Что такое xl в электротехнике. Основные электрические законы

Такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома . В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой , и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно

Переход от показательной формы к тригонометрической осуще- ствляется по формуле Эйлера Ae jψ = A cos ψ + jA sin ψ, обратный переход, принимая во внимание представление комплекс- ных чисел, также несложен: I = Re(I) 2 + Im (I) 2 , & & U = Re(U) 2 + Im (U) 2 - & & - модули комплексных чисел; & Im(I) & Im(U) ψ i = arctg , ψ u = arctg - & Re (I) & Re (U) -начальные фазы. Кроме аналитической формы представления, в электротехнике широко используется и графическое представление величин (рис. 3.1): +j 1) в прямоугольной де- I& картовой системе координат в U& Im(Đ) виде синусоидальных функ- ϕ & Im(U) ψi ций времени; ψu +1 2) в полярной системе 0 координат в виде вращаю- Re(Đ) & Re(U) щихся векторов; Рис. 3.1 3) на комплексной плос- кости в виде вращающихся векторов, изображенных для момента времени t = 0. Величина электрического сопротивления, в отличие от ЭДС, то- ка и напряжения, не вектор, а скаляр. В соответствии с законом Ома, записанным в комплексном виде, и с учетом вариантов представления комплексных чисел широко из- вестна запись: U & Z = = R + j (X L − X C) = Ze jϕ , Ом, I& где R – линейное активное сопротивление, Ом; XL − идеальное индуктивное сопротивление, определяемое как XL = ω L, Ом; XC − идеальное емкостное сопротивление, определяемое как XC = 1/(ω C), Ом; Z = R 2 + (X L − X C) 2 − модуль полного комплексного сопро- тивления, Ом; X − XC ϕ = arctg L − фаза полного комплексного сопротивления, R град (рад). При последовательном соединении полное комплексное эквива- лентное сопротивление равно сумме комплексных сопротивлений от- дельных участков: n n  n n  Z э = ∑ Z k = ∑ Rk + j  ∑ X Lk − ∑ X Ck .   k =1 k =1  k =1 k =1  Основные элементы схем замещения цепей синусоидального то- ка и их параметры сведены в табл. 3.1. 3.1.2. Примеры решения задач Пример 1 Заданы графические изображения u, i тока и напряжения, известны их ампли- u i тудные значения Im = 2A, Um = 141 B 0 t (рис.3.2). 1. Записать аналитические выраже- 0,001 с ния функций в тригонометрической и Т=0,01 с комплексной формах. 2. Определить полное комплексное Рис. 3.2 сопротивление цепи. 3. Вычертить электрическую схему цепи и определить ее пара- метры. 4. Построить векторную диаграмму тока и напряжения. Решение 1. Исходя из общего вида записи, определяются: i=Im sin(ωt+ψi), u=Um sin(ωt+ψu), угловая частота: ω = 2πf = 2π/T = 2π/0,01≈ 628, c-1. Пассивные элементы электрической цепи Таблица 3.1 Элементы схем замещения Полное Модуль полного Аргумент Упрощенная Запись закона комплексное комплексного полного векторная Название Обозначение Ома сопротивление, сопротивления, комплексного диаграмма Ом Ом сопротивления R Идеальный ре- I =UR / R & & & U Đ зистивный эле- R R 0 U R = RI & & мент Идеальный ин- L I = UL /(jXL) , & & jXL=jωL= o U& дуктивный эле- XL=ωL 90 U = jX I & & = ωLe j 900 ϕ= 90o Đ мент L L Идеальный ем- C I = UC /(− jXC) , −jXC=−j/(ωC)= & & костный элемент XC=1/(ωC) – 90o ϕ= -90o Đ U C = − jX C I = e− j 90 0 & & & U Реальная индук- L R U& I =U Z & & X тивная катушка Z=R+jXL Z= R + 2 2 XL ϕ = arctg L R ϕ>0 Đ Последователь- ное соединение Đ R С резистивного и − XC ϕ<0 I =U Z & & Z=R-jXC Z = R2 + X C 2 ϕ = arctg U& идеального ем- R костного эле- ментов Обобщенный Z Z= X L − XC I =U Z & & Z=R+j(XL-XC) ϕ = arctg элемент = R2 + (X L − XC)2 R Величины начальных сдвигов фаз: для тока − из графика видно, что ψi = 0, для напряжения – определяем из пропорции: 0,01 − 2π 0,001·2π π ⇒ψ = = . 0,001 − ψ u u 0,01 5 График тока пересекает начало координат раньше, чем график напряжения, поэтому ψu< 0. После этого выражения для мгновенных значений приобретут вид: i=2 sin(628 t), A, u=141 sin(628t−π/5), B. Для перехода к комплексной форме записи определяются дейст- вующие значения тока и напряжения: I = I m / 2 = 2 / 2 ≈ 1,41, A; U = U m / 2 = 141 / 2 ≈ 100, B . Комплексные значения тока и напряжения в показательной форме имеют вид I = 1,41 ⋅ e j 0 , A ; U = 100 ⋅ e − j 36 , B . o o & & 2. Полное комплексное сопротивление цепи U 100e − jπ/5 & Z= = = 70,92e − jπ/5 , Ом. I& 1,41e j0 Воспользовавшись формулой Эйлера, получим Z = 70,92cos(–π/5) + j70,92sin(–π/5) = 57,37 – j 41,68, Ом, следовательно, R = 57,37 Ом, XC = 41,68 Ом, C = 1/(ωXC) = 7,64⋅10-5 = 76,4, мкФ. 3. Электрическая схема замеще- ния содержит активное сопротивление R XC R = 57,37 Ом и емкостное XC = 41,68 Ом с величиной емкости С = 76,4 мкФ (рис. 3.3). Рис. 3.3 4. Векторная диаграмма тока и напряжения показана на рис. 3.4. +j Đ +1 0 φ=−36 U& Рис. 3.4 Пример 2 Даны комплексные значения тока и напряжения: I = (4 + j 3), A , & U = (20 + j 20), B, частота питающей сети f = 50 Гц. & 1. Записать ток и напряжение в комплексной показательной форме и выражения для их мгновенных значений. 2. Вычислить величину Z. 3. Построить векторную диаграмму тока и напряжения. 4. Вычертить схему замещения участка электрической цепи. Решение 1.Модуль тока I = Re(I) 2 + Im(I) 2 = 4 2 + 32 = 5, A, & & начальная фаза тока ψi= arctg (Im(Đ) / (Re(Đ)) = arctg(3/4)=36,9°, комплекс тока в показательной форме записи o I = 5e j 36,9 , A . & Модуль напряжения U = Re(U) 2 + Im(U) 2 = 20 2 + 20 2 = 28,3, В, & & начальная фаза напряжения & Im(U)  20  ψ u = arctg = arctg  = 45o , & Re(U)  20  комплекс напряжения в показательной форме записи U = 28,3е j 45° , В. & Амплитудные значения: тока I m = I 2 = 5 2 = 7,1, A ; напряжения U m = U 2 = 28,3 2 = 40, B . Мгновенные значения: тока i = 7,1 sin(314t + 0,64), A; напряжения u = 40 sin (314t+π/4), B. 2. Полное комплексное сопротивление цепи o U 28,3e j 45 & o Z= = = 5,66e j 8,1 , Ом. & I o 5e j 36,9 3. В алгебраической форме (переход по формуле Эйлера через тригонометрическую форму) Z = 5,66cos(8,1˚) + j5,66sin (8,1˚) = 5,6 + j 0,8, Ом. 4. Векторная диаграмма тока и напряжения представлена на рис. 3.5 +j U& Đ φ = 8,1o ψu = 45o ψi = 36,9o +1 0 Рис. 3.5 5.Схема замещения цепи (рис. 3.6) R L Рис. 3.6 Пример 3 Задана электрическая цепь (рис. 3.7), R L содержащая последовательно вклю- ченные катушку индуктивности с ак- U& тивным сопротивлением R = 10 Ом и C индуктивным сопротивлением XL = 2 Ом и конденсатор с емкостным со- Рис. 3.7 противлением XC = 5 Ом. Напряжение питания цепи U = 36 В. Вычислить величину тока и построить векторную диаграмму тока и напряжений. Решение Полное комплексное сопротивление цепи Z = R + j (X L − X C) = 10 − j 3 = 10,44е− j16°42′ , Ом. Согласно закону Ома в комплексной форме ток в цепи составит & &=U = 36е j 0° I = 3,45е j16°42′ , A . Z 10,44е − j16°42′ По известным значениям тока и сопротивлений участков цепи вычисляются падения напряжения на отдельных участках схемы за- мещения электрической цепи: U R = RI = 10 ⋅ 3,45 = 34,5, B, U L = X L I = 2 ⋅ 3,45 = 6,9, B, U C = X C I = 5 ⋅ 3,45 = 17,25, B. Алгоритм построения векторной диаграммы тока и напряже- ний (рис. 3.8): +j & UL & I & Uк & UR & UC ϕ = – 16°42′ +1 0 U& Рис. 3.8 1) поскольку в цепи из последовательно соединенных элемен- тов общим для последних является ток, построение векторной диа- & граммы начинается с откладывания вектора тока I ; 2) из начала координат по вектору тока откладывается вектор & U R (длина вектора определяется исходя из масштаба напряжений mU); & & 3) из конца вектора U R перпендикулярно вектору I строится вектор U L так, чтобы этот вектор опережал вектор тока I на 90o; & & & & 4) сумма векторoв U R и U L равна вектору падения напряжения & на катушке U к; & & & 5) из конца вектора U L или U к проводится векторU C ; его на- правление определяется из условия опережения вектором тока векто- ра напряжения U C на угол π/2 (в случае идеального емкостного эле- & мента); & & & 6) сумма векторов падений напряжения U R , U L и U C равна & вектору напряжения U , приложенного к электрической цепи. Пример 4 В электрическую цепь с напряжением на входе u = 141 sinωt, В, включена катушка индуктивности с активным сопротивлением R = 3 Ом и индуктивным сопротивлением XL = 4 Ом. Вычислить показания включенных в цепь амперметра и вольт- метра, а также мощность, потребляемую цепью. Решение Полное комплексное сопротивление цепи Z = R + jX L = 3 + j 4 = 5е j 53,1° , Ом. Действующее значение напряжения (показание вольтметра) U = U m / 2 = 141 / 2 = 100, B . Действующее значение тока (показание амперметра) U 100 I= = = 20, A . Z 5 Комплексное значение тока (начальная фаза напряжения соглас- но условию задачи равна нулю) & j 0° & = U = 100е = 20е − j 53,1° = 20 cos (−53,1°) + j 20 sin (−53,1°) = I Z 5е j 53,1° = 12 − j16, A . Величины активной и реактивной мощностей, потребляемых цепью, рассчитываются исходя из действующих значений величин P = UI cos ϕ = U a I = RI 2 = 3 ⋅ 202 = 1200, Вт, Q = UI sin ϕ = U p I = X L I 2 = 4 ⋅ 20 2 = 1600, вар, либо с использованием комплексов ∗ S = U I = P + jQ = 100e j 0° ⋅ 20е j 53,1° = 2000е j 53,1° = & = 2000 cos 53,1° + j 2000 sin 53,1° ≈ 1200 + j 1600, ВА. Необходимо обратить внимание на то, что в формуле нахожде- ния мощности S используется комплексно сопряженная величина то- ∗ ка I . Полная или кажущаяся мощность (действующее значение) S = UI = 100 ⋅ 20 = 2000, BA. 3.1.3. Задачи для самостоятельного решения Задача 1 Определить напряжение на ин- C1 R L C2 дуктивном элементе схемы, если R = = 10 Ом, С1= 100 мкФ, С2 = 20 мкФ, U = 24 В, L = 0,4 Гн, f = 50 Гц. U& Ответ: 45,5 В. Задача 2 R1 C R2 L Определить модуль полного ком- плексного сопротивления цепи, по- U строить векторную диаграмму тока и напряжений, если L = 0,2 Гн, R1 = 10 Ом, C = 100 мкФ, R2 = 40 Ом, U = 220 В, f = 50 Гц. Ответ: 58,8 Ом. Задача 3 Определить полное комплексное сопротивление участка цепи, если i =1,35sin (314t+π/10), А, u = 245 sin (314 t – π/20), В. Ответ: 161,7 – j82,39, Ом. Задача 4 Вычислить потребляемую цепью R L C полную комплексную мощность, если U = 127 В, R = 230 Ом, f = 50 Гц, U L = 0,5 Гн, C = 200 мкФ. Ответ: 51 + j31,2, ВА. Задача 5 R ХL1 ХC ХL2 Вычислить величину дейст- вующего значения тока в цепи при U U = 5 B, R = 3 Ом, XL1 = 1 Ом, XL2 = = 1 Ом, XC = 6 Ом. Ответ: 1 А. 3.2. Анализ разветвленных электрических цепей 3.2.1. Основные определения и алгоритм решения задач Полная комплексная проводимость электрической цепи определяется согласно закону Ома I& Y = = G − j (BL − BC) = Ye − jϕ , Ом, U& где G − активная проводимость цепи, См; BL − индуктивная составляющая проводимости, См; BC − емкостная составляющая проводимости, См, причем модуль полной комплексной проводимости Y = G 2 + (BL − BC) 2 , См, B − BC а фаза ϕ = arctg L , град. G Величины G, BL, BC могут быть вычислены также исходя из за- данных параметров электрической цепи. И в общем виде можно ска- зать, что величина проводимости какой-то ветви прямо пропорцио- нальна соответствующему сопротивлению ветви и обратно пропор-

1. Какими параметрами характеризуются синусоидальный ток или напряжение?

2. Каково соотношение между амплитудным и действующим значениями величин, изменяющихся во времени по синусоидальному закону?

3. С какими физическими процессами связаны понятия активного сопротивления, активной мощности? Построить векторную диаграмму напряжения и тока для участка цепи.

4. С какими физическими процессами связаны понятия реактивного сопротивления, реактивной мощности? Как величина индуктивного и емкостного реактивных сопротивлений зависит от частоты питающего напряжения?

5. Построить векторные диаграммы для участков цепи с идеальной индуктивностью и идеальной емкостью.

6. Как определяют активное, реактивное и полное сопротивления цепи, содержащей несколько последовательно включенных элементов?

7. Привести формулы для расчета активной, реактивной и полной мощностей цепи.

8. Построить треугольники напряжений, сопротивлений и мощностей для участка цепи с последовательным соединением R и L, с последовательны соединением R и C.

9. Построить векторную диаграмму для цепи, содержащей несколько последовательно включенных элементов.

6.4.2. Расчет электрических параметров цепи

Задача 1. Электрическая цепь, показанная на рис. 6.8, питается от источника синусоидального тока с частотой 200 Гц и напряжением 120 В. Дано: R = 4 Ом, L = 6,37 мГн, C = 159 мкФ.

Вычислить ток в цепи, напряжения на всех участках, активную, реактивную, и полную мощности. Построить векторную диаграмму, треугольники сопротивлений и мощностей.

Анализ и решение задачи 1

1. Вычисление сопротивлений участков и всей цепи

Индуктивное реактивное сопротивление

X L = 2πf L = 2×3,14×200×6,37·10 -3 Ом.

Емкостное реактивное сопротивление

X C = 1 / (2πf C) = 1 / (2×3,14×200×159·10 -6) Ом.

Реактивное и полное сопротивления всей цепи:

X = X L - X C = 3 Ом; Ом.

2. Вычисление тока и напряжений на участках цепи

Ток в цепи

I = U / Z = 120 / 5 А.

Напряжения на участках:

U 1 = R I = 96 В; U 2 = X L I = 192 В; U 3 = X C I = 120 В.

3. Вычисление мощностей

Активная мощность

P = R I 2 = U 1 I = 2304 Вт.

Реактивные мощности:

Q L = X L I 2 = U 2 I = 4608 ВАр; Q C = X C I 2 = U 3 I = 2880 ВАр.

Полная мощность цепи

4. Расчет цепи методом комплексных чисел

Запишем в комплексном виде сопротивление каждого элемента и всей цепи

R = 4e j0° = 4 Ом; X L = 8e +j90° = j8 Ом; X C = 5e -j90° = -j5 Ом.

Z = R + j(X L - X C) = 4 + j(8 - 5) Ом.

На комплексной плоскости в масштабе: в 1 см – 2 Ом, построим треугольник сопротивлений (рис. 6.9. а).

Из треугольника определим величину полного сопротивления Z и угол фазового сдвига φ

Ом;

.

В показательной форме полное сопротивление всей цепи запишется в виде

Z = Ze +jφ = 5e +j37° Ом.

Примем начальную фазу приложенного к цепи напряжения за нуль и определим по закону Ома ток в данной цепи

Í = Ú / Z = 120e +j0° / 5e +j37° А.

Следовательно, в данной цепи ток отстает по фазе от напряжения на угол φ. Зная величину тока I, определим мощности для отдельных элементов и всей цепи.

P = 2304 Вт; Q L = 4608 ВАр; Q C = 2880 ВАр.

.

Треугольник мощностей в масштабе: в 1 см – 1000 Вт (ВАр); (ВА), построим (рис. 6.9. б) на основе выражения для полной мощности

S 2 = P 2 + (Q L - Q C) 2 .

Для построения векторных диаграмм по току и напряжениям примем начальную фазу тока равной нулю, т.к. ток I в данной схеме является одним и тем же для всех элементов в цепи.

Í = Ie +j0° / 24e +j0° А.

Запишем выражения для напряжений в комплексной форме

Ú 1 = R Í = 96e +j0° В; Ú 2 = X L Í = 192e +j90° В;

Ú 3 = X C Í = 120e -j90° В; Ú = Z Í = 120e +j37° В.

Выберем масштабы для векторной диаграммы: в 1 см – 6 А; в 1 см – 50 В. Векторная диаграмма напряжений строится на основе второго закона Кирхгофа для данной цепи

Ú = Ú 1 + Ú 2 + Ú 3 .

Векторная диаграмма цепи показана на рис. 6.9. в. При последовательном соединении элементов построение диаграммы начинают с вектора тока Í, по отношению к которому ориентируются вектора напряжений на участках цепи: напряжение на активном сопротивлении Ú 1 совпадает с ним по направлению, напряжение на индуктивности Ú 2 опережает его на 90°, на емкости отстает на 90°. Полное напряжение Ú строится как их векторная сумма.

Дополнительные вопросы к задаче 1

1. Какой характер носит эквивалентное реактивное сопротивление цепи?

По условию задачи X L > X C , поэтому X = X L - X C имеет индуктивный характер. Обратите внимание, что реактивные сопротивления отдельных участков цепи (X L , X C) могут быть больше ее полного сопротивления, так в данном случае X L > Z.

2. Как изменяется режим работы цепи при изменении частоты питающего напряжения?

От частоты зависят реактивные сопротивления: X L прямо пропорционально частоте f, X C обратно пропорционально f. В рассматриваемой схеме X L > X C , поэтому при росте частоты X возрастает, ток уменьшается и возрастает угол φ его отставания от напряжения. При уменьшении частоты X уменьшается и при некотором ее значении X = 0, т.е. схема ведет себя как чисто активное сопротивление (режим резонанса напряжений, при котором U L = U C , Z = R и ток наибольший). При дальнейшем уменьшении частоты X C > X L , Z возрастает, I уменьшается, схема ведет себя как активно-емкостное сопротивление.

Для перевода величин к действующим необходимо:

Точечка над I означает, что это комплекс.

Чтобы не путать с током, в электротехнике комплексная единица обозначается буквой «j».

Для заданного напряжения имеем:


В решении задач обычно оперируют действующими значениями.

В переменном токе вводятся новые элементы:

L – [Гн]
Конденсатор [емкость] С – [Ф]

Их сопротивления (реактивные сопротивления) находятся как:


(сопротивление конденсатора — отрицательное)

Например, имеем схему, она подключена на напряжение 200 В, имеющего частоту 100 Гц. Требуется найти ток. Параметры элементов заданы:

Чтоб найти ток, необходимо напряжение разделить на сопротивление (из закона Ома). Здесь основная задача – найти сопротивление.

Комплексное сопротивление находится как:


Напряжение делим на сопротивление и получаем ток.

Все эти действия удобно проводить в MathCad. Комплексная единица ставится «1i» или «1j». Если нет возможности, то:

  1. Деление удобно производить в показательной форме.
  2. Сложение и вычитание – в алгебраической.
  3. Умножение – в любой (оба числа в одинаковой форме).

Также, скажем пару слов о мощности. Мощность есть произведение тока и напряжения для цепей постоянного тока. Для цепей переменного тока вводится еще один параметр – угол сдвига фаз (вернее его косинус) между напряжением и током.

Предположим, для предыдущей цепи нашли ток и напряжение (в комплексной форме).

Также мощность можно найти и по другой формуле:

В этой формуле — сопряженный комплекс тока. Сопряженный – значит, что его мнимая часть (та, что с j) меняет свой знак на противоположный (минус/плюс).
Re – означает действительная часть (та, что без j).

Это были формулы для активной (полезной) мощности. В цепях переменного тока существует так же и реактивная мощность (генерируется конденсаторами, потребляется – катушками).


Im – мнимая часть комплексного числа (та, что с j).

Зная реактивную и активную мощность можно подсчитать полную мощность цепи:

Для упрощенного расчета цепей постоянного и переменного тока, содержащих большое число ветвей, пользуются одним из упрощенных методов анализа цепей. Рассмотрим подробнее метод контурных токов.

Метод контурных токов (МКТ)

Данный метод подходит для решения схем, содержащих больше узлов, чем независимых контуров (например, схема из раздела про постоянный ток). Принцип решения состоит в следующем:


Данный метод, как и другие (например, метод узловых потенциалов, эквивалентного генератора, наложения) пригоден для цепей как постоянного, так и переменного тока. При расчете цепей переменного тока сопротивления элементов приводятся к комплексной форме записи. Система уравнений решается также в комплексной форме.

Литература

Решение электротехники на заказ

И помните, что наши решатели всегда готовы помочь Вам с ТОЭ. .

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным , а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида - индуктивные и емкостные .

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току - Z , которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения U L (напряжение на индуктивном сопротивлении) и напряжения U R (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) - схема цепи; б) - сдвиг фаз тока и напряжения; в) - треугольник напряжений; д) - треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов U L и U R . Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор U AB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью . .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C . а) - схема цепи; б) - треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (X L или X C преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

(5)

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов . а) - параллельное соединение R и L; б) - параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура .

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L-индуктивность катушки в Гн;

С-емкость конденсатора в Ф;

R-активное сопротивление катушки в Ом.

Что еще почитать