Деформация при поперечном изгибе балки характеризуется. Понятие о деформации изгиба


Общие понятия.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1) . Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

; (6.1)

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а) , то при чистом изгибе она деформируется следующим образом (рис. 6.1, б) :

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. .

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называется нейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. .

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной. До деформации сечения, ограничивающие элемент, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна, отстоящего на расстоянии от нейтрального слоя.

Длина этого волокна после деформации (длина дуги) равна. Учитывая, что до деформации все волокна имели одинаковую длину, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента в поперечном сечении (6.1)

Вспомним, что интеграл представляет собой момент инерции сечения относительно оси

Или

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя) с действующим в сечении моментом. Произведение носит название жесткости сечения при изгибе, Н· м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы и изгибающего момента

Поскольку,

то

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и - главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сечения относительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

Сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента действует еще продольная сила и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Определение поперечных сил и изгибающих моментов.

Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и.

Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.

Для определения и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и.

Установим следующие правила знаков для и:

  • Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке ;
  • Изгибающий момент в сечении положителен, если он вызывает сжатие верхних волокон.

Рис. .

Для определения данных усилий используем два уравнения равновесия:

1. ; ; .

2. ;

Таким образом,

а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;

б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.

При практическом вычислении руководствуются обычно следующим:

  1. Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражении для она дает положительное слагаемое.
  2. Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.

Рис. .

Построение эпюр и в балках.

Рассмотрим двухопорную балку (рис. 6.5, а) . На балку действует в точке сосредоточенный момент, в точке - сосредоточенная сила и на участке - равномерно распределенная нагрузка интенсивностью.

Определим опорные реакции и (рис. 6.5, б) . Равнодействующая распределенной нагрузки равна, а линия действия ее проходит через центр участка. Составим уравнения моментов относительно точек и.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки А (рис. 6.5, в) .

(рис. 6.5, г). Расстояние может изменяться в пределах ().

Значение поперечной силы не зависит от координаты сечения, следовательно, во всех сечениях участка поперечные силы одинаковы и эпюра имеет вид прямоугольника. Изгибающий момент

Изгибающий момент изменяется по линейному закону. Определим ординаты эпюры для границ участка.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки (рис. 6.5, д). Расстояние может изменяться в пределах ().

Поперечная сила изменяется по линейному закону. Определим для границ участка.

Изгибающий момент

Эпюра изгибающих моментов на этом участке будет параболической.

Чтобы определить экстремальное значение изгибающего момента, приравниваем к нулю производную от изгибающего момента по абсциссе сечения:

Отсюда

Для сечения с координатой значение изгибающего момента будет составлять

В результате получаем эпюры поперечных сил (рис. 6.5, е) и изгибающих моментов (рис. 6.5, ж).

Дифференциальные зависимости при изгибе.

(6.11)

(6.12)

(6.13)

Эти зависимости позволяют установить некоторые особенности эпюр изгибающих моментов и поперечных сил:

Н а участках, где нет распределенной нагрузки, эпюры ограничены прямыми, параллельными нулевой линии эпюры, а эпюры в общем случае – наклонными прямыми .

Н а участках, где к балке приложена равномерно распределенная нагрузка, эпюра ограничена наклонными прямыми, а эпюра - квадратичными параболами с выпуклостью, обращенной в сторону, противоположную направлению действия нагрузки .

В сечениях, где, касательная к эпюре параллельна нулевой линии эпюры .

Н а участках, где, момент возрастает; на участках, где, момент убывает .

В сечениях, где к балке приложены сосредоточенные силы, на эпюре будут скачки на величину приложенных сил, а на эпюре будут переломы .

В сечениях, где к балке приложены сосредоточенные моменты, на эпюре будут скачки на величину этих моментов.

Ординаты эпюры пропорциональны тангенсу угла наклона касательной к эпюре.

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

Рассмотрим балку 1 го пролета

Определим фиктивные реакции для балки первого пролета по табличным формулам (см.таблицу «Фиктивные опорные реакции... .»)

Балка 2 го пролета

Балка 3 го пролета

5. Составляем уравнение 3 х моментов для двух точек ­­– промежуточных опор ­– опора 1 и опора 2. Это и будут два недостающих уравнения для решения задачи.

Уравнение 3х моментов в общем виде:

Для точки (опоры) 1 (n=1):

Для точки (опоры) 2 (n=2):

Подставляем все известные величины, учитываем, что момент на нулевой опоре и на третьей опоре равны нулю, M 0 =0; M 3 =0

Тогда получим:

Поделим первое уравнение на сомножитель 4 при M 2

Второе уравнение поделим на сомножитель 20 при M 2

Решим эту систему уравнений:

Из первого уравнения вычтем второе, получим:

Подставляем это значение в любое из уравнений и находим M 2

Глава 1. ИЗГИБ ПРЯМОЛИНЕЙНЫХ БАЛОК И БАЛОЧНЫХ СИСТЕМ

1.1. Основные зависимости теории изгиба балок

Балками принято называть стержни, работающие на изгиб под действием поперечной (нормальной к оси стержня) нагрузки. Балки – наиболее распространенные элементы судовых конструкций. Ось балки – геометрическое место центров тяжести ее поперечных сечений в недеформированном состоянии. Балка называется прямой, если осью является прямая линия. Геометрическое место центров тяжести поперечных сечений балки в изогнутом состоянии называется упругой линией балки. Принято следующее направление осей координат: ось OX совмещена с осью балки, а оси OY и OZ – с главными центральными осями инерции поперечного сечения (рис. 1.1).

Теория изгиба балок основывается на следующих допущениях.

1. Принимается гипотеза плоских сечений, согласно которой поперечные сечения балки, первоначально плоские и нормальные к оси балки, остаются после ее изгиба плоскими и нормальными к упругой линии балки. Благодаря этому деформацию изгиба балки можно рассматривать независимо от деформации сдвига, которая вызывает искажение плоскостей поперечных сечений балки и их поворот относительно упругой линии (рис. 1.2, а ).

2. Нормальными напряжениями в площадках, параллельных оси балки, пренебрегают из-заих малости (рис. 1.2, б ).

3. Балки считаются достаточно жесткими, т.е. прогибы их малы по сравнению с высотой балок, а углы поворота сечений малы по сравнению с единицей (рис.1.2, в ).

4. Напряжения и деформации связаны линейной зависимостью, т.е. справедлив закон Гука (рис. 1.2, г ).


Рис. 1.2. Допущения теории изгиба балок

Будем рассматривать появляющиеся при изгибе балки в ее сечении изгибающие моменты и перерезывающие силы как результат действия мысленно отбрасываемой по сечению части балки на оставшуюся ее часть.

Момент всех действующих в сечении усилий относительно однойиз главных осей называется изгибающим моментом. Изгибающий момент равен сумме моментов всех сил (включая опорные реакции и моменты), действующих на отброшенную часть балки, относительно указанной оси рассматриваемого сечения.

Проекция на плоскость сечения главного вектора усилий, действующих в сечении, называется перерезывающей силой. Она равна сумме проекций наплоскость сечения всех сил (включая опорные реакции), действующих на отброшенную часть балки .

Ограничимся рассмотрением изгиба балки, происходящего в плоскости XOZ . Такой изгиб будет иметь место в случае, когда поперечная нагрузка действует в плоскости, параллельной плоскости XOZ , а ее равнодействующая в каждом сечении проходит через точку, называемую центром изгиба сечения. Заметим, что для сечений балок,имеющих две осисимметрии, центр изгиба совпадает с центром тяжести, а для сечений, имеющих одну ось симметрии, он лежит на осисимметрии, но не совпадает с центром тяжести.

Нагрузка входящих в состав судового корпуса балок может быть либо распределенной (чаще всего равномерно распределенной вдоль оси балки, или изменяющейся по линейному закону), либо приложенной в виде сосредоточенных сил и моментов.

Обозначим интенсивность распределенной нагрузки (нагрузку, приходящуюся на единицу длины оси балки) через q (x ), внешнюю сосредоточенную силу – как Р , а внешний изгибающий момент – как М . Распределенная нагрузка и сосредоточенная сила положительны, если направления их действия совпадают с положительным направлением оси OZ (рис. 1.3,а ,б ). Внешний изгибающий момент положителен, если он направлен по часовой стрелке (рис.1.3,в ).

Рис. 1.3. Правило знаков для внешних нагрузок

Обозначим прогиб прямой балки при ее изгибе в плоскости XOZ через w , а угол поворота сечения – через θ. Примем правило знаков для элементов изгиба (рис. 1.4):

1) прогиб положителен, если он совпадает с положительным направлением оси OZ (рис. 1.4, а ):

2) угол поворота сечения положителен, если в результате изгиба сечение поворачивается по часовой стрелке (рис. 1.4, б );

3) изгибающие моменты положительны, если балка под их воздействием изгибается выпуклостью вверх (рис. 1.4, в );

4) перерезывающие силы положительны, если они поворачивают выделенный элемент балки против часовой стрелки (рис. 1.4, г ).


Рис. 1.4. Правило знаков для элементов изгиба

На основании гипотезы плоских сечений можно видеть (рис. 1.5), что относительное удлинение волокна ε x , отстоящего на z от нейтральной оси, будет равно

ε x = −z /ρ ,(1.1)

где ρ – радиус кривизны балки в рассматриваемом сечении.

Рис. 1.5. Схема изгиба балки

Нейтральной осью поперечного сечения называется геометрическое место точек, для которых линейная деформация при изгибе равна нулю. Между кривизной и производными от w (x ) существует зависимость

В силу принятого допущения о малости углов поворота для достаточно жестких балок величина мала по сравнению с единицей , поэтому можно считать, что

Подставив 1/ρ из (1.2) в (1.1), получим

Нормальные напряжения от изгиба σ x на основании закона Гука будут равны

Поскольку из определения балок следует, что продольное усилие, направленное вдоль оси балки, отсутствует, главный вектор нормальных напряжений должен обращаться в нуль, т.е.

где F – площадь поперечного сечения балки.

Из (1.5) получим, что статический момент площади сечения балки равен нулю. Это значит, что нейтральная ось сечения проходит через его центр тяжести.

Момент внутренних усилий, действующих в поперечном сечении относительно нейтральной оси, M y будет

Если учесть, что момент инерции площади сечения относительно нейтральной оси OY равен , и подставить это значение в (1.6), то получим зависимость, которая выражает основное дифференциальное уравнение изгиба балки

Момент внутреннихусилий в сечении относительно оси OZ будет

Поскольку оси OY и OZ по условию являются главными центральными осями сечения, то .

Отсюда следует, что при действии нагрузки в плоскости, параллельной главной плоскости изгиба, упругая линия балки будет плоской кривой. Такой изгиб называется плоским . На основании зависимостей (1.4) и (1.7) получим

Формула (1.8) показывает, что нормальные напряжения при изгибе балок пропорциональны отстоянию от нейтральной оси балки. Естественно, что это вытекаетиз гипотезы плоских сечений. В практических расчетах для определения наибольших нормальных напряжений часто используют момент сопротивления сечения балки

где |z | max – абсолютное значение отстояния наиболее удаленного волокна от нейтральной оси.

В дальнейшем нижние индексы y для упрощения опущены.

Между изгибающим моментом, перерезывающей силой и интенсивностью поперечной нагрузки существует связь, вытекающая из условия равновесия элемента, мысленно выделенного из балки.

Рассмотрим элемент балки длиной dx (рис. 1.6). Здесь принимается, что деформации элемента пренебрежимо малы.

Если в левом сечении элемента действует момент M и перерезывающая сила N , то в правом его сечении соответствующие усилия будут иметь приращения. Рассмотрим только линейные приращения .

Рис.1.6. Усилия, действующие на элемент балки

Приравняв нулю проекцию на ось OZ всех усилий, действующих на элемент, и момент всех усилий относительно нейтральной оси правого сечения, получим:

Из этих уравнений с точностью до величин высшего порядка малости получим

Из (1.11) и (1.12) следует, что

Зависимости (1.11)–(1.13) известны под названием теоремы Журавского–Шведлера .Из этих зависимостей следует, что перерезывающая сила и изгибающий момент могут быть определены путем интегрирования нагрузки q :


где N 0 и M 0 – перерезывающая сила и изгибающий момент в сечении, соответствующем x = x 0 , которое принимается за начало отсчета; ξ, ξ 1 – переменные интегрирования .

Постоянные N 0 и M 0 для статически определимых балок могут быть определены из условий их статического равновесия.

Если балка статически определимая, изгибающий момент влюбом сечении может быть найден по (1.14), и упругая линия определяется путем двукратного интегрирования дифференциального уравнения (1.7). Однако в конструкциях судового корпуса статически определимые балки встречаются крайне редко. Большинство балок, входящих в состав судовых конструкций, образует многократно статически неопределимые системы. В этих случаях для определения упругой линии уравнение (1.7) является неудобным, и целесообразно перейти к уравнению четвертого порядка.

1.2. Дифференциальное уравнение изгиба балок

Дифференцируя уравнение (1.7) для общего случая, когда момент инерции сечения является функцией от x , с учетом (1.11) и (1.12) получим:


где штрихами обозначено дифференцирование по x .

Для призматических балок, т.е. балок постоянного сечения, получим следующие дифференциальные уравнения изгиба:

Обыкновенное неоднородное линейное дифференциальное уравнение четвертого порядка (1.18) можно представить в виде совокупности четырех дифференциальных уравнений первого порядка:

Используем далееу равнение (1.18) или систему уравнений (1.19) для определения прогиба балки (ее упругой линии) и всех неизвестных элементов изгиба: w (x ), θ (x ), M (x ), N (x ).

Интегрируя (1.18) последовательно 4 раза (считая, чтолевому концу балки соответствует сечение x = x a ), получим:


Нетрудно видеть, что постоянные интегрирования N a , M a , θ a , w a имеют определенный физический смысл, а именно:

N a – перерезывающая сила в начале отсчета, т.е. при x = x a ;

M a – изгибающий момент в начале отсчета;

θ a – угол поворота в начале отсчета;

w a – прогиб в этом же сечении.

Для определения указанных постоянных всегда можно составить четыре граничных условия – по два для каждого конца однопролетной балки. Естественно, что граничные условия зависят от устройства концов балки. Простейшие условия соответствуют шарнирному опиранию на жесткие опоры или жесткой заделке.

При шарнирном опирании конца балки на жесткой опоре (рис. 1.7, а ) прогиб балки и изгибающий момент равны нулю:

При жесткой заделке на жесткой опоре (рис. 1.7, б ) равны нулю прогиб и угол поворота сечения:

Если конец балки (консоль) свободен (рис. 1.7, в ), то в этом сечении равны нулю изгибающий момент и перерезывающая сила:

Возможна ситуация, связанная со скользящей заделкой или заделкой по симметрии (рис. 1.7, г ). Это приводит к таким граничным условиям:

Заметим, что граничные условия (1.26), касающиеся прогибов и углов поворота, принято называть кинематическими , а условия (1.27) – силовыми .


Рис. 1.7. Виды граничных условий

В судовых конструкциях часто приходится иметь дело с более сложными граничными условиями, которые соответствуют опиранию балки на упругие опоры или упругой заделке концов.

Упругой опорой (рис. 1.8, а ) называется опора,имеющая просадку, пропорциональную действующей на опору реакции. Будем считать реакцию упругой опоры R положительной, если она действует на опору в сторону положительного направления оси OZ . Тогда можно записать:

w = AR ,(1.29)

где A – коэффициент пропорциональности, называемый коэффициентом податливости упругой опоры.

Этот коэффициент равен просадке упругой опоры при действии реакции R = 1, т.е. A = w R = 1 .

Упругими опорами в судовых конструкциях могут быть балки, подкрепляющиерассматриваемую балку, или пиллерсы и другие конструкции, работающие на сжатие.

Для определения коэффициента податливости упругой опоры A необходимо загрузить соответствующую конструкцию единичной силой и найти абсолютную величину просадки (прогиб) в месте приложения силы. Жесткая опора – частный случай упругой опоры при A = 0.

Упругой заделкой (рис. 1.8, б ) называется такая опорная конструкция, которая препятствует свободному повороту сечения и в которой угол поворота θ в этом сечении пропорционален моменту, т.е. имеетместо зависимость

θ =Â M .(1.30)

Множитель пропорциональности Â называется коэффициентом податливости упругой заделки и может быть определен, как угол поворота упругой заделки при M = 1, т.е. Â = θ M = 1 .

Частным случаем упругой заделки при Â = 0 является жесткая заделка. В судовых конструкциях упругими заделками обычно являются балки, нормальные к рассматриваемой и лежащие в этой же плоскости. Например, упруго заделанными на шпангоутах можно считать бимсы и т.п.


Рис. 1.8. Упругая опора (а ) и упругая заделка (б )

Если концы балки длиной L оперты на упругие опоры (рис. 1.9), то реакции опор в концевых сечениях равны перерезывающим силам, и граничные условия можно записать:

Знак минус в первом условии (1.31) принят потому, что положительная перерезывающая сила в левом опорном сечении соответствует реакции, действующей на балку сверху вниз, а на опору – снизу вверх.

Если концы балки длиной L упругозаделанные (рис. 1.9), то для опорных сечений, учитывая правило знаков для углов поворота и изгибающих моментов, можно записать:

Знак минус во втором условии (1.32) принят потому, что при положительном моменте в правом опорном сечении балки момент, действующий на упругую заделку, направлен против часовой стрелки, а положительный угол поворота в этом сечении направлен по часовой стрелке, т.е. направления момента и угла поворота не совпадают.

Рассмотрение дифференциального уравнения (1.18) и всех граничных условий показывает, что они линейны относительно как входящих в них прогибов и их производных, так и действующих на балку нагрузок. Линейность является следствием допущений о справедливости закона Гука и малости прогибов балки.

Рис. 1.9. Балка, оба конца которой упруго оперты и упруго заделаны (а );

усилия в упругих опорах и упругих заделках, соответствующие положительным
направлениям изгибающего момента и перерезывающей силы (б )

При действии на балку нескольких нагрузок каждый элемент изгиба балки (прогиб, угол поворота, момент и перерезывающая сила) представляет собой сумму элементов изгиба от действия каждой из нагрузок в отдельности. Это очень важное положение, называемое принципом наложения, или принципом суммирования действия нагрузок, широко используется в практических расчетах и, в частности, для раскрытия статической неопределимости балок.

1.3. Метод начальных параметров

Общий интеграл дифференциального уравнения изгиба балки может быть использован для определения упругой линии однопролетной балки в том случае, когда нагрузка балки представляет собой непрерывную функцию координаты на протяжении всего пролета. Если в составе нагрузки встречаются сосредоточенные силы, моменты или распределенная нагрузка действует на части длины балки (рис. 1.10), то непосредственно использовать выражение (1.24) нельзя. В этом случае можно было бы, обозначив упругие линии на участках 1, 2 и 3 через w 1 , w 2 , w 3 , выписать для каждойиз них интеграл в виде (1.24) и найти все произвольные постоянные из граничных условий на концах балки и условий сопряжения на границах участков. Условия сопряжения в рассматриваемом случае выражаются так:

при x=a 1

при x=a 2

при x=a 3

Нетрудно заметить, что такой путь решения задачи приводит к большому числу произвольных постоянных, равному 4n , где n – число участков по длине балки.

Рис. 1.10. Балка, на отдельных участках которой приложены нагрузки разных типов

Значительно удобнее представить упругую линию балки в виде

где члены за двойной чертой учитываются при x ³ a 1, x ³ a 2 и т.д.

Очевидно, что δ 1 w (x )=w 2 (x )−w 1 (x ); δ 2 w (x )=w 3 (x )−w 2 (x ); и т.д.

Дифференциальные уравнения для определения поправок к упругой линии δ i w (x ) на основании (1.18) и (1.32) можно записать в виде

Общий интеграл для любой поправки δ i w (x ) к упругой линии может быть записан в виде (1.24) при x a = a i . При этом параметры N a , M a , θ a , w a имеют смысл изменения (скачка) соответственно: в перерезывающей силе, изгибающем моменте, угле поворота и стрелке прогиба при переходе через сечение x = a i . Такой прием называется методом начальных параметров. Можно показать, чтодля балки, приведенной на рис. 1.10, уравнение упругой линии будет


Таким образом, метод начальных параметров дает возможность и при наличии разрывности в нагрузках записать уравнение упругой линии в виде, содержащем лишь четыре произвольных постоянных N 0 , M 0 , θ 0 , w 0 , которые определяются из граничных условий по концам балки.

Заметим, что для большого числа вариантов встречающихся на практике однопролетных балок составлены подробные таблицы изгиба, которые позволяют легко найти прогибы, углы поворота и другие элементы изгиба.

1.4. Определение касательных напряжений при изгибе балок

Принятая в теории изгиба балок гипотеза плоских сечений приводит к тому, что деформация сдвига в сечении балки оказывается равной нулю, и мы неимеем возможности, используя закон Гука, определить касательные напряжения. Однако поскольку в общем случае в сечениях балки действуют перерезывающие силы, то должны возникать соответствующие им касательные напряжения. Это противоречие (которое является следствием принятой гипотезы плоских сечений) можно обойти, рассматривая условия равновесия. Будем считать, что при изгибе балки, составленной из тонких полос, касательные напряжения в поперечном сечении каждой из этих полос равномерно распределены по толщине и направлены параллельно длинным сторонам ее контура. Это положение практически подтверждается точными решениями теории упругости. Рассмотрим балку открытого тонкостенного двутаврового профиля. На рис. 1.11 показано положительное направление касательных напряжений в поясках и стенке профиля при изгибе в плоскости стенки балки. Выделим продольным сечением I - I и двумя поперечными сечениями элемент длиной dx (рис. 1.12).

Обозначим касательное напряжение в указанном продольном сечении через τ, а нормальные усилия в начальном поперечном сечении через T . Нормальные усилия в конечном сечении будут иметь приращения. Рассмотрим только линейные приращения, тогда .

Рис. 1.12. Продольные усилия и касательные напряжения
в элементе пояска балки

Условие статического равновесия выделенногоиз балки элемента (равенство нулю проекций усилий на ось OX ) будет

где ; f – площадь части профиля, отсеченного линией I – I ; δ– толщина профиля в месте сечения.

Из (1.36) следует:

Поскольку нормальные напряжения σ x определяются формулой (1.8), то

При этом мы полагаем, что балка имеет постоянное по длине сечение. Статический момент части профиля (отсеченной линией I – I ) относительно нейтральной оси сечения балки OY является интегралом

Тогда из (1.37) для абсолютной величины напряжений получим:

Естественно, что полученная формула для определения касательных напряжений справедлива и для любого продольного сечения, например II – II (см. рис. 1.11), и статический момент S отс вычисляется для отсеченной части площади профиля балки относительно нейтральной оси без учета знака.

Формула (1.38) по смыслу проведенного вывода определяет касательные напряжения в продольных сечениях балки. Из теоремы о парности касательных напряжений, известной из курса сопротивления материалов, следует, что такие же касательные напряжения действуют в соответствующих точках поперечного сечения балки. Естественно, что проекция главного вектора касательных напряжений на ось OZ должна быть равна перерезывающей силе N в данном сечении балки. Поскольку в поясках балки такого типа, как показано на рис. 1.11, касательные напряжения направлены по оси OY , т.е. нормально к плоскости действия нагрузки, и являются в целом уравновешенными, перерезывающая сила должна уравновешиваться касательными напряжениями в стенке балки. Распределение касательных напряжений по высоте стенки следует закону изменения статического момента S отс отсеченной части площади относительно нейтральной оси (при постоянной толщине стенки δ ).

Рассмотрим симметричное сечение двутавровой балки с площадью пояска F 1 и площадью стенки ω = (рис. 1.13).

Рис. 1.13. Сечение двутавровой балки

Статический момент отсеченной части площади для точки, отстоящей на z от нейтральной оси, будет

Как видно из зависимости (1.39), статическиймомент изменяется с z по закону квадратичной параболы. Наибольшее значение S отс , а следовательно, и касательных напряжений τ, получится у нейтральной оси, где z = 0:

Наибольшее касательное напряжениев стенке балки у нейтральной оси

Поскольку момент инерции сечения рассматриваемой балки равен

то наибольшее касательное напряжение будет


Отношение N /ω есть не что иное, как среднее касательное напряжение в стенке, вычисленное в предположенииравномерного распределения напряжений. Принимая, например, ω = 2F 1 , по формуле (1.41) получим

Таким образом, у рассматриваемой балки наибольшее касательное напряжение в стенке у нейтральной оси лишь на 12,5% превышает среднее значение этих напряжений. Следует отметить, что у большинства профилей балок, применяемых в судовом корпусе, превышение максимальных касательных напряжений над средними составляет 10–15%.

Если рассмотреть распределение касательных напряжений при изгибе в сечении балки, показанной на рис. 1.14, то можно видеть, что они образуют момент относительно центра тяжести сечения. В общем случае изгиб такой балки в плоскости XOZ будет сопровождаться закручиванием.

Изгиб балки не сопровождается закручиванием, если нагрузка будет действовать в плоскости, параллельной XOZ , проходящей через точку, называемую центром изгиба. Эта точка характеризуетсятем, что момент всех касательных усилий в сечении балки относительно нее равен нулю.

Рис. 1.14. Касательные напряжения при изгибе швеллерной балки (точка А – центр изгиба)

Обозначив отстояние центра изгиба А от оси стенки балки через е , запишем условие равенства нулю моментакасательных усилий относительно точки А :

где Q 2 – касательное усилие в стенке, равное перерезывающей силе, т.е. Q 2 =N ;

Q 1 =Q 3 – усилие в пояске, определяемое на основании (1.38) зависимостью

Деформация сдвига (или угол сдвига) γ изменяется по высоте стенки балки так же, как и касательные напряжения τ, достигая наибольшей величины у нейтральной оси.

Как было показано, у балок с поясками изменение касательных напряжений по высоте стенки весьма незначительно. Это позволяет в дальнейшем рассматривать некоторый средний угол сдвига в стенке балки

Деформация сдвига приводит к тому, что прямой угол между плоскостью поперечного сечения балки и касательной к упругой линии изменяется на величину γ ср . Упрощенная схема деформации сдвига элемента балки показана на рис. 1.15.

Рис. 1.15. Схема деформации сдвига элемента балки

Обозначив стрелку прогиба, вызванную сдвигом через w сдв , можно записать:

С учетом правила знаков для перерезывающей силы N и угла поворота найдем

Поскольку ,

Интегрируя (1.47), получим

Постоянная a , входящая в (1.48), определяет перемещение балки как твердого тела и может быть принята равной любой величине, так как при определении суммарной стрелки прогиба от изгиба w изг и сдвига w сдв

появится сумма постоянных интегрирования w 0 +a , определяемая из граничных условий. Здесь w 0 – прогиб от изгиба в начале координат.

Положим в дальнейшем a =0. Тогда окончательно выражение для упругой линии, вызванной сдвигом, примет вид

Изгибная и сдвиговая составляющие упругой линии показаны на рис. 1.16.


Рис. 1.16. Изгибная (а ) и сдвиговая (б ) составляющие упругой линии балки

В рассмотренном случае угол поворота сечений при сдвиге равен нулю, поэтому и с учетом сдвига углы поворота сечений, изгибающие моменты и перерезывающие силы связаны только с производными упругой линии от изгиба:

Несколько иначе обстоит дело в случае действия на балку сосредоточенных моментов, которые, как будет показано ниже, не вызывают прогибов от сдвига, а приводят лишь к дополнительному повороту сечений балки.

Рассмотрим свободно опертую на жесткие опоры балку, в левом сечении которой действует момент М . Перерезывающая сила в этом случае будет постоянной и равной

Для правого опорного сечения соответственно получим

.(1.52)

Выражения (1.51)и (1.52) можно переписать в виде


Выражения в круглых скобках характеризуют относительную добавку к углу поворота сечения, вызванную сдвигом.

Если рассмотреть, например, свободно опертую балку, загруженную посередине ее пролета силой Р (рис. 1.18), то прогиб балки под силой будет равен

Прогиб от изгиба можно найти по таблицам изгиба балок. Прогиб от сдвига определяется по формуле (1.50) с учетом того, что .

Рис. 1.18. Схема свободно опертой балки, загруженной сосредоточенной силой

Как видно из формулы (1.55), относительная добавка к прогибу балки за счет сдвига имеет такую же структуру, что и относительная добавка к углу поворота, но с другим численным коэффициентом.

Введем обозначение

где β – численный коэффициент, зависящий от рассматриваемой конкретной задачи, устройства опор и нагрузки балки.

Проанализируем зависимость коэффициента k от различных факторов.

Если учесть, что , получим вместо (1.56)

Момент инерции сечения балки всегда может быть представлен в виде

,(1.58)

где α – численный коэффициент, зависящий от формы и характеристик поперечного сечения. Так, для балки двутаврового профиля по формуле (1.40) при ω =2F 1 найдем I = ωh 2 /3, т.е. α =1/3.

Заметим, что с ростом размеров поясков балки коэффициент α будет увеличиваться.

С учетом (1.58) вместо (1.57) можно записать:

Таким образом, значение коэффициента k существенно зависит от отношения длины пролета балки к ее высоте, от формы сечения (через коэффициент α ), устройства опор и нагрузки балки (через коэффициент β ). Чем относительно длиннее балка (h / L мало), тем меньше влияние деформации сдвига. Для балок прокатного профиля, имеющих отношение h / L меньше 1/10÷1/8, поправка на сдвиг практически может не учитываться.

Однако для балок с широкими поясками, таких, например, как киль, стрингеры и флоры в составе днищевых перекрытий влияние сдвига и при указанных h / L может оказаться значительным.

Следует отметить, что деформации сдвига оказывают влияние не только на увеличение прогибов балок, но в некоторых случаях и на результаты раскрытия статической неопределимости балок и балочных систем.

Для наглядного представления характера деформации брусьев (стержней) при изгибе проводится следующий опыт. На боковые грани резинового бруса прямоугольного сечения наносится сетка линий, параллельных и перпендикулярных оси бруса (рис. 30.7, а). Затем к брусу по его концам прикладываются моменты (рис. 30.7, б), действующие в плоскости симметрии бруса, пересекающей каждое его поперечное сечение по одной из главных центральных осей инерции. Плоскость, проходящая через ось бруса и одну из главных центральных осей инерции каждого его поперечного сечения, будем называть главной плоскостью.

Под действием моментов брус испытывает прямой чистый изгиб. В результате деформации, как показывает опыт, линии сетки, параллельные оси бруса, искривляются, сохраняя между собой прежние расстояния. При указанном на рис. 30.7, б направлении моментов эти линии в верхний части бруса удлиняются, а в нижней - укорачиваются.

Каждую линию сетки, перпендикулярную к оси бруса, можно рассматривать как след плоскости некоторого поперечного сечения бруса. Так как эти линии остаются прямыми, то можно предполагать, что поперечные сечения бруса, плоские до деформации, остаются плоскими и в процессе деформации.

Это предположение, основанное на опыте, как известно, носит название гипотезы плоских сечений, или гипотезы Бернулли (см. § 6.1).

Гипотеза плоских сечений применяется не только при чистом, но и при поперечном изгибе. Для поперечного изгиба она является приближенной, а для чистого изгиба строгой, что подтверждается теоретическими исследованиями, проведенными методами теории упругости.

Рассмотрим теперь прямой брус с поперечным сечением, симметричным относительно вертикальной оси, заделанный правым концом и нагруженный на левом конце внешним моментом действующим в одной из главных плоскостей бруса (рис. 31.7). В каждом поперечном сечении этого бруса возникают только изгибающие моменты действующие в той же плоскости, что и момент

Таким образом, брус на всем своем протяжении находится в состоянии прямого чистого изгиба. В состоянии чистого изгиба могут находиться отдельные участки балки и в случае действия на нее поперечных нагрузок; например, чистый изгиб испытывает участок 11 балки, изображенной на рис. 32.7; в сечениях этого участка поперечная сила

Выделим из рассматриваемого бруса (см. рис. 31.7) двумя поперечными сечениями элемент длиной . В результате деформации, как это следует из гипотезы Бернулли, сечения останутся плоскими, но наклонятся по отношению друг к другу на некоторый угол Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол оно займет положение (рис. 33.7).

Прямые пересекутся в некоторой точке А, которая является центром кривизны (или, точнее, следом оси кривизны) продольных волокон элемента Верхние волокна рассматриваемого элемента при показанном на рис. 31.7 направлении момента удлиняются, а нижние укорачиваются. Волокна же некоторого промежуточного слоя перпендикулярного к плоскости действия момента сохраняют свою длину. Этот слой называется нейтральным слоем.

Обозначим радиус кривизны нейтрального слоя, т. е. расстояние от этого слоя до центра кривизны А (см. рис. 33.7). Рассмотрим некоторый слой расположенный на расстоянии у от нейтрального слоя. Абсолютное удлинение волокон этого слоя равно а относительное

Рассматривая подобные треугольники устанавливаем, что Следовательно,

В теории изгиба предполагается, что продольные волокна бруса не давят друг на друга. Экспериментальные и теоретические исследования показывают, что это предположение не влияет существенно на результаты расчета.

При чистом изгибе в поперечных сечениях бруса не возникают касательные напряжения. Таким образом, все волокна при чистом изгибе находятся в условиях одноосного растяжения или сжатия.

По закону Гука для случая одноосного растяжения или сжатия нормальное напряжение о и соответствующая относительная деформация связаны зависимостью

или на основании формулы (11.7)

Из формулы (12.7) следует, что нормальные напряжения в продольных волокнах бруса прямо пропорциональны их расстояниям у от нейтрального слоя. Следовательно, в поперечном сечении бруса в каждой его точке нормальные напряжения пропорциональны расстоянию у от этой точки до нейтральной оси, представляющей собой линию пересечения нейтрального слоя с поперечным сечением (рис.

34.7, а). Из симметрии бруса и нагрузки следует, что нейтральная ось горизонтальна.

В точках нейтральной оси нормальные напряжения равны нулю; по одну сторону от нейтральной оси они растягивающие, а по другую - сжимающие.

Эпюра напряжений о представляет собой график, ограниченный прямой линией, с наибольшими по абсолютной величине значениями напряжений для точек, наиболее удаленных от нейтральной оси (рис. 34.7,б).

Рассмотрим теперь условия равновесия выделенного элемента бруса. Действие левой части бруса на сечение элемента (см. рис. 31.7) представим в виде изгибающего момента остальные внутренние усилия в этом сечении при чистом изгибе равны нулю. Действие правой части бруса на сечение элемента представим в виде элементарных сил о приложенных к каждой элементарной площадке поперечного сечения (рис. 35.7) и параллельных оси бруса.

Составим шесть условий равновесия элемента

Здесь - суммы проекций всех сил, действующих на элемент соответственно на оси - суммы моментов всех сил относительно осей (рис. 35.7).

Ось совпадает с нейтральной осью сечения а ось у перпендикулярна к ней; обе эти оси расположены в плоскости поперечного сечения

Элементарная сила не дает проекций на оси у и и не вызывает момента относительно оси Поэтому уравнения равновесия удовлетворяются при любых значениях о.

Уравнение равновесия имеет вид

Подставим в уравнение (13.7) значение а по формуле (12.7):

Так как (рассматривается изогнутый элемент бруса, для которого ), то

Интеграл представляет собой статический момент поперечного сечения бруса относительно нейтральной оси . Равенство его нулю означает, что нейтральная ось (т. е. ось ) проходит через центр тяжести поперечного сечения. Таким образом, центр тяжести всех поперечных сечений бруса, а следовательно, и ось бруса, являющаяся геометрическим местом центров тяжести, расположены в нейтральном слое. Следовательно, радиус кривизны нейтрального слоя является радиусом кривизны изогнутой оси бруса.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно нейтральной оси :

Здесь представляет собой момент элементарной внутренней силы относительно оси .

Обозначим площадь части поперечного сечения бруса, расположенной над нейтральной осью, - под нейтральной осью.

Тогда представит собой равнодействующую элементарных сил приложенных выше нейтральной оси, ниже нейтральной оси (рис. 36.7).

Обе эти равнодействующие равны друг другу по абсолютной величине, так как их алгебраическая сумма на основании условия (13.7) равна нулю. Эти равнодействующие образуют внутреннюю пару сил, действующую в поперечном сечении бруса. Момент этой пары сил, равный т. е. произведению величины одной из них на расстояние между ними (рис. 36.7), представляет собой изгибающий момент в поперечном сечении бруса.

Подставим в уравнение (15.7) значение а по формуле (12.7):

Здесь представляет собой осевой момент инерции , т. е. оси, проходящей через центр тяжести сечения. Следовательно,

Подставим значение из формулы (16.7) в формулу (12.7):

При выводе формулы (17.7) не учтено, что при внешнем моменте направленном, как это показано на рис. 31.7, согласно принятому правилу знаков, изгибающий момент является отрицательным. Если учесть это, то перед правой частью формулы (17.7) необходимо поставить знак «минус». Тогда при положительном изгибающем моменте в верхней зоне бруса (т. е. при ) значения а получатся отрицательными, что укажет на наличие в этой зоне сжимающих напряжений. Однако обычно знак «минус» в правой части формулы (17.7) не ставится, а эта, формула используется лишь для определения абсолютных значений напряжений а. Поэтому в формулу (17.7) следует подставлять абсолютные значения изгибающего момента и ординаты у. Знак же напряжений всегда легко устанавливается по знаку момента или по характеру деформации балки.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно оси у:

Здесь представляет собой момент элементарной внутренней силы относительно оси у (см. рис. 35.7).

Подставим в выражение (18.7) значение а по формуле (12.7):

Здесь интеграл представляет собой центробежный момент инерции поперечного сечения бруса относительно осей у и . Следовательно,

Но так как

Как известно (см. § 7.5), центробежный момент инерции сечения равен нулю относительно главных осей инерции.

В рассматриваемом случае ось у является осью симметрии поперечного сечения бруса и, следовательно, оси у и являются главными центральными осями инерции этого сечения. Поэтому условие (19.7) здесь удовлетворяется.

В случае, когда поперечное сечение изгибаемого бруса не имеет ни одной оси симметрии, условие (19.7) удовлетворяется, если плоскость действия изгибающего момента проходит через одну из главных центральных осей инерции сечения или параллельна этой оси.

Если плоскость действия изгибающего момента не проходит ни через одну из главных центральных осей инерции поперечного сечения бруса и не параллельна ей, то условие (19.7) не удовлетворяется и, следовательно, нет прямого изгиба - брус испытывает косой изгиб.

Формула (17.7), определяющая нормальное напряжение в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.

Формула (16.7) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна произведению модуля упругости Е на момент инерции Произведение будем называть жесткостью сечения при изгибе; она выражается в и т. д.

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений постоянны по ее длине. В этом случае радиус кривизны изогнутой оси балки имеет постоянное значение [см. выражение (16.7)], т. е. балка изгибается по дуге окружности.

Из формулы (17.7) следует, что наибольшие (положительные - растягивающие) и наименьшие (отрицательные-сжимающие) нормальные напряжения в поперечном сечении бруса возникают в точках, наиболее удаленных от нейтральной оси, расположенных по обе стороны от нее. При поперечном сечении, симметричном относительно нейтральной оси, абсолютные величины наибольших растягивающих и сжимающих напряжений одинаковы и их можно определить по формуле

где - расстояние от нейтральной оси до наиболее удаленной точки сечения.

Величина зависящая только от размеров и формы поперечного сечения, называется осевым моментом сопротивления сечения и обозначается

(20.7)

Следовательно,

Определим осевые моменты сопротивления для прямоугольного и круглого сечений.

Для прямоугольного сечения шириной b и высотой

Для круглого сечения диаметром d

Момент сопротивления выражается в .

Для сечений, не симметричных относительно нейтральной оси, например для треугольника, тавра и т. п., расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон различны; поэтому для таких сечений имеются два момента сопротивления:

где - расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон.

Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные...

...– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.

Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.

Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?

Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.

Исходные данные:

F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики

d = 32 мм – наружный диаметр прутка, из которого сделана балка

E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3

[σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки стали Ст3

Граничные условия:

Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)

Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)

V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)

V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)

Расчет:

1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):

Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4

Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3

2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:

Qy = -R1+F1-R2 = 0

Мx (0) = F1*(0-b2) -R2*(0-b3) = 0

Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н

Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н

3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:

V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/

U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =

= (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/

/(206000*5,147/100)/1,2 = 0,00764 рад = 0,44˚

4. Составляем уравнения для построения эпюр для первого участка (0

Поперечная сила: Qy (z) = -R1

Изгибающий момент: Мx (z) = -R1*(z-b1)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)

z = 0 м:

Qy (0) = -R1 = -450 н

Ux (0) = U (0) = 0,00764 рад

Vy (0) = V (0) = 0 мм

z = 0,6 м:

Qy (0,6) = -R1 = -450 н

Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м

Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =

0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад

Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =

0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м

Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.

5. Пишем уравнения эпюр для второго участка (b2

Поперечная сила: Qy (z) = -R1+F1

Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)

z = 1,2 м:

Qy (1,2) = -R1+F1 = -450+900 = 450 н

Мx (1,2) = 0 н*м

Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =

0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/

/(206000*5,147/100) = -0.00764 рад

Vy (1,2) = V (1,2) = 0 м

6. Строим эпюры, используя данные полученные выше.

7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:

σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2

σи = 84 н/мм^2 < [σи] = 250 н/мм^2

По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.

Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.

Прошу УВАЖАЮЩИХ труд автора ПОДПИСАТЬСЯ на анонсы статей.

Введите Ваш e-mail:

Статьи с близкой тематикой

Отзывы

86 комментариев на «Расчет балки на изгиб — «вручную»!»

  1. Александр Воробьев 19 Июн 2013 22:32
  2. Алексей 18 Сен 2013 17:50
  3. Александр Воробьев 18 Сен 2013 20:47
  4. михамл 02 Дек 2013 17:15
  5. Александр Воробьев 02 Дек 2013 20:27
  6. Дмитрий 10 Дек 2013 21:44
  7. Александр Воробьев 10 Дек 2013 23:18
  8. Дмитрий 11 Дек 2013 15:28
  9. Игорь 05 Янв 2014 04:10
  10. Александр Воробьев 05 Янв 2014 11:26
  11. Андрей 27 Янв 2014 21:38
  12. Александр Воробьев 27 Янв 2014 23:21
  13. Александр 27 Фев 2014 18:20
  14. Александр Воробьев 28 Фев 2014 11:57
  15. Андрей 12 Мар 2014 22:27
  16. Александр Воробьев 13 Мар 2014 09:20
  17. Денис 11 Апр 2014 02:40
  18. Александр Воробьев 13 Апр 2014 17:58
  19. Денис 13 Апр 2014 21:26
  20. Денис 13 Апр 2014 21:46
  21. Александр 14 Апр 2014 08:28
  22. Александр 17 Апр 2014 12:08
  23. Александр Воробьев 17 Апр 2014 13:44
  24. Александр 18 Апр 2014 01:15
  25. Александр Воробьев 18 Апр 2014 08:57
  26. Давид 03 Июн 2014 18:12
  27. Александр Воробьев 05 Июн 2014 18:51
  28. Давид 11 Июл 2014 18:05
  29. Алимжан 12 Сен 2014 13:57
  30. Александр Воробьев 13 Сен 2014 13:12
  31. Александр 14 Окт 2014 22:54
  32. Александр Воробьев 14 Окт 2014 23:11
  33. Александр 15 Окт 2014 01:23
  34. Александр Воробьев 15 Окт 2014 19:43
  35. Александр 16 Окт 2014 02:13
  36. Александр Воробьев 16 Окт 2014 21:05
  37. Александр 16 Окт 2014 22:40
  38. Александр 12 Ноя 2015 18:24
  39. Александр Воробьев 12 Ноя 2015 20:40
  40. Александр 13 Ноя 2015 05:22
  41. Рафик 13 Дек 2015 22:20
  42. Александр Воробьев 14 Дек 2015 11:06
  43. Щур Дмитрий Дмитриевич 15 Дек 2015 13:27
  44. Александр Воробьев 15 Дек 2015 17:35
  45. Ринат 09 Янв 2016 15:38
  46. Александр Воробьев 09 Янв 2016 19:26
  47. Щур Дмитрий Дмитриевич 04 Мар 2016 13:29
  48. Александр Воробьев 05 Мар 2016 16:14
  49. Слава 28 Мар 2016 11:57
  50. Александр Воробьев 28 Мар 2016 13:04
  51. Слава 28 Мар 2016 15:03
  52. Александр Воробьев 28 Мар 2016 19:14
  53. руслан 01 Апр 2016 19:29
  54. Александр Воробьев 02 Апр 2016 12:45
  55. Александр 22 Апр 2016 18:55
  56. Александр Воробьев 23 Апр 2016 12:14
  57. Александр 25 Апр 2016 10:45
  58. Олег 09 мая 2016 17:39
  59. Александр Воробьев 09 мая 2016 18:08
  60. михаил 16 мая 2016 09:35
  61. Александр Воробьев 16 мая 2016 16:06
  62. Михаил 09 Июн 2016 22:12
  63. Александр Воробьев 09 Июн 2016 23:14
  64. Михаил 16 Июн 2016 11:25
  65. Александр Воробьев 17 Июн 2016 10:43
  66. Дмитрий 05 Июл 2016 20:45
  67. Александр Воробьев 06 Июл 2016 09:39
  68. Дмитрий 06 Июл 2016 13:09
  69. Виталий 16 Янв 2017 19:51
  70. Александр Воробьев 16 Янв 2017 20:40
  71. Виталий 17 Янв 2017 15:32
  72. Александр Воробьев 17 Янв 2017 19:39
  73. Виталий 17 Янв 2017 20:40
  74. Алексей 15 Фев 2017 02:09
  75. Александр Воробьев 15 Фев 2017 19:08
  76. Алексей 16 Фев 2017 03:50
  77. Дмитрий 09 Июн 2017 12:05
  78. Александр Воробьев 09 Июн 2017 13:32
  79. Дмитрий 09 Июн 2017 14:52
  80. Александр Воробьев 09 Июн 2017 20:14
  81. Сергей 09 Мар 2018 21:54
  82. Александр Воробьев 10 Мар 2018 09:11
  83. Евгений Александрович 06 мая 2018 20:19
  84. Александр Воробьев 06 мая 2018 21:16
  85. Виталий 29 Июн 2018 19:11
  86. Александр Воробьев 29 Июн 2018 23:41

Что еще почитать