написать, что сила тяжести, действующая на тело массой m равна

Где М З и R З - масса и радиус Земли. С другой стороны сила тяжести равна mg, где g - ускорение свободного падения. Значит ускорение свободного падения равно

Это формула для ускорения свободного падения на поверхности Земли. Если удаляться от поверхности Земли, то расстояние до центра Земли будет увеличиваться, а ускорение свободного падения соответственно уменьшаться. Так на высоте h над поверхностью Земли ускорение свободного падения равно:

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

Что еще почитать